Pub Date : 2024-10-01Epub Date: 2024-07-18DOI: 10.1007/s12015-024-10763-x
Yingxin Wang, Wenzhu Liu, Yichang Jiao, Yitong Yang, Didi Shan, Xinbo Ji, Rui Zhang, Zexin Zhan, Yao Tang, Dandan Guo, Chuanzhu Yan, Fuchen Liu
The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.
{"title":"Advances in the Differentiation of hiPSCs into Cerebellar Neuronal Cells.","authors":"Yingxin Wang, Wenzhu Liu, Yichang Jiao, Yitong Yang, Didi Shan, Xinbo Ji, Rui Zhang, Zexin Zhan, Yao Tang, Dandan Guo, Chuanzhu Yan, Fuchen Liu","doi":"10.1007/s12015-024-10763-x","DOIUrl":"10.1007/s12015-024-10763-x","url":null,"abstract":"<p><p>The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1782-1794"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-26DOI: 10.1007/s12015-024-10748-w
Erika Pinheiro-Machado, Marijke M Faas, Bart J de Haan, Cyril Moers, Alexandra M Smink
Understanding the impact of various culturing strategies on the secretome composition of adipose-derived stromal cells (ASC) enhances their therapeutic potential. This study investigated changes in the secretome of perirenal ASC (prASC) under different conditions: normoxia, cytokine exposure, high glucose, hypoxia, and hypoxia with high glucose. Using mass spectrometry and enrichment clustering analysis, we found that normoxia enriched pathways related to extracellular matrix (ECM) organization, platelet degranulation, and insulin-like growth factor (IGF) transport and uptake. Cytokine exposure influenced metabolism, vascular development, and protein processing pathways. High glucose affected the immune system, metabolic processes, and IGF transport and uptake. Hypoxia impacted immune and metabolic processes and protein processing. Combined hypoxia and high glucose influenced the immune system, IGF transport and uptake, and ECM organization. Our findings highlight the potential of manipulating culturing conditions to produce secretomes with distinct protein and functional profiles, tailoring therapeutic strategies accordingly.
{"title":"Culturing Conditions Dictate the Composition and Pathways Enrichment of Human and Rat Perirenal Adipose-Derived Stromal Cells' Secretomes.","authors":"Erika Pinheiro-Machado, Marijke M Faas, Bart J de Haan, Cyril Moers, Alexandra M Smink","doi":"10.1007/s12015-024-10748-w","DOIUrl":"10.1007/s12015-024-10748-w","url":null,"abstract":"<p><p>Understanding the impact of various culturing strategies on the secretome composition of adipose-derived stromal cells (ASC) enhances their therapeutic potential. This study investigated changes in the secretome of perirenal ASC (prASC) under different conditions: normoxia, cytokine exposure, high glucose, hypoxia, and hypoxia with high glucose. Using mass spectrometry and enrichment clustering analysis, we found that normoxia enriched pathways related to extracellular matrix (ECM) organization, platelet degranulation, and insulin-like growth factor (IGF) transport and uptake. Cytokine exposure influenced metabolism, vascular development, and protein processing pathways. High glucose affected the immune system, metabolic processes, and IGF transport and uptake. Hypoxia impacted immune and metabolic processes and protein processing. Combined hypoxia and high glucose influenced the immune system, IGF transport and uptake, and ECM organization. Our findings highlight the potential of manipulating culturing conditions to produce secretomes with distinct protein and functional profiles, tailoring therapeutic strategies accordingly.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1869-1888"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mesenchymal stem cells (MSCs) have demonstrated considerable potential in tissue repair and the treatment of immune-related diseases, but there are problems with homing efficiency during MSCs transplantation. Exercise, as an intervention, has been shown to have an important impact on the properties of MSCs. This review summarizes the effects of exercise on the properties (including proliferation, apoptosis, differentiation, and homing) of bone marrow-derived MSCs and adipose-derived MSCs. Studies indicated that exercise enhances bone marrow-derived MSCs proliferation, osteogenic differentiation, and homing while reducing adipogenic differentiation. For adipose-derived MSCs, exercise enhances proliferation and reduces adipogenic differentiation. In addition, studies have investigated the therapeutic effects of combined therapy of MSCs transplantation with exercise on diseases of the bone, cardiac, and nervous systems. The combined therapy improves tissue repair by increasing the homing of transplanted MSCs and cytokine secretion (such as neurotrophin 4). Furthermore, MSCs transplantation also has potential for the treatment of obesity. Although the effect is not significant in weight loss, MSCs transplantation shows effects in controlling blood glucose, improving dyslipidemia, reducing inflammation, and improving liver disease. Finally, the potential role of combined MSCs transplantation and exercise therapy in addressing obesity is discussed.
