Pub Date : 2023-01-01Epub Date: 2024-01-04DOI: 10.1159/000536067
Bor Hrvatin Stancic, Jurr Boer, Mateja Dolenc-Voljč, Gregor B E Jemec
{"title":"The Role of Intra-Follicular Shear Forces in Hidradenitis Suppurativa.","authors":"Bor Hrvatin Stancic, Jurr Boer, Mateja Dolenc-Voljč, Gregor B E Jemec","doi":"10.1159/000536067","DOIUrl":"10.1159/000536067","url":null,"abstract":"","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"302-303"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139098634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-11-30DOI: 10.1159/000535049
Philip W Wertz
Background: Linoleate-containing acylglucosylceramide (GLC-CER[EOx], where x = sphingosine [S], dihydrosphingosine [dS], phytosphingosine (P), or 6-hydroxysphingosine [H]) in the viable epidermis serve as the precursors to the linoleate-containing acylceramides (CER[EOx]) in the stratum corneum (SC) and the corneocyte lipid envelope (CLE), both of which are essential for the barrier function of the skin.
Summary: CLE formation and envelope maturation take place across the SC. Hypoxic conditions in the epidermis and anaerobic glycolysis with the production of lactic acid are important in proper SC barrier formation.
Key message: CLE formation takes place across the SC. Its formation from linoleate-containing GLC-CER[EOx] requires lipoxygenase action, but anaerobic conditions leading to lactate production and hypoxia-inducible factors are essential for proper barrier formation. A number of unanswered questions are raised regarding formation of the CLE and the epidermal permeability barrier.
{"title":"Linoleate-Containing Acylglucosylceramide, Acylceramide, and Events Associated with Formation of the Epidermal Permeability Barrier.","authors":"Philip W Wertz","doi":"10.1159/000535049","DOIUrl":"10.1159/000535049","url":null,"abstract":"<p><strong>Background: </strong>Linoleate-containing acylglucosylceramide (GLC-CER[EOx], where x = sphingosine [S], dihydrosphingosine [dS], phytosphingosine (P), or 6-hydroxysphingosine [H]) in the viable epidermis serve as the precursors to the linoleate-containing acylceramides (CER[EOx]) in the stratum corneum (SC) and the corneocyte lipid envelope (CLE), both of which are essential for the barrier function of the skin.</p><p><strong>Summary: </strong>CLE formation and envelope maturation take place across the SC. Hypoxic conditions in the epidermis and anaerobic glycolysis with the production of lactic acid are important in proper SC barrier formation.</p><p><strong>Key message: </strong>CLE formation takes place across the SC. Its formation from linoleate-containing GLC-CER[EOx] requires lipoxygenase action, but anaerobic conditions leading to lactate production and hypoxia-inducible factors are essential for proper barrier formation. A number of unanswered questions are raised regarding formation of the CLE and the epidermal permeability barrier.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"225-234"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138462553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgement to the Reviewers","authors":"","doi":"10.1159/000527772","DOIUrl":"https://doi.org/10.1159/000527772","url":null,"abstract":"<br />Skin Pharmacol Physiol 2022;35:354","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"127 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138507050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front & Back Matter","authors":"J. Fluhr, M. Lane","doi":"10.1159/000528667","DOIUrl":"https://doi.org/10.1159/000528667","url":null,"abstract":"","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44620030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nihal Ahmad – University of Wisconsin, Madison, WI, USA Christina Antoniou – University of Athens, Athens, Greece Jens Malte Baron – RWTH Aachen University, Aachen, Germany Enzo Berardesca – San Gallicano Dermatological Institute, Rome, Italy Nicole K. Brogden – College of Pharmacy Building, Iowa City, USA Razvigor Darlenski – Trakia University Stara Zagora, Stara