首页 > 最新文献

Stem Cell Reviews and Reports最新文献

英文 中文
Comorbidities and Angiogenic Regulators Affect Endothelial Progenitor Cell Subtype Numbers in a Healthy Volunteer Control Group. 合并症和血管生成调节因子会影响健康志愿者对照组的内皮祖细胞亚型数量。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-26 DOI: 10.1007/s12015-024-10777-5
Kamini Rakkar, Rais Reskiawan A Kadir, Othman A Othman, Nikola Sprigg, Philip M Bath, Ulvi Bayraktutan

Endothelial progenitor cells (EPCs) are stem cells that can repair injured blood vessels through neovascularisation. This is achieved through secretion of growth factors and endothelial maturation. EPC numbers and function have been studied to determine their diagnostic, prognostic and therapeutic potential in many ischaemic diseases such as stroke. However their activation homing and migration is not definitively understood in stroke patients. In this study, we profiled the non-stroke control group recruited into the Dunhill Medical Trust Endothelial Progenitor Cell Study. Demographic, clinical and plasma levels of angiogenic regulators of participants were analysed to determine if there was any correlation with EPC numbers, subtypes and function. Participants with diabetes had significantly supressed EPC numbers (CD45-CD34 + CD133 + KDR+) and CD34 + KDR + and KDR + EPC subtypes. Male participants had significantly lower EPC numbers compared to female participants and the proliferative capacity of endothelial colony forming cells significantly decreased with increasing participant age. Pro-angiogenic proteins such as granulocyte colony-stimulating factor and stromal cell-derived factor were positively correlated with both undifferentiated and endothelial-committed EPC subtype numbers (CD133+, KDR+, CD34 + CD133+, CD34 + KDR+), whereas anti-angiogenic proteins such as thrombospondin-1 showed a negative correlation with undifferentiated EPC subtypes (CD133+, CD34 + CD133+) but a positive correlation with endothelial-committed EPC subtype numbers (KDR+, CD34 + KDR+). These results show that EPC numbers and subtypes are affected by many factors and larger studies which can analyse and deconvolute the interactions between comorbidities, plasma biomarker levels and EPC are needed.

