Xinying Dong, Xiaowei Gao, Hao Song, Huaji Qiu, Yuzi Luo
Nanobodies (Nbs), the unique single-domain antibodies discovered in the species of Camelidae and sharks, are also known as the variable domain of the heavy chain of heavy-chain antibody (VHH). They offer strong antigen targeting and binding capabilities and overcome the drawbacks such as large size, low stability, high immunogenicity, and slow clearance of conventional antibodies. Nbs can be boosted by bioconjugation with toxins, enzymes, radioactive nucleotides, fluorophores, and other functional groups, demonstrating potential applications in the diagnosis and treatment of human and animal diseases. This article introduces the structures and characteristics of Nbs, the construction and screening of Nb libraries, and the strategies for affinity maturation and then reviews the current applications of Nbs in diagnosis and treatment, providing a reference for the development of diagnostic reagents and clinical therapies for infectious diseases.
{"title":"[Research progress and application of nanobodies].","authors":"Xinying Dong, Xiaowei Gao, Hao Song, Huaji Qiu, Yuzi Luo","doi":"10.13345/j.cjb.240366","DOIUrl":"https://doi.org/10.13345/j.cjb.240366","url":null,"abstract":"<p><p>Nanobodies (Nbs), the unique single-domain antibodies discovered in the species of Camelidae and sharks, are also known as the variable domain of the heavy chain of heavy-chain antibody (VHH). They offer strong antigen targeting and binding capabilities and overcome the drawbacks such as large size, low stability, high immunogenicity, and slow clearance of conventional antibodies. Nbs can be boosted by bioconjugation with toxins, enzymes, radioactive nucleotides, fluorophores, and other functional groups, demonstrating potential applications in the diagnosis and treatment of human and animal diseases. This article introduces the structures and characteristics of Nbs, the construction and screening of Nb libraries, and the strategies for affinity maturation and then reviews the current applications of Nbs in diagnosis and treatment, providing a reference for the development of diagnostic reagents and clinical therapies for infectious diseases.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 12","pages":"4324-4338"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to establish a stable in vitro culture platform for chicken small intestine three-dimensional (3D) organoids, in this study, crypt cells were collected from the small intestine of 18-day-old embryos of AA broilers. On the basis of the L-WRN conditioned medium, we optimized the culture conditions of chicken small intestinal organoids by adjusting the proportions of nicotinamide, N-acetylcysteine, LY2157299, CHIR99021, Jagged-1, FGF, and other cytokines to select the medium suitable for the long-term stable growth of the organoids. The optimization results showed that the addition of 1.5 µmol/L CHIR99021 significantly improved the organoid formation efficiency and organoid diameter. When 0.5 µmol/L Jagged-1 was added, a small amount of bud-like tissue appeared in organoids. After the addition of 50 ng/mL FGF-2, the rate of organoid germination was significantly increased. The 1.5 µmol/L CHIR99021, 0.5 µmol/L Jagged-1, and 50 ng/mL FGF-2 added in the medium can cooperate with each other to improve the formation and speed up the proliferation and differentiation of organoids, while improving the stemness maintenance of cells. The morphology, cell types, and culture characteristics of chicken small intestinal organoids were studied by HE staining, transmission electron microscopy, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), indirect immunofluorescence, and immunohistochemistry. The results showed that the 3D organoids of the chicken small intestine cultured in vitro were morphologically consistent with the chicken intestinal tissue and contained differentiated epithelial cells. In summary, we successfully established an in vitro culture system for chicken small intestinal organoids, providing a new method for the subsequent research on chicken intestinal physiology, pathology, and host-pathogen interaction mechanism and the development of relevant drugs.