{"title":"The Effect of Exercise on Mesenchymal Stem Cells and their Application in Obesity Treatment.","authors":"Ying-Ying Xiang, Jong-Hwa Won, Sam-Jun Lee, Kyung-Wan Baek","doi":"10.1007/s12015-024-10755-x","DOIUrl":"10.1007/s12015-024-10755-x","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have demonstrated considerable potential in tissue repair and the treatment of immune-related diseases, but there are problems with homing efficiency during MSCs transplantation. Exercise, as an intervention, has been shown to have an important impact on the properties of MSCs. This review summarizes the effects of exercise on the properties (including proliferation, apoptosis, differentiation, and homing) of bone marrow-derived MSCs and adipose-derived MSCs. Studies indicated that exercise enhances bone marrow-derived MSCs proliferation, osteogenic differentiation, and homing while reducing adipogenic differentiation. For adipose-derived MSCs, exercise enhances proliferation and reduces adipogenic differentiation. In addition, studies have investigated the therapeutic effects of combined therapy of MSCs transplantation with exercise on diseases of the bone, cardiac, and nervous systems. The combined therapy improves tissue repair by increasing the homing of transplanted MSCs and cytokine secretion (such as neurotrophin 4). Furthermore, MSCs transplantation also has potential for the treatment of obesity. Although the effect is not significant in weight loss, MSCs transplantation shows effects in controlling blood glucose, improving dyslipidemia, reducing inflammation, and improving liver disease. Finally, the potential role of combined MSCs transplantation and exercise therapy in addressing obesity is discussed.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1732-1751"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-13DOI: 10.1007/s12015-024-10760-0
Axel Tollance, Alexandre Prola, Diego Michel, Axelle Bouche, Antoine Turzi, Didier Hannouche, Sarah Berndt, Thomas Laumonier
Stem cell therapy holds significant potential for skeletal muscle repair, with in vitro-generated human muscle reserve cells (MuRCs) emerging as a source of quiescent myogenic stem cells that can be injected to enhance muscle regeneration. However, the clinical translation of such therapies is hampered by the need for fetal bovine serum (FBS) during the in vitro generation of human MuRCs. This study aimed to determine whether fresh allogeneic human platelet-rich plasma (PRP) combined or not with hyaluronic acid (PRP-HA) could effectively replace xenogeneic FBS for the ex vivo expansion and differentiation of human primary myoblasts. Cells were cultured in media supplemented with either PRP or PRP-HA and their proliferation rate, cytotoxicity and myogenic differentiation potential were compared with those cultured in media supplemented with FBS. The results showed similar proliferation rates among human myoblasts cultured in PRP, PRP-HA or FBS supplemented media, with no cytotoxic effects. Human myoblasts cultured in PRP or PRP-HA showed reduced fusion ability upon differentiation. Nevertheless, we also observed that human MuRCs generated from PRP or PRP-HA myogenic cultures, exhibited increased Pax7 expression and delayed re-entry into the cell cycle upon reactivation, indicating a deeper quiescent state of human MuRCs. These results suggest that allogeneic human PRP effectively replaces FBS for the ex vivo expansion and differentiation of human myoblasts and favors the in vitro generation of Pax7High human MuRCs, with important implications for the advancement of stem cell-based muscle repair strategies.
