Pub Date : 2022-03-01DOI: 10.1017/S0960258522000083
A. Bhatt, D. Gallacher, A. Jarma-Orozco, M. Pompelli
Abstract Coastal desert vegetation of the Arabian Peninsula is almost entirely dominated by halophytes. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. High intrapopulation variation of seed traits is presumed to increase population persistence in the unpredictable climatic conditions of this hyper-arid desert. We investigated whether intrapopulation variation of seed mass, dormancy and germinability of four species was attributable to maternal individuals. Arthrocnemum macrostachyum, Halothamnus iraquensis, Haloxylon salicornicum and Seidlitzia rosmarinus are commonly distributed Arabian halophytes with differing seed weight variation. All species exhibited a higher germination when exposed daily to 12 h light, compared to seeds in darkness. A higher germination was correlated with a shorter germination time. For H. iraquensis and S. rosmarinus, a shorter germination time was negatively correlated with germination synchrony. H. salicornicum showed the highest intrapopulation variation of seed traits, followed by A. macrostachyum, S. rosmarinus and H. iraqensis. We found that individuals within populations of all the studied species showed variability in germination but the extent of variation was species-specific. The variation in seed mass and germination among the individuals of the studied species may facilitate a temporal distribution of germination, which may reduce the risk of seed bank exhaustion. The results of this study could assist conservation and management by improving the efficiency of seed collection from wild populations of these species.
{"title":"Seed mass, dormancy and germinability variation among maternal plants of four Arabian halophytes","authors":"A. Bhatt, D. Gallacher, A. Jarma-Orozco, M. Pompelli","doi":"10.1017/S0960258522000083","DOIUrl":"https://doi.org/10.1017/S0960258522000083","url":null,"abstract":"Abstract Coastal desert vegetation of the Arabian Peninsula is almost entirely dominated by halophytes. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. High intrapopulation variation of seed traits is presumed to increase population persistence in the unpredictable climatic conditions of this hyper-arid desert. We investigated whether intrapopulation variation of seed mass, dormancy and germinability of four species was attributable to maternal individuals. Arthrocnemum macrostachyum, Halothamnus iraquensis, Haloxylon salicornicum and Seidlitzia rosmarinus are commonly distributed Arabian halophytes with differing seed weight variation. All species exhibited a higher germination when exposed daily to 12 h light, compared to seeds in darkness. A higher germination was correlated with a shorter germination time. For H. iraquensis and S. rosmarinus, a shorter germination time was negatively correlated with germination synchrony. H. salicornicum showed the highest intrapopulation variation of seed traits, followed by A. macrostachyum, S. rosmarinus and H. iraqensis. We found that individuals within populations of all the studied species showed variability in germination but the extent of variation was species-specific. The variation in seed mass and germination among the individuals of the studied species may facilitate a temporal distribution of germination, which may reduce the risk of seed bank exhaustion. The results of this study could assist conservation and management by improving the efficiency of seed collection from wild populations of these species.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45017275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-02DOI: 10.1017/S0960258522000010
C. Baskin, J. Baskin, X. Hu, C. Zhang
Abstract To persist (without immigration) in habitats with unpredictable environmental conditions, annuals must produce seeds each year or have a seed bank. Thus, we predicted that compared to perennials, annuals have a wider germination temperature range (GTR, the difference in temperature between the week with the highest and the week with the lowest germination during the natural germination season). We determined the GTR via germination phenology data for 350 herbaceous species in 59 families from the eastern USA: summer annuals (SA), 63; winter annuals (WA), 83; monocarpic perennials (MP), 28; and polycarpic perennials (PP), 176. There was no significant phylogenetic signal for the GTR. The width of the GTR during the first spring germination season was 9.6, 8.7 and 8.8°C for MP, PP and SA, respectively, and during the first autumn germination season 12.8, 11.8 and 12.4°C for MP, PP and WA, respectively. Annuals did not have a wider GTR than perennials in either the spring or the autumn germination season. Our data suggest that selection for early germination in either spring or autumn has resulted in only small differences in the GTR. We predict that global warming will have little or no effect on reshaping the germination phenology of herbaceous species of temperate eastern North America.