{"title":"[Optimization of the <i>in</i> <i>vitro</i> culture system for chicken small intestinal organoids].","authors":"Jing Li, Liya Wang, Dingyun Ma, Senyang Li, Juanfeng Li, Qingda Meng, Junqiang Li, Fuchun Jian","doi":"10.13345/j.cjb.240331","DOIUrl":"https://doi.org/10.13345/j.cjb.240331","url":null,"abstract":"<p><p>In order to establish a stable in vitro culture platform for chicken small intestine three-dimensional (3D) organoids, in this study, crypt cells were collected from the small intestine of 18-day-old embryos of AA broilers. On the basis of the L-WRN conditioned medium, we optimized the culture conditions of chicken small intestinal organoids by adjusting the proportions of nicotinamide, N-acetylcysteine, LY2157299, CHIR99021, Jagged-1, FGF, and other cytokines to select the medium suitable for the long-term stable growth of the organoids. The optimization results showed that the addition of 1.5 µmol/L CHIR99021 significantly improved the organoid formation efficiency and organoid diameter. When 0.5 µmol/L Jagged-1 was added, a small amount of bud-like tissue appeared in organoids. After the addition of 50 ng/mL FGF-2, the rate of organoid germination was significantly increased. The 1.5 µmol/L CHIR99021, 0.5 µmol/L Jagged-1, and 50 ng/mL FGF-2 added in the medium can cooperate with each other to improve the formation and speed up the proliferation and differentiation of organoids, while improving the stemness maintenance of cells. The morphology, cell types, and culture characteristics of chicken small intestinal organoids were studied by HE staining, transmission electron microscopy, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), indirect immunofluorescence, and immunohistochemistry. The results showed that the 3D organoids of the chicken small intestine cultured <i>in vitro</i> were morphologically consistent with the chicken intestinal tissue and contained differentiated epithelial cells. In summary, we successfully established an <i>in vitro</i> culture system for chicken small intestinal organoids, providing a new method for the subsequent research on chicken intestinal physiology, pathology, and host-pathogen interaction mechanism and the development of relevant drugs.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 12","pages":"4645-4659"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Zhang, Yi Ru, Rongzeng Hao, Yang Yang, Longhe Zhao, Yajun Li, Rui Yang, Bingzhou Lu, Haixue Zheng
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
{"title":"[Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein].","authors":"Yue Zhang, Yi Ru, Rongzeng Hao, Yang Yang, Longhe Zhao, Yajun Li, Rui Yang, Bingzhou Lu, Haixue Zheng","doi":"10.13345/j.cjb.240354","DOIUrl":"https://doi.org/10.13345/j.cjb.240354","url":null,"abstract":"<p><p>This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in <i>Escherichia coli</i> upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin <i>in vitro</i>, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells <i>in vitro</i>. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (T<sub>FH</sub>) and germinal center B cell (GCB) in lymph nodes as well as CD4<sup>+</sup> and CD8<sup>+</sup> T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 12","pages":"4509-4520"},"PeriodicalIF":0.0,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Longying Liu, Tingting Wang, Wei Yu, Simeng Xu, Xianlong Ye
Metallothionein (MT) plays a significant role in heavy metal removal, antioxidant defense, and immune regulation. The current predominant approach for obtaining natural MT is extraction from tissue, which often entails complex procedures resulting in limited yields. In recent years, researchers have adopted the strategy of fusing labels such as GST or His for the heterologous expression of MT. However, a challenge in industrial production arises from the subsequent removal of these labels, which often leads to a significant reduction in the yield. The fusion with elastin-like polypeptides (ELPs) offers a promising solution for achieving soluble expression of the target protein, while providing a simple and fast purification process. In this study, ELP was fused with MT, which significantly up-regulated the soluble expression of MT. The fusion protein ELP-MT with the purity above 97% was obtained efficiently and simply by inverse transition cycling (ITC). ELP-MT exhibited a remarkable 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) scavenging activity, with the half maximal inhibitory concentration (IC50) of 0.77 μmol/L, which was 53.7 times that of the vitamin E derivative Trolox. In addition, the fusion protein demonstrated strong 1,1-diphenyl-2-trinitrohydrazine (DPPH) scavenging ability. Furthermore, ELP-MT had no toxicity to the proliferation and promoted the adhesion and migration of NIH/3T3 cells. All these results indicated that ELP-MT had good biocompatibility. We constructed the fusion protein ELP-MT combining the unique properties of MT and elastin, laying a technical foundation for the large-scale production of recombinant MT and facilitating the applications in food, health supplement, and cosmetic industries.