{"title":"Platelet-Rich Plasma Promotes the Expansion of Human Myoblasts and Favors the In Vitro Generation of Human Muscle Reserve Cells in a Deeper State of Quiescence.","authors":"Axel Tollance, Alexandre Prola, Diego Michel, Axelle Bouche, Antoine Turzi, Didier Hannouche, Sarah Berndt, Thomas Laumonier","doi":"10.1007/s12015-024-10760-0","DOIUrl":"10.1007/s12015-024-10760-0","url":null,"abstract":"<p><p>Stem cell therapy holds significant potential for skeletal muscle repair, with in vitro-generated human muscle reserve cells (MuRCs) emerging as a source of quiescent myogenic stem cells that can be injected to enhance muscle regeneration. However, the clinical translation of such therapies is hampered by the need for fetal bovine serum (FBS) during the in vitro generation of human MuRCs. This study aimed to determine whether fresh allogeneic human platelet-rich plasma (PRP) combined or not with hyaluronic acid (PRP-HA) could effectively replace xenogeneic FBS for the ex vivo expansion and differentiation of human primary myoblasts. Cells were cultured in media supplemented with either PRP or PRP-HA and their proliferation rate, cytotoxicity and myogenic differentiation potential were compared with those cultured in media supplemented with FBS. The results showed similar proliferation rates among human myoblasts cultured in PRP, PRP-HA or FBS supplemented media, with no cytotoxic effects. Human myoblasts cultured in PRP or PRP-HA showed reduced fusion ability upon differentiation. Nevertheless, we also observed that human MuRCs generated from PRP or PRP-HA myogenic cultures, exhibited increased Pax7 expression and delayed re-entry into the cell cycle upon reactivation, indicating a deeper quiescent state of human MuRCs. These results suggest that allogeneic human PRP effectively replaces FBS for the ex vivo expansion and differentiation of human myoblasts and favors the in vitro generation of Pax7<sup>High</sup> human MuRCs, with important implications for the advancement of stem cell-based muscle repair strategies.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1981-1994"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutations in STAMBP have been well-established to cause congenital human microcephaly-capillary malformation (MIC-CAP) syndrome, a rare genetic disorder characterized by global developmental delay, severe microcephaly, capillary malformations, etc. Previous biochemical investigations and loss-of-function studies in mice have provided insights into the mechanism of STAMBP, however, it remains controversial how STAMBP deficiency leads to malformation of those affected tissues in patients. In this study, we investigated the function and underlying mechanism of STAMBP during neural differentiation of human embryonic stem cells (hESCs). We found that STAMBP is dispensable for the pluripotency maintenance or neural differentiation of hESCs. However, neural progenitor cells (NPCs) derived from STAMBP-deficient hESCs fail to be long-term maintained/expanded in vitro. We identified the anti-apoptotic protein CFLAR is down-regulated in those affected NPCs and ectopic expression of CFLAR rescues NPC defects induced by STAMBP-deficiency. Our study not only provides novel insight into the mechanism of neural defects in STAMBP mutant patients, it also indicates that the death receptor mediated apoptosis is an obstacle for long-term maintenance/expansion of NPCs in vitro thus counteracting this cell death pathway could be beneficial to the generation of NPCs in vitro.
{"title":"STAMBP is Required for Long-Term Maintenance of Neural Progenitor Cells Derived from hESCs.","authors":"Jitian Zhang, Yanqi Zhang, Yancai Liu, Tiancheng Zhou, Guangjin Pan, Jufang He, Xiaodong Shu","doi":"10.1007/s12015-024-10751-1","DOIUrl":"10.1007/s12015-024-10751-1","url":null,"abstract":"<p><p>Mutations in STAMBP have been well-established to cause congenital human microcephaly-capillary malformation (MIC-CAP) syndrome, a rare genetic disorder characterized by global developmental delay, severe microcephaly, capillary malformations, etc. Previous biochemical investigations and loss-of-function studies in mice have provided insights into the mechanism of STAMBP, however, it remains controversial how STAMBP deficiency leads to malformation of those affected tissues in patients. In this study, we investigated the function and underlying mechanism of STAMBP during neural differentiation of human embryonic stem cells (hESCs). We found that STAMBP is dispensable for the pluripotency maintenance or neural differentiation of hESCs. However, neural progenitor cells (NPCs) derived from STAMBP-deficient hESCs fail to be long-term maintained/expanded in vitro. We identified the anti-apoptotic protein CFLAR is down-regulated in those affected NPCs and ectopic expression of CFLAR rescues NPC defects induced by STAMBP-deficiency. Our study not only provides novel insight into the mechanism of neural defects in STAMBP mutant patients, it also indicates that the death receptor mediated apoptosis is an obstacle for long-term maintenance/expansion of NPCs in vitro thus counteracting this cell death pathway could be beneficial to the generation of NPCs in vitro.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1932-1943"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Stem cells from human exfoliated deciduous teeth (SHED) hold promise in regenerative medicine owing to their multipotent capabilities resembling mesenchymal stem cells (MSCs). Despite their potential, SHED have not been extensively investigated because their limited lifespan and unavailability of cell-lines pose challenges for therapeutic applications. This study investigated the effect of ectopic human telomerase reverse transcriptase (hTERT) expression on SHEDs' proliferation while preserving stemness and genomic integrity.