{"title":"Width of the temperature range for seed germination of herbaceous plant species in temperate eastern North America: life cycles, seasons and temperature variation and implication for climate warming","authors":"C. Baskin, J. Baskin, X. Hu, C. Zhang","doi":"10.1017/S0960258522000010","DOIUrl":"https://doi.org/10.1017/S0960258522000010","url":null,"abstract":"Abstract To persist (without immigration) in habitats with unpredictable environmental conditions, annuals must produce seeds each year or have a seed bank. Thus, we predicted that compared to perennials, annuals have a wider germination temperature range (GTR, the difference in temperature between the week with the highest and the week with the lowest germination during the natural germination season). We determined the GTR via germination phenology data for 350 herbaceous species in 59 families from the eastern USA: summer annuals (SA), 63; winter annuals (WA), 83; monocarpic perennials (MP), 28; and polycarpic perennials (PP), 176. There was no significant phylogenetic signal for the GTR. The width of the GTR during the first spring germination season was 9.6, 8.7 and 8.8°C for MP, PP and SA, respectively, and during the first autumn germination season 12.8, 11.8 and 12.4°C for MP, PP and WA, respectively. Annuals did not have a wider GTR than perennials in either the spring or the autumn germination season. Our data suggest that selection for early germination in either spring or autumn has resulted in only small differences in the GTR. We predict that global warming will have little or no effect on reshaping the germination phenology of herbaceous species of temperate eastern North America.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41296355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1017/S0960258521000313
K. Whitehouse, S. Norton
Abstract To maximize seed longevity, seeds should be harvested at optimal maturity, that is, when seeds have acquired maximum physiological quality before deterioration begins. The aim of this study was to map the variation in temporal patterns of lentil (Lens culinaris Medik.) seed quality development when grown across four regeneration environments, which differ in the level of temperature and humidity control throughout the growing season, at the Australian Grains Genebank. Seeds of two lentil accessions (76080 and 76072) were harvested at different stages throughout development, commencing at 21 d after 50% anthesis until a maximum of 130 d. At each harvest, physiological quality traits, including germinability (fresh and dried seeds) and seed longevity, were determined, as well as seed dry weight and moisture content. Seeds of both accessions, and in all environments, started to accumulate physiological quality early on in development but did not reach their maximum until 3–54 d after mass maturity. The temporal patterns of desiccation tolerance and storage longevity were highly influenced by the environmental conditions during the maturation drying phase, affecting both ‘when’ maximum quality was attained and for how long it was maintained, thereafter. Seeds did not show a typical developmental response, rather variation was observed in seed quality development both between and within accessions grown in the different environments. The poorest storage longevity was seen when seeds of both accessions were grown in the cooler, temperature-controlled glasshouse, and the maximum longevity was observed in the warmer, semi-protected environments of the green and the big igloo for accessions 76080 and 76072, respectively.
