Pub Date : 2022-06-01DOI: 10.1017/S0960258522000095
Talita R. Silva dos Santos, E. M. Bicalho, Q. Garcia
Abstract We investigated the thermal thresholds to seed germination and the variations in abscisic acid (ABA) levels and oxidative metabolism during seed dormancy-breaking and germination in two palm species with differences in desiccation tolerance. We used Mauritia flexuosa (buriti palm, desiccation-sensitive seeds) from swampy habitats (Veredas) and Attalea speciosa (babassu, desiccation-tolerant seeds) from the transition zone between the forest and semi-arid region (drained soils). Germination was evaluated at 15–40°C after dormancy-breaking (operculum removal). At optimal temperature for both species (30°C), embryos were sampled in distinct germination phases – dry, imbibed, after operculum removal and at early germination – and used for quantifying ABA and hydrogen peroxide (H2O2) content, antioxidant enzyme activities and for histolocalization of superoxide anion (O2−). Seeds of M. flexuosa germinated only in a narrow temperature range (25–35°C), while A. speciosa seeds germinated between 15 and 40°C. After operculum removal, reduced ABA levels in embryos of M. flexuosa were accompanied by constant H2O2 levels, while in A. speciosa, similar levels of ABA and H2O2 were maintained throughout all germination phases. The presence of O2− was restricted to the haustorium, and an increase in O2− accumulation was observed in both species after operculum removal. Similarities were noted between both species regarding enzyme activities; however, the activities were higher in embryos from M. flexuosa. The presence of O2− only in the haustorium indicates that this region of the embryo is an active structure following imbibition and is involved in germination itself, not just functioning in reserve mobilization.
{"title":"Oxidant system and ABA drive germination in seeds of palm species with differences in desiccation tolerance","authors":"Talita R. Silva dos Santos, E. M. Bicalho, Q. Garcia","doi":"10.1017/S0960258522000095","DOIUrl":"https://doi.org/10.1017/S0960258522000095","url":null,"abstract":"Abstract We investigated the thermal thresholds to seed germination and the variations in abscisic acid (ABA) levels and oxidative metabolism during seed dormancy-breaking and germination in two palm species with differences in desiccation tolerance. We used Mauritia flexuosa (buriti palm, desiccation-sensitive seeds) from swampy habitats (Veredas) and Attalea speciosa (babassu, desiccation-tolerant seeds) from the transition zone between the forest and semi-arid region (drained soils). Germination was evaluated at 15–40°C after dormancy-breaking (operculum removal). At optimal temperature for both species (30°C), embryos were sampled in distinct germination phases – dry, imbibed, after operculum removal and at early germination – and used for quantifying ABA and hydrogen peroxide (H2O2) content, antioxidant enzyme activities and for histolocalization of superoxide anion (O2−). Seeds of M. flexuosa germinated only in a narrow temperature range (25–35°C), while A. speciosa seeds germinated between 15 and 40°C. After operculum removal, reduced ABA levels in embryos of M. flexuosa were accompanied by constant H2O2 levels, while in A. speciosa, similar levels of ABA and H2O2 were maintained throughout all germination phases. The presence of O2− was restricted to the haustorium, and an increase in O2− accumulation was observed in both species after operculum removal. Similarities were noted between both species regarding enzyme activities; however, the activities were higher in embryos from M. flexuosa. The presence of O2− only in the haustorium indicates that this region of the embryo is an active structure following imbibition and is involved in germination itself, not just functioning in reserve mobilization.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"157 - 165"},"PeriodicalIF":2.1,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47926427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-06DOI: 10.1017/S0960258522000046
Mariko Nonogaki, S. Yamazaki, Eri Nishiyama, K. Ohshima, H. Nonogaki
Abstract Genetic and biochemical studies have greatly advanced our understanding of the biology of seeds in recent years. Another area of study, which could accelerate contemporary seed biology research, is phylogenomics that integrates the wealth of genome sequence data with evolutionary biology. The recent phylogenomic study of the DELAY OF GERMINATION1 family genes exemplifies how the molecular evolution of seed genes can be traced back through early diverging plants and what implications can be obtained from the analysis of seed gene diversification at ancient times. The identification of possible ancestors of seed genes in non-seed plants could illuminate the ancient roots of the molecular mechanisms driving seed maturation programmes. It is possible that the origins of molecular mechanisms associated with the induction of seed storage proteins and desiccation tolerance proteins date back to the time of, or even prior to, early diverging land plants. Abscisic acid-dependent growth arrest or dormancy mechanisms might date back to red algae, one of the oldest algal groups. Thus, understanding algal cell biology will also be an integral part of future seed biology research. Unravelling key events associated with the evolution of seed- and non-seed plants will not only advance basic research but could also contribute to applied aspects of seed science, potentially leading to technology development for agriculture.