{"title":"[Construction and biological activity of metallothionein fused with ELP].","authors":"Longying Liu, Tingting Wang, Wei Yu, Simeng Xu, Xianlong Ye","doi":"10.13345/j.cjb.240105","DOIUrl":"https://doi.org/10.13345/j.cjb.240105","url":null,"abstract":"<p><p>Metallothionein (MT) plays a significant role in heavy metal removal, antioxidant defense, and immune regulation. The current predominant approach for obtaining natural MT is extraction from tissue, which often entails complex procedures resulting in limited yields. In recent years, researchers have adopted the strategy of fusing labels such as GST or His for the heterologous expression of MT. However, a challenge in industrial production arises from the subsequent removal of these labels, which often leads to a significant reduction in the yield. The fusion with elastin-like polypeptides (ELPs) offers a promising solution for achieving soluble expression of the target protein, while providing a simple and fast purification process. In this study, ELP was fused with MT, which significantly up-regulated the soluble expression of MT. The fusion protein ELP-MT with the purity above 97% was obtained efficiently and simply by inverse transition cycling (ITC). ELP-MT exhibited a remarkable 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) scavenging activity, with the half maximal inhibitory concentration (<i>IC</i><sub>50</sub>) of 0.77 μmol/L, which was 53.7 times that of the vitamin E derivative Trolox. In addition, the fusion protein demonstrated strong 1,1-diphenyl-2-trinitrohydrazine (DPPH) scavenging ability. Furthermore, ELP-MT had no toxicity to the proliferation and promoted the adhesion and migration of NIH/3T3 cells. All these results indicated that ELP-MT had good biocompatibility. We constructed the fusion protein ELP-MT combining the unique properties of MT and elastin, laying a technical foundation for the large-scale production of recombinant MT and facilitating the applications in food, health supplement, and cosmetic industries.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4242-4253"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Protein phosphorylation plays a key role in Mycobacterium tuberculosis, the pathogen of tuberculosis, holding promise as a new target of anti-tuberculosis drugs. We used M. smegmatis, a close relative of M. tuberculosis, as a model organism to study the protein phosphorylation at different growth phases. We identified 573 phosphorylated peptides and 816 phosphorylated sites of 385 proteins in the M. smegmatis samples at both logarithmic and stationary phases, and then established a comprehensive dataset of phosphorylated proteins in M. smegmatis. By comparing the expression levels of phosphorylated proteins between the logarithmic and the stationary phase with the selected ion monitoring (SIM) strategy, we verified 68 upregulated proteins involved in cell division and protein translation, and 69 downregulated proteins mainly involved in the tricarboxylic acid cycle pathway. The differentially expressed phosphorylated proteins were significantly enriched in important cellular cycle events such as cell elongation and division. The findings of this study provide proteome evidence for elucidating the phosphorylation in both M. smegmatis and M. tuberculosis.
{"title":"[Quantitative comparison of phospho-proteins of <i>Mycolicibacterium smegmatis</i> at different growing phases].","authors":"Danyang Xu, Yuan Gao, Jiahui Shi, Songhao Jiang, Yu Xue, Yao Zhang","doi":"10.13345/j.cjb.240358","DOIUrl":"https://doi.org/10.13345/j.cjb.240358","url":null,"abstract":"<p><p>Protein phosphorylation plays a key role in <i>Mycobacterium tuberculosis</i>, the pathogen of tuberculosis, holding promise as a new target of anti-tuberculosis drugs. We used <i>M</i>. <i>smegmatis</i>, a close relative of <i>M</i>. <i>tuberculosis</i>, as a model organism to study the protein phosphorylation at different growth phases. We identified 573 phosphorylated peptides and 816 phosphorylated sites of 385 proteins in the <i>M</i>. <i>smegmatis</i> samples at both logarithmic and stationary phases, and then established a comprehensive dataset of phosphorylated proteins in <i>M</i>. <i>smegmatis</i>. By comparing the expression levels of phosphorylated proteins between the logarithmic and the stationary phase with the selected ion monitoring (SIM) strategy, we verified 68 upregulated proteins involved in cell division and protein translation, and 69 downregulated proteins mainly involved in the tricarboxylic acid cycle pathway. The differentially expressed phosphorylated proteins were significantly enriched in important cellular cycle events such as cell elongation and division. The findings of this study provide proteome evidence for elucidating the phosphorylation in both <i>M</i>. <i>smegmatis</i> and <i>M</i>. <i>tuberculosis</i>.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4098-4110"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The small G-protein Rac1 is the main regulatory factor of the actin cytoskeleton. Rac1 cycles between the inactive GDP-bound form and the active GTP-bound form. Rac1 not only promotes viral replication and infection, but also regulates the actin cytoskeleton rearrangement, adhesion, and invasion of glioma cells. In addition, Rac1 is implicated in human diseases such as tumors and epilepsy. This article reviews the latest research on the small G-protein Rac1 in virology, cell biology, and human pathology. It is found that the existence of Rac1 is closely related to the replication and infection of viruses, that is, inhibiting the existence of Rac1 can effectively reduce the replication and transportation of viruses, providing new ideas for the development of various therapeutic drugs targeting Rac1.