Methods: Deciduous teeth were collected from children aged 6-10 years. After isolation and characterization, the SHED were transduced with pBabe-puro-hTERT retrovirus to establish SHED cell-line, which was evaluated and compared with pBabe-puro (mock control) for stemness, multipotency and growth attributes through flow cytometry, trilineage differentiation, and growth kinetics. We also estimated hTERT gene expression, genomic integrity, and validated cell-line through STR analysis.
Results: Following hTERT transduction, SHED displayed elevated hTERT gene expression while retaining fibroblast-like morphology and mesenchymal stem cell markers. Moreover, after hTERT transduction cellular shape remained same along with increased replicative lifespan and proliferation potential. SHED-hTERT cells exhibited multi-potency and maintained stemness, as evidenced by surface marker expression and multilineage differentiation. Furthermore, genomic integrity was not affected by hTERT integration, as confirmed by STR analysis and CDKN2A gene assessment.
Conclusion: Ectopic hTERT expression in SHED successfully prolonged their replicative lifespan and improved their ability to proliferate and migrate, while preserving their stemness, multipotency and genomic integrity, suggesting minimal carcinogenic risk. Establishment of SHED cell-line holds potential in regenerative medicine applications, especially in cell-based drugs and tissue engineering experiments.
{"title":"Enhancing Proliferation of Stem Cells from Human Exfoliated Deciduous Teeth (SHED) through hTERT Expression while Preserving Stemness and Multipotency.","authors":"Pooja Yadav, Ravina Vats, Sapna Wadhwa, Afsareen Bano, Ritu Namdev, Monika Gupta, Rashmi Bhardwaj","doi":"10.1007/s12015-024-10746-y","DOIUrl":"10.1007/s12015-024-10746-y","url":null,"abstract":"<p><strong>Background: </strong>Stem cells from human exfoliated deciduous teeth (SHED) hold promise in regenerative medicine owing to their multipotent capabilities resembling mesenchymal stem cells (MSCs). Despite their potential, SHED have not been extensively investigated because their limited lifespan and unavailability of cell-lines pose challenges for therapeutic applications. This study investigated the effect of ectopic human telomerase reverse transcriptase (hTERT) expression on SHEDs' proliferation while preserving stemness and genomic integrity.</p><p><strong>Methods: </strong>Deciduous teeth were collected from children aged 6-10 years. After isolation and characterization, the SHED were transduced with pBabe-puro-hTERT retrovirus to establish SHED cell-line, which was evaluated and compared with pBabe-puro (mock control) for stemness, multipotency and growth attributes through flow cytometry, trilineage differentiation, and growth kinetics. We also estimated hTERT gene expression, genomic integrity, and validated cell-line through STR analysis.</p><p><strong>Results: </strong>Following hTERT transduction, SHED displayed elevated hTERT gene expression while retaining fibroblast-like morphology and mesenchymal stem cell markers. Moreover, after hTERT transduction cellular shape remained same along with increased replicative lifespan and proliferation potential. SHED-hTERT cells exhibited multi-potency and maintained stemness, as evidenced by surface marker expression and multilineage differentiation. Furthermore, genomic integrity was not affected by hTERT integration, as confirmed by STR analysis and CDKN2A gene assessment.</p><p><strong>Conclusion: </strong>Ectopic hTERT expression in SHED successfully prolonged their replicative lifespan and improved their ability to proliferate and migrate, while preserving their stemness, multipotency and genomic integrity, suggesting minimal carcinogenic risk. Establishment of SHED cell-line holds potential in regenerative medicine applications, especially in cell-based drugs and tissue engineering experiments.