{"title":"Seed traits and phylogenomics: prospects for the 21st century","authors":"Mariko Nonogaki, S. Yamazaki, Eri Nishiyama, K. Ohshima, H. Nonogaki","doi":"10.1017/S0960258522000046","DOIUrl":"https://doi.org/10.1017/S0960258522000046","url":null,"abstract":"Abstract Genetic and biochemical studies have greatly advanced our understanding of the biology of seeds in recent years. Another area of study, which could accelerate contemporary seed biology research, is phylogenomics that integrates the wealth of genome sequence data with evolutionary biology. The recent phylogenomic study of the DELAY OF GERMINATION1 family genes exemplifies how the molecular evolution of seed genes can be traced back through early diverging plants and what implications can be obtained from the analysis of seed gene diversification at ancient times. The identification of possible ancestors of seed genes in non-seed plants could illuminate the ancient roots of the molecular mechanisms driving seed maturation programmes. It is possible that the origins of molecular mechanisms associated with the induction of seed storage proteins and desiccation tolerance proteins date back to the time of, or even prior to, early diverging land plants. Abscisic acid-dependent growth arrest or dormancy mechanisms might date back to red algae, one of the oldest algal groups. Thus, understanding algal cell biology will also be an integral part of future seed biology research. Unravelling key events associated with the evolution of seed- and non-seed plants will not only advance basic research but could also contribute to applied aspects of seed science, potentially leading to technology development for agriculture.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"137 - 143"},"PeriodicalIF":2.1,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42074579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-29DOI: 10.1017/S0960258522000034
F. Hay, R. M. Davies, J. Dickie, D. Merritt, Dustin M. Wolkis
Abstract Understanding the relative longevity of different seed lots, perhaps of different species or genotypes, but also following production under different environments or using different cultivation methods, or following different post-harvest treatments, is relevant to anyone concerned with the retention of seed lot viability and vigour during storage. However, different scientists over the years have used different conditions to assess seed lot longevity, as well as different variables as the measure of ‘longevity.’ Here, we give some of the backgrounds to how two standard protocols, with an open and closed system respectively, were derived, and explain why we consider p50, defined as the time during storage when seed lot viability, as measured through a germination test, has declined to 50%, is a suitable longevity trait parameter.
{"title":"More on seed longevity phenotyping","authors":"F. Hay, R. M. Davies, J. Dickie, D. Merritt, Dustin M. Wolkis","doi":"10.1017/S0960258522000034","DOIUrl":"https://doi.org/10.1017/S0960258522000034","url":null,"abstract":"Abstract Understanding the relative longevity of different seed lots, perhaps of different species or genotypes, but also following production under different environments or using different cultivation methods, or following different post-harvest treatments, is relevant to anyone concerned with the retention of seed lot viability and vigour during storage. However, different scientists over the years have used different conditions to assess seed lot longevity, as well as different variables as the measure of ‘longevity.’ Here, we give some of the backgrounds to how two standard protocols, with an open and closed system respectively, were derived, and explain why we consider p50, defined as the time during storage when seed lot viability, as measured through a germination test, has declined to 50%, is a suitable longevity trait parameter.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"144 - 149"},"PeriodicalIF":2.1,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42311170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01DOI: 10.1017/S0960258522000058
Zhengshe Zhang, Mengjie Bai, Qibo Tao, Fan Wu, Qichuan Yan, Z. Nan, Yanrong Wang, Jiyu Zhang
Abstract Developmental signals and environmental stresses regulate carbon distribution in the vegetative and reproductive organs of plants and affect seed yield. Cleistogenes songorica is a xerophytic grass with great potential application value in ecological restoration. However, how carbohydrate transport and distribution during grain filling affect the seed yield of C. songorica under water stress is not clear. The present study showed that the soluble sugar and starch contents of cleistogamous (CL) spikes and chasmogamous (CH) spikes were significantly higher at the milk stage, which was attributed to a significantly higher seed number and seed yield per spike under water stress conditions than under well-watered conditions (P < 0.01). RNA-seq data revealed a total of 54,525 differentially expressed genes (DEGs) under water stress