Zagora, Bulgaria Kristien De Paepe – Vrije Universiteit Brussel, Brussels, Belgium Sandrine Dubrac – Universitätsklinik für Dermatologie, Venerologie und Allergologie, Innsbruck, Austria Peter Elsner – Friedrich Schiller University, Jena, Germany Arpad Farkas – Hautarztpraxis Glattbrugg, Glattbrugg, Switzerland Natalie Garcia Bartels – Charité – Universitätsmedizin Berlin, Berlin, Germany Richard H. Guy – University of Bath, Bath, UK Gregor B.E. Jemec – Zealand University Hospital, Roskilde, Denmark Helena Kandárová – MatTek Corporation, Ashland, MA, USA Cornelia M. Keck – Philipps-Universität Marburg, Marburg, Germany Joachim Kresken – GD Gesellschaft für Dermopharmazie e.V., Cologne, Germany Jean Krutmann – Heinrich-Heine-Universität, Düsseldorf, Germany Journal of Pharmacological and Biophysical Research
{"title":"Contents Vol. 35, 2022","authors":"J. Fluhr","doi":"10.1159/000528054","DOIUrl":"https://doi.org/10.1159/000528054","url":null,"abstract":"Nihal Ahmad – University of Wisconsin, Madison, WI, USA Christina Antoniou – University of Athens, Athens, Greece Jens Malte Baron – RWTH Aachen University, Aachen, Germany Enzo Berardesca – San Gallicano Dermatological Institute, Rome, Italy Nicole K. Brogden – College of Pharmacy Building, Iowa City, USA Razvigor Darlenski – Trakia University Stara Zagora, Stara Zagora, Bulgaria Kristien De Paepe – Vrije Universiteit Brussel, Brussels, Belgium Sandrine Dubrac – Universitätsklinik für Dermatologie, Venerologie und Allergologie, Innsbruck, Austria Peter Elsner – Friedrich Schiller University, Jena, Germany Arpad Farkas – Hautarztpraxis Glattbrugg, Glattbrugg, Switzerland Natalie Garcia Bartels – Charité – Universitätsmedizin Berlin, Berlin, Germany Richard H. Guy – University of Bath, Bath, UK Gregor B.E. Jemec – Zealand University Hospital, Roskilde, Denmark Helena Kandárová – MatTek Corporation, Ashland, MA, USA Cornelia M. Keck – Philipps-Universität Marburg, Marburg, Germany Joachim Kresken – GD Gesellschaft für Dermopharmazie e.V., Cologne, Germany Jean Krutmann – Heinrich-Heine-Universität, Düsseldorf, Germany Journal of Pharmacological and Biophysical Research","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"I - IV"},"PeriodicalIF":2.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46434863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front & Back Matter","authors":"J. Fluhr","doi":"10.1159/000527134","DOIUrl":"https://doi.org/10.1159/000527134","url":null,"abstract":"","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49482267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Hassan, Mohammad Qassim Al-Dhoun, O. Shaker, Aya M. AlOrbani
Background: Signal transducer and activator of transcription (STAT)-3 belongs to a group of latent transcription factors phosphorylated and activated by several protein tyrosine kinases, including members of Janus kinases (JAKs) family. It has been implicated that the JAK-STAT pathway activation could promote quiescence in the hair cycle, and topical treatment of mouse and human skin with JAK inhibitors was shown to result in rapid hair growth. Objective: Our aim was to assess the tissue expression of STAT3 in patients with androgenetic alopecia and correlate it with disease severity and clinical parameters. Methods: Twenty-five androgenetic alopecia patients who served as both cases and controls were included in this study. Full clinical examination was done and tissue STAT3 gene expression was then measured by real-time polymerase chain reaction. Results: Scalp tissue affected by androgenetic alopecia shows significantly higher STAT3 gene expression levels compared to unaffected (androgen independent) areas (p < 0.001), but no statistically significant relation was found between tissue STAT3 expression level and severity of hair loss (p = 0.660). Limitations: Limited sample size. Conclusion: This study demonstrated an upregulation in STAT3 gene expression in androgenetic alopecia. Further studies are needed to assess the possible role of the JAK-STAT pathway in the pathogenesis of androgenetic alopecia.