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1902-1914"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intravenous infusion has been used as the method of cell delivery in many preclinical studies as well as in some early clinical trials. Among its advantages are broad distribution, ability to handle a large-volume infusion, and ease of access. Progenitor cells used in cell-based therapy act through their secretomes, rather than their ability to differentiate into lineage-specific cell type. Since not all progenitor cells have similar secretome potency, the innate abilities of the secretome of cells used in clinical trials will obviously dictate their effectiveness. We previously found that cardiac neonatal mesenchymal stromal cells (nMSCs) are more effective in repairing the infarcted myocardium compared to adult mesenchymal stromal cells (aMSCs) due to their robust secretome (Sharma et al Circulation Research 120:816-834, 2017). In this study, we explored the efficacy of intravenous (IV) delivery of nMSCs for myocardial recovery. Six-week-old male Brown Norway rats underwent acute MI by ligation of the left anterior descending artery, followed by IV infusion of cell dose 5 × 106 nMSCs/rat body weight (kg) or saline on days 0 and 5. We found that cardiac parameters in the rodent ischemia model improved 1 month after nMSCs infusion, and the result is comparable with the intramyocardial injection of nMSCs. Tracking the infused cells in target organ revealed that their movement after IV delivery was mediated by the cell surface receptor CD44. Systemic injection of nMSCs stimulated immunomodulatory responses specifically by increasing FoxP3+ T-regulatory cell influenced anti-inflammatory macrophages (M2) in heart. These data demonstrate that nMSCs promote immunogenic tolerance via CD44-driven T-reg/M2 stimulation that helps nMSCs for longer viability in the injured myocardium for better functional recovery. Our data also demonstrate a rationale for a clinical trial of IV infusion of nMSCs to promote cardiac function improvement in the ischemic patients.
在许多临床前研究和一些早期临床试验中,静脉输注一直被用作细胞输送的方法。其优点包括分布广泛、能够处理大容量输注以及易于获取。细胞疗法中使用的祖细胞是通过其分泌体发挥作用的,而不是通过其分化成特异性细胞类型的能力。由于并非所有祖细胞都具有相似的分泌体效力,因此用于临床试验的细胞分泌体的先天能力显然将决定其有效性。我们之前发现,与成体间充质基质细胞(aMSCs)相比,心脏新生儿间充质基质细胞(nMSCs)因其强大的分泌组而能更有效地修复梗死的心肌(Sharma et al Circulation Research 120:816-834,2017)。在本研究中,我们探讨了静脉注射 nMSCs 对心肌恢复的功效。六周大的雄性棕色挪威鼠通过结扎左前降支动脉接受急性心肌梗死,然后在第 0 天和第 5 天静脉输注细胞剂量为 5 × 106 nMSCs/鼠体重(千克)或生理盐水。我们发现,输注 nMSCs 1 个月后,啮齿动物缺血模型的心脏参数有所改善,这一结果与心内注射 nMSCs 的结果相当。通过追踪输注细胞在靶器官中的移动情况发现,它们在静脉注射后的移动是由细胞表面受体 CD44 介导的。通过增加心脏中受 FoxP3+ T 调节细胞影响的抗炎巨噬细胞(M2),全身注射 nMSCs 特别刺激了免疫调节反应。这些数据表明,nMSCs 可通过 CD44 驱动的 Treg/M2 刺激促进免疫耐受,这有助于延长 nMSCs 在损伤心肌中的存活时间,从而改善功能恢复。我们的数据还证明了静脉输注 nMSCs 以促进缺血患者心脏功能改善的临床试验的合理性。
{"title":"Neonatal Cardiac Mesenchymal Stromal Cells Promote Recovery of Infarcted Myocardium through CD44 Mediated FoxP3<sup>+</sup> T-Regulatory Cells after Vascular Infusion.","authors":"Progyaparamita Saha, Sameer Ahmad Guru, Zhi-Dong Ge, Lydia Simms, Ling Chen, Roberto Bolli, Sunjay Kaushal","doi":"10.1007/s12015-024-10750-2","DOIUrl":"10.1007/s12015-024-10750-2","url":null,"abstract":"<p><p>Intravenous infusion has been used as the method of cell delivery in many preclinical studies as well as in some early clinical trials. Among its advantages are broad distribution, ability to handle a large-volume infusion, and ease of access. Progenitor cells used in cell-based therapy act through their secretomes, rather than their ability to differentiate into lineage-specific cell type. Since not all progenitor cells have similar secretome potency, the innate abilities of the secretome of cells used in clinical trials will obviously dictate their effectiveness. We previously found that cardiac neonatal mesenchymal stromal cells (nMSCs) are more effective in repairing the infarcted myocardium compared to adult mesenchymal stromal cells (aMSCs) due to their robust secretome (Sharma et al Circulation Research 120:816-834, 2017). In this study, we explored the efficacy of intravenous (IV) delivery of nMSCs for myocardial recovery. Six-week-old male Brown Norway rats underwent acute MI by ligation of the left anterior descending artery, followed by IV infusion of cell dose 5 × 10<sup>6</sup> nMSCs/rat body weight (kg) or saline on days 0 and 5. We found that cardiac parameters in the rodent ischemia model improved 1 month after nMSCs infusion, and the result is comparable with the intramyocardial injection of nMSCs. Tracking the infused cells in target organ revealed that their movement after IV delivery was mediated by the cell surface receptor CD44. Systemic injection of nMSCs stimulated immunomodulatory responses specifically by increasing FoxP3<sup>+</sup> T-regulatory cell influenced anti-inflammatory macrophages (M2) in heart. These data demonstrate that nMSCs promote immunogenic tolerance via CD44-driven T-reg/M2 stimulation that helps nMSCs for longer viability in the injured myocardium for better functional recovery. Our data also demonstrate a rationale for a clinical trial of IV infusion of nMSCs to promote cardiac function improvement in the ischemic patients.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1843-1853"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Stem cells from various sources including major salivary glands have been used to establish pancreatic differentiation in an attempt to provide new treatment options for patients with diabetes mellitus. In contrast, the potential of using the more easily accessible intraoral minor salivary glands has not been evaluated so far.