conditions, but only 3744 DEGs were shared among all comparison groups. Weighted gene co-expression network analysis showed that the transport and distribution of carbohydrates were regulated by ABA-responsive genes (CsABA8OX1_1, CsABA8OX1_2, CsABA8OX2_1, CsABA8OX2_2, CsNCED3, CsNCED1_1, CsNCED1_2 and CsNCED4_1) and sugar transport and starch synthesis genes (CsSUS1, CsSUS2, CsSUS3, CsAGP1, CsAGP4, CsAGP5, CsSSS1 and CsSBE5) under water stress conditions. These genes jointly regulated carbohydrate remobilization in sources (stems, leaves and sheaths) to promote grain filling and improve seed yield. The present study helped to clarify the phenotypic, metabolic and transcriptional response mechanisms of vegetative organs, such as stems and leaves, and reproductive organs, such as CL spikes and CH spikes, to promote carbohydrate redistribution under water stress, and it provides theoretical guidance for improving seed yields.
{"title":"Cleistogamous spike and chasmogamous spike carbon remobilization improve the seed potential yield of Cleistogenes songorica under water stress","authors":"Zhengshe Zhang, Mengjie Bai, Qibo Tao, Fan Wu, Qichuan Yan, Z. Nan, Yanrong Wang, Jiyu Zhang","doi":"10.1017/S0960258522000058","DOIUrl":"https://doi.org/10.1017/S0960258522000058","url":null,"abstract":"Abstract Developmental signals and environmental stresses regulate carbon distribution in the vegetative and reproductive organs of plants and affect seed yield. Cleistogenes songorica is a xerophytic grass with great potential application value in ecological restoration. However, how carbohydrate transport and distribution during grain filling affect the seed yield of C. songorica under water stress is not clear. The present study showed that the soluble sugar and starch contents of cleistogamous (CL) spikes and chasmogamous (CH) spikes were significantly higher at the milk stage, which was attributed to a significantly higher seed number and seed yield per spike under water stress conditions than under well-watered conditions (P < 0.01). RNA-seq data revealed a total of 54,525 differentially expressed genes (DEGs) under water stress conditions, but only 3744 DEGs were shared among all comparison groups. Weighted gene co-expression network analysis showed that the transport and distribution of carbohydrates were regulated by ABA-responsive genes (CsABA8OX1_1, CsABA8OX1_2, CsABA8OX2_1, CsABA8OX2_2, CsNCED3, CsNCED1_1, CsNCED1_2 and CsNCED4_1) and sugar transport and starch synthesis genes (CsSUS1, CsSUS2, CsSUS3, CsAGP1, CsAGP4, CsAGP5, CsSSS1 and CsSBE5) under water stress conditions. These genes jointly regulated carbohydrate remobilization in sources (stems, leaves and sheaths) to promote grain filling and improve seed yield. The present study helped to clarify the phenotypic, metabolic and transcriptional response mechanisms of vegetative organs, such as stems and leaves, and reproductive organs, such as CL spikes and CH spikes, to promote carbohydrate redistribution under water stress, and it provides theoretical guidance for improving seed yields.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"34 - 45"},"PeriodicalIF":2.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44253684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01DOI: 10.1017/S0960258522000071
A. Carta, E. Mattana, J. Dickie, F. Vandelook
Abstract Seeds show important variation as plant regenerative units among species, but their evolutionary co-variations with other plant characteristics are still poorly understood. Whilst a positive association of seed mass with genome size (GS) and life forms has already been documented, a broad-scale quantification of their evolutionary correlation and adaptive selection has never been conducted. Here, we tested for correlated evolution of seed mass and GS towards distinct selective regimes related to life form in angiosperms. In particular, we tested the hypothesis that the selection toward lighter seeds and smaller genomes is stronger for annual plants, ensuring high regenerative potential. Using multivariate evolutionary models over a dataset containing 3242 species, we showed an overall positive correlated evolution of seed mass and GS deviating from a pure drift process. Instead, evolutionary changes in seed and genome sizes were driven by adaptive selection towards optimal values differing among life forms. Specifically, the evolutionary optima towards which the seed and genome sizes evolve show a covariation toward small values in annuals, intermediate values in perennial herbs and a trade-off between seed mass and GS in woody plants. Moreover, the evolutionary correlation between seed mass and GS is strongest in annuals as an adaption to complete their life cycle in a short time window, when environmental conditions are favourable for regeneration and development to maturity. The asymmetry in the correlated evolution acting on seed and genome sizes due to life form could explain how life-history traits interplay with functional traits and how plants have evolved diverse successful life-history strategies.