{"title":"Expression of Signal Transducer and Activator of Transcription-3 in Androgenetic Alopecia: A Case-Control Study","authors":"A. Hassan, Mohammad Qassim Al-Dhoun, O. Shaker, Aya M. AlOrbani","doi":"10.1159/000525532","DOIUrl":"https://doi.org/10.1159/000525532","url":null,"abstract":"Background: Signal transducer and activator of transcription (STAT)-3 belongs to a group of latent transcription factors phosphorylated and activated by several protein tyrosine kinases, including members of Janus kinases (JAKs) family. It has been implicated that the JAK-STAT pathway activation could promote quiescence in the hair cycle, and topical treatment of mouse and human skin with JAK inhibitors was shown to result in rapid hair growth. Objective: Our aim was to assess the tissue expression of STAT3 in patients with androgenetic alopecia and correlate it with disease severity and clinical parameters. Methods: Twenty-five androgenetic alopecia patients who served as both cases and controls were included in this study. Full clinical examination was done and tissue STAT3 gene expression was then measured by real-time polymerase chain reaction. Results: Scalp tissue affected by androgenetic alopecia shows significantly higher STAT3 gene expression levels compared to unaffected (androgen independent) areas (p < 0.001), but no statistically significant relation was found between tissue STAT3 expression level and severity of hair loss (p = 0.660). Limitations: Limited sample size. Conclusion: This study demonstrated an upregulation in STAT3 gene expression in androgenetic alopecia. Further studies are needed to assess the possible role of the JAK-STAT pathway in the pathogenesis of androgenetic alopecia.","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"278 - 281"},"PeriodicalIF":2.7,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44743014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Frank, R. P. Gazzi, A. Pohlmann, S. Guterres, R. V. Contri
Introduction: Sunscreens are substances applied on the skin surface to protect the skin from the harmful effects of UV light. Nanoparticles can increase the retention time of the sunscreen on the skin surface and its efficacy, by acting as physical barriers. The present investigation aimed to evaluate the influence of the chitosan coating of benzophenone-3-loaded lipid-core nanocapsules (CH-LCN) on the skin adhesion and photoprotective effect of the sunscreen. Methods: CH-LNC were obtained by the interfacial deposition of preformed polymer. A suitable semisolid formulation was obtained by using hydroxyethyl cellulose as the gel-forming polymer. Skin adhesion experiments were performed in vitro by applying the formulation on porcine skin and keeping it under water at 32 °C for up to 60 min. Photoprotective effect was analyzed in vitro by the capacity of the formulations to protect a photo unstable substance (resveratrol) from degradation under UV light. Results: CH-LNC presented size of around 150 nm, with low polydispersity, positive zeta potential, due to chitosan, and benzophenone-3 encapsulation efficiency of close to 100% (3 mg/mL). The proposed gel presented suitable consistence and pH for skin application and benzophenone-3 concentration of around 3 mg/g. Although coated and uncoated lipid-core nanocapsules increased benzophenone-3 skin adhesion after 10 min of water immersion, only the nanoparticles coated with chitosan were able to do so after 60 min. The chitosan coating of the nanocapsules increased the photoprotection of the sunscreen under UVA and UVB light after 60 min of exposure, probably due to the film-forming properties of chitosan. Conclusion: The chitosan coating of CH-LCN increased the skin adhesion and the photoprotective effect of the sunscreen.