小 G 蛋白 Rac1 是肌动蛋白细胞骨架的主要调节因子。Rac1 在非活性的 GDP 结合型和活性的 GTP 结合型之间循环。Rac1 不仅能促进病毒复制和感染,还能调节肌动蛋白细胞骨架的重排、粘附和胶质瘤细胞的侵袭。此外,Rac1 还与肿瘤和癫痫等人类疾病有关。本文回顾了有关小 G 蛋白 Rac1 在病毒学、细胞生物学和人类病理学方面的最新研究。研究发现,Rac1的存在与病毒的复制和感染密切相关,即抑制Rac1的存在可有效减少病毒的复制和运输,为开发针对Rac1的各种治疗药物提供了新思路。
{"title":"[Research progress in the small G-protein Rac1].","authors":"Yiheng Yang, Shuling Zhao, Changyong Liang","doi":"10.13345/j.cjb.240072","DOIUrl":"https://doi.org/10.13345/j.cjb.240072","url":null,"abstract":"<p><p>The small G-protein Rac1 is the main regulatory factor of the actin cytoskeleton. Rac1 cycles between the inactive GDP-bound form and the active GTP-bound form. Rac1 not only promotes viral replication and infection, but also regulates the actin cytoskeleton rearrangement, adhesion, and invasion of glioma cells. In addition, Rac1 is implicated in human diseases such as tumors and epilepsy. This article reviews the latest research on the small G-protein Rac1 in virology, cell biology, and human pathology. It is found that the existence of Rac1 is closely related to the replication and infection of viruses, that is, inhibiting the existence of Rac1 can effectively reduce the replication and transportation of viruses, providing new ideas for the development of various therapeutic drugs targeting Rac1.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"3902-3911"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with hEGF and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected hEGF genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated hEGF genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.
{"title":"[Enhancing the expression level of human epidermal growth factor using the polyhedrin protein sequence of BmNPV].","authors":"Yuedong Li, Xingyang Wang, Shuohao Li, Xiaofeng Wu","doi":"10.13345/j.cjb.240348","DOIUrl":"https://doi.org/10.13345/j.cjb.240348","url":null,"abstract":"<p><p>Human epidermal growth factor (hEGF) can be applied in the treatment of surgical trauma (burns, scalds), tissue repair, skin moisturizing, beauty, skincare, etc. However, the low expression and high cost limit the application of hEGF. In order to improve the expression level of hEGF and reduce the production cost, considering the high expression of polyhedrin, this study fused a partial sequence of polyhedrin with <i>hEGF</i> and expressed the fused sequence by using a silkworm baculovirus expression vector system. In view of the small molecular weight of hEGF, we connected <i>hEGF</i> genes in series and optimized the codons to construct multiple fusion expression vectors by fusing different partial sequences of polyhedrin at the N-terminus. The results showed that through the above strategy, the protein expression level of hEGF was significantly increased. The expression vector containing three concatenated <i>hEGF</i> genes with optimized codons and fused with the sequence encoding 25 or 35 residues at the N-terminus of polyhedrin showed the highest expression level.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4211-4218"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We knocked out the retinoic acid-inducible gene I (RIG-I) in HEK293 cells via CRISPR/Cas9 to reveal the effects of RIG-I knockout on the key factors in the type I interferon signaling pathway. Three single guide RNAs (sgRNAs) targeting RIG-I were designed, and the recombination vectors were constructed on the basis of the pX459 vector and used to transfect HEK293 cells, which were screened by puromycin subsequently. Furthermore, a mimic of virus, poly I: C, was used to transfect the cells screened out. RIG-I knockout was checked by sequencing, real-time quantitative PCR, Western blotting, and immunofluorescence assay. Meanwhile, the expression levels of key factors of type I interferon signaling pathway such as melanoma differentiation-associated gene 5 (MDA5), interferonβ1 (IFNβ1), and nuclear factor-kappa B p65 [NF-κB(p65)], as well as cell viability, were determined. The results showed that two HEK293 cell lines (S1 and S3) with RIG-I knockout were obtained, which exhibited lower mRNA and protein levels of RIG-I than the wild type HEK293 cells (P < 0.05). The mRNA levels of MDA5 and IFNβ1 in S1 and S3 cells and the protein level of NF-κB(p65) in S3 cells were lower than those in the wild type (P < 0.05). More extranuclear NF-κB(p65) protein was detected in S1 cells than in the wild type after transfection with poly I: C. Plus, the wild-type and S1 cells transfected with poly I: C for 48 h showcased reduced viability (P < 0.05), while S3 cells did not display the reduction in cell viability. In summary, the present study obtained two HEK293 cell lines with RIG-I knockout via CRISPR/Cas9, which provided a stable cell model for exploring the mechanism of type I interferon signaling pathway.