{"title":"Correlated evolution of seed mass and genome size varies among life forms in flowering plants","authors":"A. Carta, E. Mattana, J. Dickie, F. Vandelook","doi":"10.1017/S0960258522000071","DOIUrl":"https://doi.org/10.1017/S0960258522000071","url":null,"abstract":"Abstract Seeds show important variation as plant regenerative units among species, but their evolutionary co-variations with other plant characteristics are still poorly understood. Whilst a positive association of seed mass with genome size (GS) and life forms has already been documented, a broad-scale quantification of their evolutionary correlation and adaptive selection has never been conducted. Here, we tested for correlated evolution of seed mass and GS towards distinct selective regimes related to life form in angiosperms. In particular, we tested the hypothesis that the selection toward lighter seeds and smaller genomes is stronger for annual plants, ensuring high regenerative potential. Using multivariate evolutionary models over a dataset containing 3242 species, we showed an overall positive correlated evolution of seed mass and GS deviating from a pure drift process. Instead, evolutionary changes in seed and genome sizes were driven by adaptive selection towards optimal values differing among life forms. Specifically, the evolutionary optima towards which the seed and genome sizes evolve show a covariation toward small values in annuals, intermediate values in perennial herbs and a trade-off between seed mass and GS in woody plants. Moreover, the evolutionary correlation between seed mass and GS is strongest in annuals as an adaption to complete their life cycle in a short time window, when environmental conditions are favourable for regeneration and development to maturity. The asymmetry in the correlated evolution acting on seed and genome sizes due to life form could explain how life-history traits interplay with functional traits and how plants have evolved diverse successful life-history strategies.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"46 - 52"},"PeriodicalIF":2.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43541774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01DOI: 10.1017/S0960258522000083
A. Bhatt, D. Gallacher, A. Jarma-Orozco, M. Pompelli
Abstract Coastal desert vegetation of the Arabian Peninsula is almost entirely dominated by halophytes. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. High intrapopulation variation of seed traits is presumed to increase population persistence in the unpredictable climatic conditions of this hyper-arid desert. We investigated whether intrapopulation variation of seed mass, dormancy and germinability of four species was attributable to maternal individuals. Arthrocnemum macrostachyum, Halothamnus iraquensis, Haloxylon salicornicum and Seidlitzia rosmarinus are commonly distributed Arabian halophytes with differing seed weight variation. All species exhibited a higher germination when exposed daily to 12 h light, compared to seeds in darkness. A higher germination was correlated with a shorter germination time. For H. iraquensis and S. rosmarinus, a shorter germination time was negatively correlated with germination synchrony. H. salicornicum showed the highest intrapopulation variation of seed traits, followed by A. macrostachyum, S. rosmarinus and H. iraqensis. We found that individuals within populations of all the studied species showed variability in germination but the extent of variation was species-specific. The variation in seed mass and germination among the individuals of the studied species may facilitate a temporal distribution of germination, which may reduce the risk of seed bank exhaustion. The results of this study could assist conservation and management by improving the efficiency of seed collection from wild populations of these species.