内皮祖细胞(EPCs)是一种干细胞,可通过新生血管修复损伤的血管。这是通过分泌生长因子和内皮成熟来实现的。人们对 EPC 的数量和功能进行了研究,以确定它们在中风等多种缺血性疾病中的诊断、预后和治疗潜力。然而,人们对中风患者体内 EPC 的活化归巢和迁移还没有确切的了解。在本研究中,我们对登喜路医疗信托基金内皮祖细胞研究中招募的非中风对照组进行了分析。我们对参与者的人口统计学、临床和血浆血管生成调节因子水平进行了分析,以确定EPC的数量、亚型和功能是否存在相关性。糖尿病患者的EPC数量(CD45-CD34 + CD133 + KDR+)和CD34 + KDR +及KDR + EPC亚型明显减少。男性参与者的 EPC 数量明显低于女性参与者,内皮集落形成细胞的增殖能力随着参与者年龄的增加而明显下降。促血管生成蛋白(如粒细胞集落刺激因子和基质细胞衍生因子)与未分化和内皮结合型 EPC 亚型(CD133+、KDR+、CD34 + CD133+、CD34 + KDR+)的数量呈正相关,而抗血管生成蛋白(如粒细胞集落刺激因子和基质细胞衍生因子)与未分化和内皮结合型 EPC 亚型的数量呈负相关、而抗血管生成蛋白(如凝血酶原-1)与未分化的EPC亚型(CD133+、CD34 + CD133+)呈负相关,但与内皮结合的EPC亚型数量(KDR+、CD34 + KDR+)呈正相关。这些结果表明,EPC的数量和亚型受多种因素的影响,因此需要进行更大规模的研究,分析和解除合并症、血浆生物标志物水平和EPC之间的相互作用。
{"title":"Comorbidities and Angiogenic Regulators Affect Endothelial Progenitor Cell Subtype Numbers in a Healthy Volunteer Control Group.","authors":"Kamini Rakkar, Rais Reskiawan A Kadir, Othman A Othman, Nikola Sprigg, Philip M Bath, Ulvi Bayraktutan","doi":"10.1007/s12015-024-10777-5","DOIUrl":"https://doi.org/10.1007/s12015-024-10777-5","url":null,"abstract":"<p><p>Endothelial progenitor cells (EPCs) are stem cells that can repair injured blood vessels through neovascularisation. This is achieved through secretion of growth factors and endothelial maturation. EPC numbers and function have been studied to determine their diagnostic, prognostic and therapeutic potential in many ischaemic diseases such as stroke. However their activation homing and migration is not definitively understood in stroke patients. In this study, we profiled the non-stroke control group recruited into the Dunhill Medical Trust Endothelial Progenitor Cell Study. Demographic, clinical and plasma levels of angiogenic regulators of participants were analysed to determine if there was any correlation with EPC numbers, subtypes and function. Participants with diabetes had significantly supressed EPC numbers (CD45-CD34 + CD133 + KDR+) and CD34 + KDR + and KDR + EPC subtypes. Male participants had significantly lower EPC numbers compared to female participants and the proliferative capacity of endothelial colony forming cells significantly decreased with increasing participant age. Pro-angiogenic proteins such as granulocyte colony-stimulating factor and stromal cell-derived factor were positively correlated with both undifferentiated and endothelial-committed EPC subtype numbers (CD133+, KDR+, CD34 + CD133+, CD34 + KDR+), whereas anti-angiogenic proteins such as thrombospondin-1 showed a negative correlation with undifferentiated EPC subtypes (CD133+, CD34 + CD133+) but a positive correlation with endothelial-committed EPC subtype numbers (KDR+, CD34 + KDR+). These results show that EPC numbers and subtypes are affected by many factors and larger studies which can analyse and deconvolute the interactions between comorbidities, plasma biomarker levels and EPC are needed.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Expression of Concern: Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts. 社论表达关注:从人类孤雌胚中提取的细胞系可显示出异常的中心粒分布和有丝分裂纺锤体检查点转录本的表达水平。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-24 DOI: 10.1007/s12015-024-10779-3
Tiziana A L Brevini, Georgia Pennarossa, Stefania Antonini, Alessio Paffoni, Gianluca Tettamanti, Tiziana Montemurro, Enrico Radaelli, Lorenza Lazzari, Paolo Rebulla, Eugenio Scanziani, Magda de Eguileor, Nissim Benvenisty, Guido Ragni, Fulvio Gandolfi
{"title":"Editorial Expression of Concern: Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts.","authors":"Tiziana A L Brevini, Georgia Pennarossa, Stefania Antonini, Alessio Paffoni, Gianluca Tettamanti, Tiziana Montemurro, Enrico Radaelli, Lorenza Lazzari, Paolo Rebulla, Eugenio Scanziani, Magda de Eguileor, Nissim Benvenisty, Guido Ragni, Fulvio Gandolfi","doi":"10.1007/s12015-024-10779-3","DOIUrl":"https://doi.org/10.1007/s12015-024-10779-3","url":null,"abstract":"","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progesterone receptor is constitutively expressed in induced Pluripotent Stem Cells (iPSCs). 孕酮受体在诱导多能干细胞(iPSC)中呈组成型表达。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-22 DOI: 10.1007/s12015-024-10776-6
Michele Manganelli, Elena Laura Mazzoldi, Rosalba Monica Ferraro, Marinella Pinelli, Marta Parigi, Seyed Ali Mir Aghel, Mattia Bugatti, Ginetta Collo, Gabriele Stocco, William Vermi, Stefania Masneri, Camillo Almici, Luigi Mori, Silvia Giliani

Induced Pluripotent Stem Cells (iPSCs) are nowadays a common starting point for wide-ranging applications including 3D disease modeling (i.e. organoids) and in future regenerative medicine. Physiological processes like homeostasis, cell differentiation, development and reproduction are tightly regulated by hormones through binding to their transmembrane or nuclear receptors of target cells. Considering their pleiotropic effect, take into account also their expression in an iPSCs-based disease modeling would better recapitulate the molecular events leading to 3D organoid development and disease study. Here we reported the expression pattern of estrogen receptor (ERα) and progesterone receptor (PR) in four different iPSCs, obtained from CD34 + progenitor cells and skin fibroblasts with four different methods. Expression of ERα and PR mRNA were significantly downregulated in iPSCs as well as fibroblasts compared to MCF7 positive control. Immunofluorescence (IF) staining detected only the expression of PR protein in all the different iPSCs cell lines, while ERα was not detectable. By flow cytometry analysis we observed that the ~ 65% of the total population of iPSCs cells expressed only PR, with 100% fold increase compared to HSPCs and fibroblasts, while ERα was not expressed. Our results collectively demonstrated for the first time that the reprogramming of somatic cells into iPSCs leads to the expression of PR receptor.