Materials and methods: Salivary stem cells were isolated from normal labial minor salivary glands that were removed during the excision of a mucocele and were attempted to differentiate into pancreatic cell lines using a culture medium enriched with activin A, retinoic acid and GLP-1.Real time RT-PCR was used to evaluate the expression of the genes of pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx. Complementary, 22 labial minor salivary gland paraffin-embedded specimens were examined using immunohistochemistry for the presence of the relevant gene products of the pancreatic transcription factors Arx, MafA, Ptf1a and Pdx1.
Results: The differentiated salivary stem cells(cells of passage 3) expressed the genes of the pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx even on the first day of the experiment while immunohistochemistry also confirmed the presence of the protein products of Arx, MafA, Ptf1a as well as Pdx1[> 50% of the specimens for Arx(5/8) and MafA(7/8), < 50% for Ptf1a(5/11) and Pdx1(5/11)] in ducts, mesenchymal connective tissue and acinar cells.
Conclusions: Labial minor salivary glands may share gene and protein characteristics with pancreas suggesting a possible usefulness for pancreatic regeneration or substitution in cases of deficiency.
{"title":"Pancreatic Differentiation of Oral Minor Salivary Gland Stem Cells.","authors":"Achilleia-Maria Pavlou, Eleni Papachristou, Ioannis Bonovolias, Eleftherios Anagnostou, Pinelopi Anastasiadou, Athanasios Poulopoulos, Athina Bakopoulou, Dimitrios Andreadis","doi":"10.1007/s12015-024-10757-9","DOIUrl":"10.1007/s12015-024-10757-9","url":null,"abstract":"<p><strong>Introduction: </strong>Stem cells from various sources including major salivary glands have been used to establish pancreatic differentiation in an attempt to provide new treatment options for patients with diabetes mellitus. In contrast, the potential of using the more easily accessible intraoral minor salivary glands has not been evaluated so far.</p><p><strong>Materials and methods: </strong>Salivary stem cells were isolated from normal labial minor salivary glands that were removed during the excision of a mucocele and were attempted to differentiate into pancreatic cell lines using a culture medium enriched with activin A, retinoic acid and GLP-1.Real time RT-PCR was used to evaluate the expression of the genes of pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx. Complementary, 22 labial minor salivary gland paraffin-embedded specimens were examined using immunohistochemistry for the presence of the relevant gene products of the pancreatic transcription factors Arx, MafA, Ptf1a and Pdx1.</p><p><strong>Results: </strong>The differentiated salivary stem cells(cells of passage 3) expressed the genes of the pancreatic transcription factors MafA, Ptf1a, Hb9 and Arx even on the first day of the experiment while immunohistochemistry also confirmed the presence of the protein products of Arx, MafA, Ptf1a as well as Pdx1[> 50% of the specimens for Arx(5/8) and MafA(7/8), < 50% for Ptf1a(5/11) and Pdx1(5/11)] in ducts, mesenchymal connective tissue and acinar cells.</p><p><strong>Conclusions: </strong>Labial minor salivary glands may share gene and protein characteristics with pancreas suggesting a possible usefulness for pancreatic regeneration or substitution in cases of deficiency.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1944-1953"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-17DOI: 10.1007/s12015-024-10756-w
Maria Siemionow, Katarzyna Bocian, Katarzyna T Bozyk, Anna Ziemiecka, Krzysztof Siemionow
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MBN/MBN) and normal and DMD-affected donors (MBN/MBDMD), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.