{"title":"Seed mass, dormancy and germinability variation among maternal plants of four Arabian halophytes","authors":"A. Bhatt, D. Gallacher, A. Jarma-Orozco, M. Pompelli","doi":"10.1017/S0960258522000083","DOIUrl":"https://doi.org/10.1017/S0960258522000083","url":null,"abstract":"Abstract Coastal desert vegetation of the Arabian Peninsula is almost entirely dominated by halophytes. Natural populations provide a genetic resource for ecological remediation and may also have direct economic value. High intrapopulation variation of seed traits is presumed to increase population persistence in the unpredictable climatic conditions of this hyper-arid desert. We investigated whether intrapopulation variation of seed mass, dormancy and germinability of four species was attributable to maternal individuals. Arthrocnemum macrostachyum, Halothamnus iraquensis, Haloxylon salicornicum and Seidlitzia rosmarinus are commonly distributed Arabian halophytes with differing seed weight variation. All species exhibited a higher germination when exposed daily to 12 h light, compared to seeds in darkness. A higher germination was correlated with a shorter germination time. For H. iraquensis and S. rosmarinus, a shorter germination time was negatively correlated with germination synchrony. H. salicornicum showed the highest intrapopulation variation of seed traits, followed by A. macrostachyum, S. rosmarinus and H. iraqensis. We found that individuals within populations of all the studied species showed variability in germination but the extent of variation was species-specific. The variation in seed mass and germination among the individuals of the studied species may facilitate a temporal distribution of germination, which may reduce the risk of seed bank exhaustion. The results of this study could assist conservation and management by improving the efficiency of seed collection from wild populations of these species.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"53 - 61"},"PeriodicalIF":2.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45017275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-01DOI: 10.1017/S0960258522000022
Nidia H. Montechiarini, E. Morandi, C. O. Gosparini
Abstract Seed germination implies an expansion process restarting the growth of the embryonic axis (Ax) and which is completed by radicle emergence through the seed covering layers. In developing soybean seeds, abscisic acid in Ax (ABAa) mainly inhibits Ax growth. Additionally, the expression of the EXP1 gene at the elongation zone (EZ) was found to be involved in the promotion of mature soybean Ax growth, which increased during water incubation and which was repressed by exogenous ABA. This work aimed to evaluate (1) the ABAa and EXP1 levels at the EZ and (2) the role of the seed coat (SC) in developing soybean seed germination. Whole seeds (Se), embryos (Em) and Ax at 25–45 d after anthesis (DAA) germinated in vitro, and germination performance increased with DAA. ABAa decreased in planta from 25 DAA until its critical non-inhibitory threshold (ABAc) at around physiological maturity (45 DAA). At earlier ages, the ABAc was reached during the in vitro incubation. Concomitantly, EXP1 transcripts accumulated with age into the pool of long-lived mRNAs and were up-regulated during incubation. Additionally, isolated Ax germinated faster, took up more water and increased its water potential more rapidly during incubation than Ax in Se. Also, a lower osmotic gradient was required to germinate at 45 DAA, when ABAa was no longer inhibitory. Simultaneously, the pressure to protrude SC through the micropylar area increased from 25 to 45 DAA. These results support the role of ABAa and EXP1 in controlling Ax growth and the SC in delaying radicle protrusion.
{"title":"Developing soybean seed germination: low ABA and high EXP1 gene expression promote embryonic axis growth whereas the seed coat delays radicle protrusion","authors":"Nidia H. Montechiarini, E. Morandi, C. O. Gosparini","doi":"10.1017/S0960258522000022","DOIUrl":"https://doi.org/10.1017/S0960258522000022","url":null,"abstract":"Abstract Seed germination implies an expansion process restarting the growth of the embryonic axis (Ax) and which is completed by radicle emergence through the seed covering layers. In developing soybean seeds, abscisic acid in Ax (ABAa) mainly inhibits Ax growth. Additionally, the expression of the EXP1 gene at the elongation zone (EZ) was found to be involved in the promotion of mature soybean Ax growth, which increased during water incubation and which was repressed by exogenous ABA. This work aimed to evaluate (1) the ABAa and EXP1 levels at the EZ and (2) the role of the seed coat (SC) in developing soybean seed germination. Whole seeds (Se), embryos (Em) and Ax at 25–45 d after anthesis (DAA) germinated in vitro, and germination performance increased with DAA. ABAa decreased in planta from 25 DAA until its critical non-inhibitory threshold (ABAc) at around physiological maturity (45 DAA). At earlier ages, the ABAc was reached during the in vitro incubation. Concomitantly, EXP1 transcripts accumulated with age into the pool of long-lived mRNAs and were up-regulated during incubation. Additionally, isolated Ax germinated faster, took up more water and increased its water potential more rapidly during incubation than Ax in Se. Also, a lower osmotic gradient was required to germinate at 45 DAA, when ABAa was no longer inhibitory. Simultaneously, the pressure to protrude SC through the micropylar area increased from 25 to 45 DAA. These results support the role of ABAa and EXP1 in controlling Ax growth and the SC in delaying radicle protrusion.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"23 - 33"},"PeriodicalIF":2.1,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43295520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-02DOI: 10.1017/S0960258522000010