如今,诱导多能干细胞(iPSCs)已成为广泛应用的起点,包括三维疾病建模(即器官组织)和未来的再生医学。激素通过与靶细胞的跨膜或核受体结合,对平衡、细胞分化、发育和繁殖等生理过程进行严格调控。考虑到激素的多效应,将其在基于 iPSCs 的疾病模型中的表达也考虑在内将更好地再现导致三维类器官发育和疾病研究的分子事件。在这里,我们报告了雌激素受体(ERα)和孕酮受体(PR)在四种不同的 iPSCs 中的表达模式,这些 iPSCs 是用四种不同的方法从 CD34 + 祖细胞和皮肤成纤维细胞中获得的。与 MCF7 阳性对照组相比,iPSC 和成纤维细胞中 ERα 和 PR mRNA 的表达明显下调。免疫荧光(IF)染色在所有不同的 iPSCs 细胞系中只检测到 PR 蛋白的表达,而 ERα 则检测不到。通过流式细胞仪分析,我们观察到 iPSCs 细胞总数的 65% 只表达 PR,与 HSPCs 和成纤维细胞相比,表达量增加了 100%,而 ERα 则没有表达。我们的研究结果首次证明,体细胞重编程为 iPSCs 会导致 PR 受体的表达。
{"title":"Progesterone receptor is constitutively expressed in induced Pluripotent Stem Cells (iPSCs).","authors":"Michele Manganelli, Elena Laura Mazzoldi, Rosalba Monica Ferraro, Marinella Pinelli, Marta Parigi, Seyed Ali Mir Aghel, Mattia Bugatti, Ginetta Collo, Gabriele Stocco, William Vermi, Stefania Masneri, Camillo Almici, Luigi Mori, Silvia Giliani","doi":"10.1007/s12015-024-10776-6","DOIUrl":"https://doi.org/10.1007/s12015-024-10776-6","url":null,"abstract":"<p><p>Induced Pluripotent Stem Cells (iPSCs) are nowadays a common starting point for wide-ranging applications including 3D disease modeling (i.e. organoids) and in future regenerative medicine. Physiological processes like homeostasis, cell differentiation, development and reproduction are tightly regulated by hormones through binding to their transmembrane or nuclear receptors of target cells. Considering their pleiotropic effect, take into account also their expression in an iPSCs-based disease modeling would better recapitulate the molecular events leading to 3D organoid development and disease study. Here we reported the expression pattern of estrogen receptor (ERα) and progesterone receptor (PR) in four different iPSCs, obtained from CD34 + progenitor cells and skin fibroblasts with four different methods. Expression of ERα and PR mRNA were significantly downregulated in iPSCs as well as fibroblasts compared to MCF7 positive control. Immunofluorescence (IF) staining detected only the expression of PR protein in all the different iPSCs cell lines, while ERα was not detectable. By flow cytometry analysis we observed that the ~ 65% of the total population of iPSCs cells expressed only PR, with 100% fold increase compared to HSPCs and fibroblasts, while ERα was not expressed. Our results collectively demonstrated for the first time that the reprogramming of somatic cells into iPSCs leads to the expression of PR receptor.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal Stem Cells Increase Resistance Against Ventricular Arrhythmias Provoked in Rats with Myocardial Infarction. 间充质干细胞增强心肌梗死大鼠对室性心律失常的抵抗力
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-22 DOI: 10.1007/s12015-024-10773-9
Larissa Emília Seibt, Ednei Luiz Antonio, Ighor Luiz AzevedoTeixeira, Helenita Antonia de Oliveira, André Rodrigues Lourenço Dias, Luis Felipe Neves Dos Santos, Andrey Jorge Serra

This study evaluated the role of the mesenchymal stem cells derived from adipose tissue (MSCs) in provoked ventricular arrhythmias (VAs) in animals with myocardial infarction (MI). The experimental groups were: sham, subjected to sham surgery and intramyocardial saline injection; MIV, infarcted rats subjected to intramyocardial saline injection; MI + MSCs, infarcted rats subjected to intramyocardial MSCs injection. Injections were performed two days after infarction and the arrhythmogenic inducibility experiment was performed the next day. Only 35% of the MI + MSCs group developed VAs, while the one in the MIV group was 65%. The proportion of nonsustained ventricular tachycardia, sustained tachycardia, and ventricular fibrillation was similar between the infarcted groups, but MSCs animals had shorter duration of nonsustained ventricular tachycardia. However, MSCs increased connexin 43 content in the remote area, even above the levels found in the sham group. MSCs prevented the increase of IL-1β in the different areas of the myocardium. There was higher carbonylation and content of 4-hydroxynonenal (4-HNE, a marker of lipoperoxidation) in the myocardium of infarcted rats, but MSCs attenuated the increase of 4-HNE in the infarcted area. In conclusion, MSCs have a protective effect against the development of arrhythmias, but do not imply a significant benefit for animals that have developed VAs. It is possible to think that the cardioprotection of MSCs involves anti-inflammatory/oxidative actions and improvement in the formation of communicating junctions.Graphical abstract.