{"title":"Environmental effect on temporal patterns in lentil seed quality development","authors":"K. Whitehouse, S. Norton","doi":"10.1017/S0960258521000313","DOIUrl":"https://doi.org/10.1017/S0960258521000313","url":null,"abstract":"Abstract To maximize seed longevity, seeds should be harvested at optimal maturity, that is, when seeds have acquired maximum physiological quality before deterioration begins. The aim of this study was to map the variation in temporal patterns of lentil (Lens culinaris Medik.) seed quality development when grown across four regeneration environments, which differ in the level of temperature and humidity control throughout the growing season, at the Australian Grains Genebank. Seeds of two lentil accessions (76080 and 76072) were harvested at different stages throughout development, commencing at 21 d after 50% anthesis until a maximum of 130 d. At each harvest, physiological quality traits, including germinability (fresh and dried seeds) and seed longevity, were determined, as well as seed dry weight and moisture content. Seeds of both accessions, and in all environments, started to accumulate physiological quality early on in development but did not reach their maximum until 3–54 d after mass maturity. The temporal patterns of desiccation tolerance and storage longevity were highly influenced by the environmental conditions during the maturation drying phase, affecting both ‘when’ maximum quality was attained and for how long it was maintained, thereafter. Seeds did not show a typical developmental response, rather variation was observed in seed quality development both between and within accessions grown in the different environments. The poorest storage longevity was seen when seeds of both accessions were grown in the cooler, temperature-controlled glasshouse, and the maximum longevity was observed in the warmer, semi-protected environments of the green and the big igloo for accessions 76080 and 76072, respectively.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41294253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-10DOI: 10.1017/S0960258521000295
R. Ellis
Abstract The J. Derek Bewley Career Lectures presented at the triennial meetings of the International Society of Seed Science support early-career seed scientists by providing retrospective views, from those late in their careers, of lessons learned and future implications. Ambition, ability, inspiration, foresight, hard work and opportunity are obvious career requirements. The importance of mentoring and teamwork combined with the clear communication of results, understanding and ideas are emphasized. The role of illustration in research, and its dissemination, is outlined: illustration can support hypothesis development, testing and communication. Climate change may perturb the production of high-quality seed affecting conservation as well as agriculture, horticulture and forestry. An illustrative synthesis of the current understanding of temporal aspects of the effects of seed production environment on seed quality (assessed by subsequent seed storage longevity) is provided for wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Seed science research can contribute to complex global challenges such as future food supplies from seed-propagated crops in our changing climate whilst conserving biological diversity (through seed ecology and technologies such as ex situ plant genetic resources conservation by long-term seed storage in genebanks), but only if that research can be – and then is – applied.
{"title":"The J. Derek Bewley Career Lecture. Seeds–plants–crops–biodiversity–environment–people: illustrating understanding and ideas","authors":"R. Ellis","doi":"10.1017/S0960258521000295","DOIUrl":"https://doi.org/10.1017/S0960258521000295","url":null,"abstract":"Abstract The J. Derek Bewley Career Lectures presented at the triennial meetings of the International Society of Seed Science support early-career seed scientists by providing retrospective views, from those late in their careers, of lessons learned and future implications. Ambition, ability, inspiration, foresight, hard work and opportunity are obvious career requirements. The importance of mentoring and teamwork combined with the clear communication of results, understanding and ideas are emphasized. The role of illustration in research, and its dissemination, is outlined: illustration can support hypothesis development, testing and communication. Climate change may perturb the production of high-quality seed affecting conservation as well as agriculture, horticulture and forestry. An illustrative synthesis of the current understanding of temporal aspects of the effects of seed production environment on seed quality (assessed by subsequent seed storage longevity) is provided for wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Seed science research can contribute to complex global challenges such as future food supplies from seed-propagated crops in our changing climate whilst conserving biological diversity (through seed ecology and technologies such as ex situ plant genetic resources conservation by long-term seed storage in genebanks), but only if that research can be – and then is – applied.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46467954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000301
N. Emery, Justin C. Collette
Abstract Cadellia pentastylis (Surianaceae) is an Australian endemic threatened rainforest tree. Irregular flowering and fruiting events coupled with high rates of infertility and insect predation has meant that seed testing has not been possible for this species. Seeds were opportunistically collected from a wild population in early 2021, which allowed for the first germination tests to be conducted. In this study, the presence of physical dormancy was examined by performing an imbibition test using scarified and non-scarified seeds. We also investigated whether a 5-min heat shock treatment at temperatures ranging from 60 to 120°C improved germination success. The presence of physiological dormancy was also examined by recording germination success following a gibberellic acid or smoke-water pre-treatment. Both scarified and non-scarified seeds readily imbibed water over a 72-h period, and several seeds had germinated in both treatments after 48 h. Final germination proportion and t50 following a heat shock, gibberellic acid or smoke-water pre-treatment did not significantly differ from the controls. We conclude that C. pentastylis seeds are non-dormant. Although a palisade cell layer has been reported in the endocarp, our results suggest that this layer may not be sufficiently formed to restrict germination. We recommend that seeds are collected from populations following dispersal and propagated shortly after or stored as conservation collections in ex situ Seedbanks.