C. Baskin, J. Baskin, X. Hu, C. Zhang
Abstract To persist (without immigration) in habitats with unpredictable environmental conditions, annuals must produce seeds each year or have a seed bank. Thus, we predicted that compared to perennials, annuals have a wider germination temperature range (GTR, the difference in temperature between the week with the highest and the week with the lowest germination during the natural germination season). We determined the GTR via germination phenology data for 350 herbaceous species in 59 families from the eastern USA: summer annuals (SA), 63; winter annuals (WA), 83; monocarpic perennials (MP), 28; and polycarpic perennials (PP), 176. There was no significant phylogenetic signal for the GTR. The width of the GTR during the first spring germination season was 9.6, 8.7 and 8.8°C for MP, PP and SA, respectively, and during the first autumn germination season 12.8, 11.8 and 12.4°C for MP, PP and WA, respectively. Annuals did not have a wider GTR than perennials in either the spring or the autumn germination season. Our data suggest that selection for early germination in either spring or autumn has resulted in only small differences in the GTR. We predict that global warming will have little or no effect on reshaping the germination phenology of herbaceous species of temperate eastern North America.
{"title":"Width of the temperature range for seed germination of herbaceous plant species in temperate eastern North America: life cycles, seasons and temperature variation and implication for climate warming","authors":"C. Baskin, J. Baskin, X. Hu, C. Zhang","doi":"10.1017/S0960258522000010","DOIUrl":"https://doi.org/10.1017/S0960258522000010","url":null,"abstract":"Abstract To persist (without immigration) in habitats with unpredictable environmental conditions, annuals must produce seeds each year or have a seed bank. Thus, we predicted that compared to perennials, annuals have a wider germination temperature range (GTR, the difference in temperature between the week with the highest and the week with the lowest germination during the natural germination season). We determined the GTR via germination phenology data for 350 herbaceous species in 59 families from the eastern USA: summer annuals (SA), 63; winter annuals (WA), 83; monocarpic perennials (MP), 28; and polycarpic perennials (PP), 176. There was no significant phylogenetic signal for the GTR. The width of the GTR during the first spring germination season was 9.6, 8.7 and 8.8°C for MP, PP and SA, respectively, and during the first autumn germination season 12.8, 11.8 and 12.4°C for MP, PP and WA, respectively. Annuals did not have a wider GTR than perennials in either the spring or the autumn germination season. Our data suggest that selection for early germination in either spring or autumn has resulted in only small differences in the GTR. We predict that global warming will have little or no effect on reshaping the germination phenology of herbaceous species of temperate eastern North America.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"16 5","pages":"13 - 22"},"PeriodicalIF":2.1,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41296355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-31DOI: 10.1017/S0960258521000313
K. Whitehouse, S. Norton
Abstract To maximize seed longevity, seeds should be harvested at optimal maturity, that is, when seeds have acquired maximum physiological quality before deterioration begins. The aim of this study was to map the variation in temporal patterns of lentil (Lens culinaris Medik.) seed quality development when grown across four regeneration environments, which differ in the level of temperature and humidity control throughout the growing season, at the Australian Grains Genebank. Seeds of two lentil accessions (76080 and 76072) were harvested at different stages throughout development, commencing at 21 d after 50% anthesis until a maximum of 130 d. At each harvest, physiological quality traits, including germinability (fresh and dried seeds) and seed longevity, were determined, as well as seed dry weight and moisture content. Seeds of both accessions, and in all environments, started to accumulate physiological quality early on in development but did not reach their maximum until 3–54 d after mass maturity. The temporal patterns of desiccation tolerance and storage longevity were highly influenced by the environmental conditions during the maturation drying phase, affecting both ‘when’ maximum quality was attained and for how long it was maintained, thereafter. Seeds did not show a typical developmental response, rather variation was observed in seed quality development both between and within accessions grown in the different environments. The poorest storage longevity was seen when seeds of both accessions were grown in the cooler, temperature-controlled glasshouse, and the maximum longevity was observed in the warmer, semi-protected environments of the green and the big igloo for accessions 76080 and 76072, respectively.