{"title":"Evaluation of an Efficient and Skin-Adherent Semisolid Sunscreen Nanoformulation","authors":"L. Frank, R. P. Gazzi, A. Pohlmann, S. Guterres, R. V. Contri","doi":"10.1159/000525176","DOIUrl":"https://doi.org/10.1159/000525176","url":null,"abstract":"Introduction: Sunscreens are substances applied on the skin surface to protect the skin from the harmful effects of UV light. Nanoparticles can increase the retention time of the sunscreen on the skin surface and its efficacy, by acting as physical barriers. The present investigation aimed to evaluate the influence of the chitosan coating of benzophenone-3-loaded lipid-core nanocapsules (CH-LCN) on the skin adhesion and photoprotective effect of the sunscreen. Methods: CH-LNC were obtained by the interfacial deposition of preformed polymer. A suitable semisolid formulation was obtained by using hydroxyethyl cellulose as the gel-forming polymer. Skin adhesion experiments were performed in vitro by applying the formulation on porcine skin and keeping it under water at 32 °C for up to 60 min. Photoprotective effect was analyzed in vitro by the capacity of the formulations to protect a photo unstable substance (resveratrol) from degradation under UV light. Results: CH-LNC presented size of around 150 nm, with low polydispersity, positive zeta potential, due to chitosan, and benzophenone-3 encapsulation efficiency of close to 100% (3 mg/mL). The proposed gel presented suitable consistence and pH for skin application and benzophenone-3 concentration of around 3 mg/g. Although coated and uncoated lipid-core nanocapsules increased benzophenone-3 skin adhesion after 10 min of water immersion, only the nanoparticles coated with chitosan were able to do so after 60 min. The chitosan coating of the nanocapsules increased the photoprotection of the sunscreen under UVA and UVB light after 60 min of exposure, probably due to the film-forming properties of chitosan. Conclusion: The chitosan coating of CH-LCN increased the skin adhesion and the photoprotective effect of the sunscreen.","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"291 - 298"},"PeriodicalIF":2.7,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46919295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Dähnhardt, S. Dähnhardt-Pfeiffer, Judith Schulte-Walter, Eckhard Hanisch, Thomas Neubourg, R. Fölster-Holst
Introduction: Basic therapy is of central importance in the treatment of atopic eczema. Using electron microscopic images, the morphology of epidermal skin barrier and its lipids was investigated after application of a lipid foam cream and basic cream. Methods: Patients with two contralateral comparable atopic eczema (local SCORAD 1–10) on the forearms were tested. Eczema was treated with a lipid foam cream or basic cream twice daily for 28 days. At the beginning, after 14 days, and at the end of application, the local SCORAD, trans-epidermal water loss (TEWL), skin hydration, intercellular lipid length in the intercellular space of the stratum corneum (SC), and skin lipids were determined. Results: After application of the foam cream, the epidermal skin barrier could be completely restored and corresponded to healthy skin, while the epidermal skin barrier could not reach this state after care with the basic cream. The content of lipids in the SC increases significantly by 31% after basic cream treatment, whereas they are significantly increased by 85% after application of the lipid foam cream. The local SCORAD improved for both treatments to about the same extent, and no significant results could be shown for TEWL and skin hydration. Conclusion: In subjects with mild atopic eczema, the lipid foam cream leads to a measurable recovery of the skin barrier which is much more pronounced in comparison to the basic cream.
{"title":"Comparison of Lipid Foam Cream and Basic Cream on Epidermal Reconstruction in Mild Atopic Eczema","authors":"D. Dähnhardt, S. Dähnhardt-Pfeiffer, Judith Schulte-Walter, Eckhard Hanisch, Thomas Neubourg, R. Fölster-Holst","doi":"10.1159/000525283","DOIUrl":"https://doi.org/10.1159/000525283","url":null,"abstract":"Introduction: Basic therapy is of central importance in the treatment of atopic eczema. Using electron microscopic images, the morphology of epidermal skin barrier and its lipids was investigated after application of a lipid foam cream and basic cream. Methods: Patients with two contralateral comparable atopic eczema (local SCORAD 1–10) on the forearms were tested. Eczema was treated with a lipid foam cream or basic cream twice daily for 28 days. At the beginning, after 14 days, and at the end of application, the local SCORAD, trans-epidermal water loss (TEWL), skin hydration, intercellular lipid length in the intercellular space of the stratum corneum (SC), and skin lipids were determined. Results: After application of the foam cream, the epidermal skin barrier could be completely restored and corresponded to healthy skin, while the epidermal skin barrier could not reach this state after care with the basic cream. The content of lipids in the SC increases significantly by 31% after basic cream treatment, whereas they are significantly increased by 85% after application of the lipid foam cream. The local SCORAD improved for both treatments to about the same extent, and no significant results could be shown for TEWL and skin hydration. Conclusion: In subjects with mild atopic eczema, the lipid foam cream leads to a measurable recovery of the skin barrier which is much more pronounced in comparison to the basic cream.","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":"35 1","pages":"282 - 290"},"PeriodicalIF":2.7,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49104682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}