杜兴氏肌营养不良症(DMD)是一种严重的X连锁疾病,其特征是肌营养不良蛋白基因突变和线粒体功能障碍,导致DMD患者进行性肌无力和过早死亡。我们开发了人类肌营养不良蛋白表达嵌合体(DEC)细胞,该细胞由正常供体和 DMD 患者的肌细胞融合而成,为 DMD 的 DT-DEC01 治疗奠定了基础。我们对 mdx DMD 小鼠模型进行的临床前研究显示,全身骨内注射 DEC 后,肌营养不良蛋白表达增强,心脏、呼吸和骨骼肌的功能得到改善。本研究探讨了线粒体在所创建的 DEC 细胞内转移和融合的可行性,这对于开发 DMD 的新治疗策略至关重要。用 MitoTracker Deep Red 和 MitoTracker Green 染料对线粒体进行染色后,通过流式细胞仪(FACS)和共聚焦显微镜对线粒体融合和转移进行了评估。由 PEG 介导的正常健康供体(MBN/MBN)和正常及受 DMD 影响的供体(MBN/MBDMD)的成肌细胞融合证实了成肌细胞和线粒体融合与转移的可行性。线粒体染料 MitoTracker Deep Red 和 MitoTracker Green 的共定位证实了线粒体嵌合状态和嵌合线粒体的生成,以及健康供体线粒体在生成的 DEC 细胞内的转移。这些发现是独一无二的,具有重要意义,为 DMD 患者以及线粒体功能障碍起关键作用的其他疾病提供了 DT-DEC01 治疗恢复线粒体功能的潜力。
{"title":"Chimeric Cell Therapy Transfers Healthy Donor Mitochondria in Duchenne Muscular Dystrophy.","authors":"Maria Siemionow, Katarzyna Bocian, Katarzyna T Bozyk, Anna Ziemiecka, Krzysztof Siemionow","doi":"10.1007/s12015-024-10756-w","DOIUrl":"10.1007/s12015-024-10756-w","url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by dystrophin gene mutations and mitochondrial dysfunction, leading to progressive muscle weakness and premature death of DMD patients. We developed human Dystrophin Expressing Chimeric (DEC) cells, created by the fusion of myoblasts from normal donors and DMD patients, as a foundation for DT-DEC01 therapy for DMD. Our preclinical studies on mdx mouse models of DMD revealed enhanced dystrophin expression and functional improvements in cardiac, respiratory, and skeletal muscles after systemic intraosseous DEC administration. The current study explored the feasibility of mitochondrial transfer and fusion within the created DEC cells, which is crucial for developing new therapeutic strategies for DMD. Following mitochondrial staining with MitoTracker Deep Red and MitoTracker Green dyes, mitochondrial fusion and transfer was assessed by Flow cytometry (FACS) and confocal microscopy. The PEG-mediated fusion of myoblasts from normal healthy donors (MB<sup>N</sup>/MB<sup>N</sup>) and normal and DMD-affected donors (MB<sup>N</sup>/MB<sup>DMD</sup>), confirmed the feasibility of myoblast and mitochondrial fusion and transfer. The colocalization of the mitochondrial dyes MitoTracker Deep Red and MitoTracker Green confirmed the mitochondrial chimeric state and the creation of chimeric mitochondria, as well as the transfer of healthy donor mitochondria within the created DEC cells. These findings are unique and significant, introducing the potential of DT-DEC01 therapy to restore mitochondrial function in DMD patients and in other diseases where mitochondrial dysfunction plays a critical role.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1819-1829"},"PeriodicalIF":4.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}