{"title":"Environmental effect on temporal patterns in lentil seed quality development","authors":"K. Whitehouse, S. Norton","doi":"10.1017/S0960258521000313","DOIUrl":"https://doi.org/10.1017/S0960258521000313","url":null,"abstract":"Abstract To maximize seed longevity, seeds should be harvested at optimal maturity, that is, when seeds have acquired maximum physiological quality before deterioration begins. The aim of this study was to map the variation in temporal patterns of lentil (Lens culinaris Medik.) seed quality development when grown across four regeneration environments, which differ in the level of temperature and humidity control throughout the growing season, at the Australian Grains Genebank. Seeds of two lentil accessions (76080 and 76072) were harvested at different stages throughout development, commencing at 21 d after 50% anthesis until a maximum of 130 d. At each harvest, physiological quality traits, including germinability (fresh and dried seeds) and seed longevity, were determined, as well as seed dry weight and moisture content. Seeds of both accessions, and in all environments, started to accumulate physiological quality early on in development but did not reach their maximum until 3–54 d after mass maturity. The temporal patterns of desiccation tolerance and storage longevity were highly influenced by the environmental conditions during the maturation drying phase, affecting both ‘when’ maximum quality was attained and for how long it was maintained, thereafter. Seeds did not show a typical developmental response, rather variation was observed in seed quality development both between and within accessions grown in the different environments. The poorest storage longevity was seen when seeds of both accessions were grown in the cooler, temperature-controlled glasshouse, and the maximum longevity was observed in the warmer, semi-protected environments of the green and the big igloo for accessions 76080 and 76072, respectively.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"58 3","pages":"1 - 12"},"PeriodicalIF":2.1,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41294253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-10DOI: 10.1017/S0960258521000295
R. Ellis
Abstract The J. Derek Bewley Career Lectures presented at the triennial meetings of the International Society of Seed Science support early-career seed scientists by providing retrospective views, from those late in their careers, of lessons learned and future implications. Ambition, ability, inspiration, foresight, hard work and opportunity are obvious career requirements. The importance of mentoring and teamwork combined with the clear communication of results, understanding and ideas are emphasized. The role of illustration in research, and its dissemination, is outlined: illustration can support hypothesis development, testing and communication. Climate change may perturb the production of high-quality seed affecting conservation as well as agriculture, horticulture and forestry. An illustrative synthesis of the current understanding of temporal aspects of the effects of seed production environment on seed quality (assessed by subsequent seed storage longevity) is provided for wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Seed science research can contribute to complex global challenges such as future food supplies from seed-propagated crops in our changing climate whilst conserving biological diversity (through seed ecology and technologies such as ex situ plant genetic resources conservation by long-term seed storage in genebanks), but only if that research can be – and then is – applied.
{"title":"The J. Derek Bewley Career Lecture. Seeds–plants–crops–biodiversity–environment–people: illustrating understanding and ideas","authors":"R. Ellis","doi":"10.1017/S0960258521000295","DOIUrl":"https://doi.org/10.1017/S0960258521000295","url":null,"abstract":"Abstract The J. Derek Bewley Career Lectures presented at the triennial meetings of the International Society of Seed Science support early-career seed scientists by providing retrospective views, from those late in their careers, of lessons learned and future implications. Ambition, ability, inspiration, foresight, hard work and opportunity are obvious career requirements. The importance of mentoring and teamwork combined with the clear communication of results, understanding and ideas are emphasized. The role of illustration in research, and its dissemination, is outlined: illustration can support hypothesis development, testing and communication. Climate change may perturb the production of high-quality seed affecting conservation as well as agriculture, horticulture and forestry. An illustrative synthesis of the current understanding of temporal aspects of the effects of seed production environment on seed quality (assessed by subsequent seed storage longevity) is provided for wheat (Triticum aestivum L.) and rice (Oryza sativa L.). Seed science research can contribute to complex global challenges such as future food supplies from seed-propagated crops in our changing climate whilst conserving biological diversity (through seed ecology and technologies such as ex situ plant genetic resources conservation by long-term seed storage in genebanks), but only if that research can be – and then is – applied.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"32 1","pages":"118 - 125"},"PeriodicalIF":2.1,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46467954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}