{"title":"Seeds of the threatened dry rainforest tree Cadellia pentastylis (Surianaceae) are non-dormant","authors":"N. Emery, Justin C. Collette","doi":"10.1017/S0960258521000301","DOIUrl":"https://doi.org/10.1017/S0960258521000301","url":null,"abstract":"Abstract Cadellia pentastylis (Surianaceae) is an Australian endemic threatened rainforest tree. Irregular flowering and fruiting events coupled with high rates of infertility and insect predation has meant that seed testing has not been possible for this species. Seeds were opportunistically collected from a wild population in early 2021, which allowed for the first germination tests to be conducted. In this study, the presence of physical dormancy was examined by performing an imbibition test using scarified and non-scarified seeds. We also investigated whether a 5-min heat shock treatment at temperatures ranging from 60 to 120°C improved germination success. The presence of physiological dormancy was also examined by recording germination success following a gibberellic acid or smoke-water pre-treatment. Both scarified and non-scarified seeds readily imbibed water over a 72-h period, and several seeds had germinated in both treatments after 48 h. Final germination proportion and t50 following a heat shock, gibberellic acid or smoke-water pre-treatment did not significantly differ from the controls. We conclude that C. pentastylis seeds are non-dormant. Although a palisade cell layer has been reported in the endocarp, our results suggest that this layer may not be sufficiently formed to restrict germination. We recommend that seeds are collected from populations following dispersal and propagated shortly after or stored as conservation collections in ex situ Seedbanks.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49009842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000271
Dechang Cao, M. Schöttner, R. Halitschke, Dapeng Li, Gundega Baldwin, Catarina Rocha, I. Baldwin
Abstract Smoke-derived seed germination is an important trait for plants to colonize postfire habitats. The well-characterized smoke-derived chemicals of karrikins germinate seeds of species not known to occur after fires in nature. Hence, the ecologically relevant germination cues in smoke remain to be explored for native postfire plants. With the fire-chaser, Nicotiana attenuata, we revisit a bioassay-driven fractionation of liquid smoke to identify ecologically relevant germination cues. By combining bioassay-guided fractionation and comparative unbiased metabolomics, we developed a robust and efficient method to identify germination cues in smoke. Syringaldehyde (SAL) was re-identified as a germination cue in fractions of liquid smoke that promote seed germination. SAL was found to be produced during wildfires in the plant's native habitat, efficiently adsorbed to N. attenuata seeds from aqueous solutions and not readily leached from soil and accurately predicted the boundaries of natural fire events that reflect the occurrence of native postfire N. attenuata populations. We propose that SAL is an ecologically relevant germination cue in smoke for this species.
{"title":"Syringaldehyde is a novel smoke-derived germination cue for the native fire-chasing tobacco, Nicotiana attenuata","authors":"Dechang Cao, M. Schöttner, R. Halitschke, Dapeng Li, Gundega Baldwin, Catarina Rocha, I. Baldwin","doi":"10.1017/S0960258521000271","DOIUrl":"https://doi.org/10.1017/S0960258521000271","url":null,"abstract":"Abstract Smoke-derived seed germination is an important trait for plants to colonize postfire habitats. The well-characterized smoke-derived chemicals of karrikins germinate seeds of species not known to occur after fires in nature. Hence, the ecologically relevant germination cues in smoke remain to be explored for native postfire plants. With the fire-chaser, Nicotiana attenuata, we revisit a bioassay-driven fractionation of liquid smoke to identify ecologically relevant germination cues. By combining bioassay-guided fractionation and comparative unbiased metabolomics, we developed a robust and efficient method to identify germination cues in smoke. Syringaldehyde (SAL) was re-identified as a germination cue in fractions of liquid smoke that promote seed germination. SAL was found to be produced during wildfires in the plant's native habitat, efficiently adsorbed to N. attenuata seeds from aqueous solutions and not readily leached from soil and accurately predicted the boundaries of natural fire events that reflect the occurrence of native postfire N. attenuata populations. We propose that SAL is an ecologically relevant germination cue in smoke for this species.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44535966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000258
T. B. Michelon, A. C. Belniaki, C. Taconeli, E. S. N. Vieira, Maristela Panobianco
Abstract Determining the germination speed is essential in experiments in the field of seed technology, as it allows the performance evaluation of a seed lot and the creation of predictive models. To this end, the literature addresses several methods and indexes. The objective of this study was to compare the main methods of emergence speed analysis in seeds, namely the non-linear regression models and the Emergence Speed Index (ESI), with the time-to-event models. The research was conducted with peach palm seeds (Bactris gasipaes) that were measured for viability and vigour through daily evaluations for 4 months. Vigour was evaluated by the quantification of the seed emergence speed, which was performed in three ways: ESI, non-linear regression and non-linear regression considering germination as a time-to-event event. From the results obtained, we conclude that the ESI is not a good indicator to evaluate the emergence speed; the non-linear regression model underestimates the errors and, thus, increases the probability of misclassifying treatments; the time-to-event model is more reliable in classifying treatments according to the emergence speed.