我们通过CRISPR/Cas9技术敲除了HEK293细胞中的视黄酸诱导基因I(RIG-I),以揭示敲除RIG-I对I型干扰素信号通路中关键因子的影响。研究人员设计了三种靶向RIG-I的单导RNA(sgRNA),并在pX459载体的基础上构建了重组载体,用于转染HEK293细胞,随后用嘌呤霉素进行筛选。此外,还使用了病毒的模拟物 poly I: C 来转染筛选出的细胞。通过测序、实时定量 PCR、Western 印迹和免疫荧光检测 RIG-I 基因敲除。同时,测定了 I 型干扰素信号通路关键因子的表达水平,如黑色素瘤分化相关基因 5(MDA5)、干扰素β1(IFNβ1)和核因子-kappa B p65 [NF-κB(p65)],以及细胞活力。结果显示,RIG-I基因敲除的两个HEK293细胞系(S1和S3)的RIG-I mRNA和蛋白水平均低于野生型HEK293细胞(P < 0.05)。S1 和 S3 细胞中 MDA5 和 IFNβ1 的 mRNA 水平以及 S3 细胞中 NF-κB(p65) 的蛋白水平均低于野生型(P < 0.05)。此外,转染 poly I: C 48 h 的野生型和 S1 细胞的存活率降低(P < 0.05),而 S3 细胞的存活率没有降低。综上所述,本研究通过 CRISPR/Cas9 获得了两种 RIG-I 基因敲除的 HEK293 细胞系,为探索 I 型干扰素信号通路的机制提供了一个稳定的细胞模型。
{"title":"[Knockout of <i>RIG-I</i> in HEK293 cells by CRISPR/Cas9].","authors":"Ziyi Chen, Yirong Wu, Yuting Zhang, Youling Gao","doi":"10.13345/j.cjb.240130","DOIUrl":"https://doi.org/10.13345/j.cjb.240130","url":null,"abstract":"<p><p>We knocked out the retinoic acid-inducible gene I (<i>RIG</i>-<i>I)</i> in HEK293 cells <i>via</i> CRISPR/Cas9 to reveal the effects of <i>RIG-I</i> knockout on the key factors in the type I interferon signaling pathway. Three single guide RNAs (sgRNAs) targeting <i>RIG-I</i> were designed, and the recombination vectors were constructed on the basis of the pX459 vector and used to transfect HEK293 cells, which were screened by puromycin subsequently. Furthermore, a mimic of virus, poly I: C, was used to transfect the cells screened out. <i>RIG-I</i> knockout was checked by sequencing, real-time quantitative PCR, Western blotting, and immunofluorescence assay. Meanwhile, the expression levels of key factors of type I interferon signaling pathway such as melanoma differentiation-associated gene 5 (MDA5), interferonβ1 (IFNβ1), and nuclear factor-kappa B p65 [NF-κB(p65)], as well as cell viability, were determined. The results showed that two HEK293 cell lines (S1 and S3) with <i>RIG-I</i> knockout were obtained, which exhibited lower mRNA and protein levels of RIG-I than the wild type HEK293 cells (<i>P</i> < 0.05). The mRNA levels of <i>MDA5</i> and <i>IFNβ1</i> in S1 and S3 cells and the protein level of NF-κB(p65) in S3 cells were lower than those in the wild type (<i>P</i> < 0.05). More extranuclear NF-κB(p65) protein was detected in S1 cells than in the wild type after transfection with poly I: C. Plus, the wild-type and S1 cells transfected with poly I: C for 48 h showcased reduced viability (<i>P</i> < 0.05), while S3 cells did not display the reduction in cell viability. In summary, the present study obtained two HEK293 cell lines with <i>RIG-I</i> knockout <i>via</i> CRISPR/Cas9, which provided a stable cell model for exploring the mechanism of type I interferon signaling pathway.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4254-4265"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The transcription factors (TFs) in the NAC family are involved in regulating multiple biological processes, playing an important role in plant growth, development, and stress adaptation. Our previous studies have demonstrated that TaNAC14, a member of the NAC family in wheat (Triticum aestivum L.), positively regulates root growth and development and enhances the drought tolerance of wheat seedlings. In this study, we analyzed the physicochemical properties and structure and verified the subcellular localization and transcriptional activation activity of TaNAC14. The prokaryotic expression vector pET21a-HMT-TaNAC14 was constructed and transformed into Escherichia coli BL21 CodonPlus (DE3)-RIPL. The conditions for inducing the expression of the recombinant protein HMT-TaNAC14 were optimized. The solubility of the recombinant protein was analyzed, and the protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The results indicated that TaNAC14 had a conserved domain of the NAM family. It was located in the nucleus and had transcriptional activation activity. The optimal conditions for expression of the recombinant protein in E. coli were induction with 0.2mmol/L IPTG for 4 h. The recombinant protein mainly existed in the soluble form, and the target protein was obtained after purification. This study lays a foundation for the identification of target genes regulated by TaNAC14.