{"title":"Emergence speed comparison by non-linear regression and approached by time-to-event models for censored data","authors":"T. B. Michelon, A. C. Belniaki, C. Taconeli, E. S. N. Vieira, Maristela Panobianco","doi":"10.1017/S0960258521000258","DOIUrl":"https://doi.org/10.1017/S0960258521000258","url":null,"abstract":"Abstract Determining the germination speed is essential in experiments in the field of seed technology, as it allows the performance evaluation of a seed lot and the creation of predictive models. To this end, the literature addresses several methods and indexes. The objective of this study was to compare the main methods of emergence speed analysis in seeds, namely the non-linear regression models and the Emergence Speed Index (ESI), with the time-to-event models. The research was conducted with peach palm seeds (Bactris gasipaes) that were measured for viability and vigour through daily evaluations for 4 months. Vigour was evaluated by the quantification of the seed emergence speed, which was performed in three ways: ESI, non-linear regression and non-linear regression considering germination as a time-to-event event. From the results obtained, we conclude that the ESI is not a good indicator to evaluate the emergence speed; the non-linear regression model underestimates the errors and, thus, increases the probability of misclassifying treatments; the time-to-event model is more reliable in classifying treatments according to the emergence speed.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46475281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000283
Duniel Barrios, Sandy Toledo, Joaquín Sánchez, L. R. González-Torres
Abstract Serotiny is a strategy in which the retention of mature seeds in parent structures allows plants to cope with environmental variability like heat, drought or fire. Although this phenomenon might be common in Cactaceae, and particularly in Melocactus, it has generally been scarcely addressed. The main goal of our work is to investigate if there are seeds hidden in the cephalium of Melocactus matanzanus and if there are, determine whether or not these seeds maintain their viability. We also discuss some advantages the cephalium may offer as diaspore after the death of individuals. Cephalia collected from dead individuals were divided into four slices and their seeds counted; we also assessed the viability and photoblastic response of the seeds by using growth chambers at 25/30°C, and by a cut test on the seeds that did not germinate. Our results showed retention of viable seeds of different ages in all slices of the cephalium. Seeds were photoblastic positive with germination between 11–22% and viability above 50% in the portion of the lots that did not germinate.
{"title":"Serotiny in Melocactus matanzanus (Cactaceae) and role of cephalium in dispersal of seeds after the individual's death","authors":"Duniel Barrios, Sandy Toledo, Joaquín Sánchez, L. R. González-Torres","doi":"10.1017/S0960258521000283","DOIUrl":"https://doi.org/10.1017/S0960258521000283","url":null,"abstract":"Abstract Serotiny is a strategy in which the retention of mature seeds in parent structures allows plants to cope with environmental variability like heat, drought or fire. Although this phenomenon might be common in Cactaceae, and particularly in Melocactus, it has generally been scarcely addressed. The main goal of our work is to investigate if there are seeds hidden in the cephalium of Melocactus matanzanus and if there are, determine whether or not these seeds maintain their viability. We also discuss some advantages the cephalium may offer as diaspore after the death of individuals. Cephalia collected from dead individuals were divided into four slices and their seeds counted; we also assessed the viability and photoblastic response of the seeds by using growth chambers at 25/30°C, and by a cut test on the seeds that did not germinate. Our results showed retention of viable seeds of different ages in all slices of the cephalium. Seeds were photoblastic positive with germination between 11–22% and viability above 50% in the portion of the lots that did not germinate.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45964301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S096025852100026X
J. Baskin, C. Baskin
Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.
{"title":"The great diversity in kinds of seed dormancy: a revision of the Nikolaeva–Baskin classification system for primary seed dormancy","authors":"J. Baskin, C. Baskin","doi":"10.1017/S096025852100026X","DOIUrl":"https://doi.org/10.1017/S096025852100026X","url":null,"abstract":"Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46444784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-01DOI: 10.1017/S0960258521000246
Seung-Kyung Lee, Woonghi Shin, Sangjin Ahn, Youngeun Kim, Jong-Taek Kim, Eun Ju Lee
Abstract Large herbivores can disperse seeds over long distances through endozoochory. The Korean water deer (Hydropotes inermis argyropus), an internationally vulnerable species but locally considered a vermin, is a potential endozoochorous seed dispersal vector. In this study, feeding experiments were conducted to test the efficiency of seed dispersal through gut ingestion by the Korean water deer, its temporal pattern and the effect of gut passage on seed recovery and germination rate. Eight plant species, including species that formerly germinated from its faeces, were used to feed three Korean water deer. Once the deer had consumed all the provided seeds, their faeces were collected after 24, 48, 72 and 96 h. The collected faeces were air-dried, and the number of seeds retrieved from the faeces was counted every 24 h (0–24, 24–48, 48–72 and 72–96 h). Among the eight plant species, six species were retrieved with intact seeds. Panicum bisulcatum had the highest recovery rate of 33.7%, followed by Amaranthus mangostanus (24.5%) and Chenopodium album (14.4%). Most of the seeds were recovered within the 24–48 h time interval. Germination tests were conducted on the ingested and uningested seeds for the four species which had a sufficient recovery rate. The effects of gut passage on seed germination differed according to plant species. The germination rate substantially decreased after gut passage. The results suggest that the Korean water deer can disperse seeds, potentially over long distances albeit at a high cost of low seed recovery and germination rate.
{"title":"Seed recovery and germination rate after gut passage by Korean water deer (Hydropotes inermis argyropus)","authors":"Seung-Kyung Lee, Woonghi Shin, Sangjin Ahn, Youngeun Kim, Jong-Taek Kim, Eun Ju Lee","doi":"10.1017/S0960258521000246","DOIUrl":"https://doi.org/10.1017/S0960258521000246","url":null,"abstract":"Abstract Large herbivores can disperse seeds over long distances through endozoochory. The Korean water deer (Hydropotes inermis argyropus), an internationally vulnerable species but locally considered a vermin, is a potential endozoochorous seed dispersal vector. In this study, feeding experiments were conducted to test the efficiency of seed dispersal through gut ingestion by the Korean water deer, its temporal pattern and the effect of gut passage on seed recovery and germination rate. Eight plant species, including species that formerly germinated from its faeces, were used to feed three Korean water deer. Once the deer had consumed all the provided seeds, their faeces were collected after 24, 48, 72 and 96 h. The collected faeces were air-dried, and the number of seeds retrieved from the faeces was counted every 24 h (0–24, 24–48, 48–72 and 72–96 h). Among the eight plant species, six species were retrieved with intact seeds. Panicum bisulcatum had the highest recovery rate of 33.7%, followed by Amaranthus mangostanus (24.5%) and Chenopodium album (14.4%). Most of the seeds were recovered within the 24–48 h time interval. Germination tests were conducted on the ingested and uningested seeds for the four species which had a sufficient recovery rate. The effects of gut passage on seed germination differed according to plant species. The germination rate substantially decreased after gut passage. The results suggest that the Korean water deer can disperse seeds, potentially over long distances albeit at a high cost of low seed recovery and germination rate.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48959246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}