{"title":"[Prokaryotic expression and purification of the transcription factor TaNAC14 in wheat (<i>Triticum aestivum</i>)].","authors":"Zhijun Chen, Lijian Zhang, Qing Chi, Baowei Wu, Lanjiya Ao, Huixian Zhao","doi":"10.13345/j.cjb.240092","DOIUrl":"https://doi.org/10.13345/j.cjb.240092","url":null,"abstract":"<p><p>The transcription factors (TFs) in the NAC family are involved in regulating multiple biological processes, playing an important role in plant growth, development, and stress adaptation. Our previous studies have demonstrated that TaNAC14, a member of the NAC family in wheat (<i>Triticum aestivum</i> L.), positively regulates root growth and development and enhances the drought tolerance of wheat seedlings. In this study, we analyzed the physicochemical properties and structure and verified the subcellular localization and transcriptional activation activity of TaNAC14. The prokaryotic expression vector pET21a-HMT-TaNAC14 was constructed and transformed into <i>Escherichia coli</i> BL21 CodonPlus (DE3)-RIPL. The conditions for inducing the expression of the recombinant protein HMT-TaNAC14 were optimized. The solubility of the recombinant protein was analyzed, and the protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The results indicated that TaNAC14 had a conserved domain of the NAM family. It was located in the nucleus and had transcriptional activation activity. The optimal conditions for expression of the recombinant protein in <i>E. coli</i> were induction with 0.2mmol/L IPTG for 4 h. The recombinant protein mainly existed in the soluble form, and the target protein was obtained after purification. This study lays a foundation for the identification of target genes regulated by TaNAC14.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4171-4182"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Liu, Xiaocheng Jin, Chongzhou Yang, Ziyang Wang, Xiaoping Min, Shengxiang Ge
Proteins with specific functions and characteristics play a crucial role in biomedicine and nanotechnology. De novo protein design enables the customization of sequences to produce proteins with desired structures that do not exist in the nature. In recent years, with the rapid development of artificial intelligence (AI), deep learning-based generative models have increasingly become powerful tools, enabling the design of functional proteins with atomic-level precision. This article provides an overview of the evolution of de novo protein design, with focus on the latest algorithmic models, and then analyzes existing challenges such as low design success rates, insufficient accuracy, and dependence on experimental validation. Furthermore, this article discusses the future trends in protein design, aiming to provide insights for researchers and practitioners in this field.
{"title":"[<i>De novo</i> protein design in the age of artificial intelligence].","authors":"Nan Liu, Xiaocheng Jin, Chongzhou Yang, Ziyang Wang, Xiaoping Min, Shengxiang Ge","doi":"10.13345/j.cjb.240087","DOIUrl":"https://doi.org/10.13345/j.cjb.240087","url":null,"abstract":"<p><p>Proteins with specific functions and characteristics play a crucial role in biomedicine and nanotechnology. <i>De novo</i> protein design enables the customization of sequences to produce proteins with desired structures that do not exist in the nature. In recent years, with the rapid development of artificial intelligence (AI), deep learning-based generative models have increasingly become powerful tools, enabling the design of functional proteins with atomic-level precision. This article provides an overview of the evolution of <i>de novo</i> protein design, with focus on the latest algorithmic models, and then analyzes existing challenges such as low design success rates, insufficient accuracy, and dependence on experimental validation. Furthermore, this article discusses the future trends in protein design, aiming to provide insights for researchers and practitioners in this field.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"3912-3929"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}