本研究评估了脂肪组织间充质干细胞(MSCs)在心肌梗死(MI)动物诱发室性心律失常(VAs)中的作用。实验组为:假组,接受假手术和心肌内生理盐水注射;MIV组,心肌梗死大鼠接受心肌内生理盐水注射;MI + MSCs组,心肌梗死大鼠接受心肌内间叶干细胞注射。心肌梗死两天后进行注射,第二天进行致心律失常诱导实验。心肌梗死+间充质干细胞组仅有35%的大鼠出现室性早搏,而MIV组则为65%。梗死组非持续性室速、持续性室速和室颤的比例相似,但间叶干细胞动物非持续性室速的持续时间较短。然而,间叶干细胞增加了远端区域的连索 43 含量,甚至超过了假体组的水平。间充质干细胞阻止了IL-1β在心肌不同区域的增加。梗死大鼠心肌中4-羟基壬烯醛(4-HNE,一种脂质过氧化标记物)的羰基化和含量较高,但间叶干细胞可减轻梗死区域4-HNE的增加。总之,间充质干细胞对心律失常的发生有保护作用,但并不意味着对发生VA的动物有明显的益处。可以认为间叶干细胞对心脏的保护作用包括抗炎/抗氧化作用和改善沟通连接的形成。
{"title":"Mesenchymal Stem Cells Increase Resistance Against Ventricular Arrhythmias Provoked in Rats with Myocardial Infarction.","authors":"Larissa Emília Seibt, Ednei Luiz Antonio, Ighor Luiz AzevedoTeixeira, Helenita Antonia de Oliveira, André Rodrigues Lourenço Dias, Luis Felipe Neves Dos Santos, Andrey Jorge Serra","doi":"10.1007/s12015-024-10773-9","DOIUrl":"https://doi.org/10.1007/s12015-024-10773-9","url":null,"abstract":"<p><p>This study evaluated the role of the mesenchymal stem cells derived from adipose tissue (MSCs) in provoked ventricular arrhythmias (VAs) in animals with myocardial infarction (MI). The experimental groups were: sham, subjected to sham surgery and intramyocardial saline injection; MIV, infarcted rats subjected to intramyocardial saline injection; MI + MSCs, infarcted rats subjected to intramyocardial MSCs injection. Injections were performed two days after infarction and the arrhythmogenic inducibility experiment was performed the next day. Only 35% of the MI + MSCs group developed VAs, while the one in the MIV group was 65%. The proportion of nonsustained ventricular tachycardia, sustained tachycardia, and ventricular fibrillation was similar between the infarcted groups, but MSCs animals had shorter duration of nonsustained ventricular tachycardia. However, MSCs increased connexin 43 content in the remote area, even above the levels found in the sham group. MSCs prevented the increase of IL-1β in the different areas of the myocardium. There was higher carbonylation and content of 4-hydroxynonenal (4-HNE, a marker of lipoperoxidation) in the myocardium of infarcted rats, but MSCs attenuated the increase of 4-HNE in the infarcted area. In conclusion, MSCs have a protective effect against the development of arrhythmias, but do not imply a significant benefit for animals that have developed VAs. It is possible to think that the cardioprotection of MSCs involves anti-inflammatory/oxidative actions and improvement in the formation of communicating junctions.Graphical abstract.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage. 牙源性干细胞疗法及其衍生的细胞外小泡在 COVID-19 综合征后组织损伤中的作用
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-16 DOI: 10.1007/s12015-024-10770-y
Mitra Rostami, Pouria Farahani, Samar Esmaelian, Zahra Bahman, Abbas Fadel Hussein, Hareth A Alrikabi, Mohammad Hosseini Hooshiar, Saman Yasamineh

Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.

2019年长冠状病毒病(COVID-19)与影响肺部和肺外器官系统的急性后遗症风险增加有关。高达20%的COVID-19患者可能会发展成更严重的病症,如重症肺炎、急性呼吸窘迫综合征(ARDS)或肺纤维化。不过,大多数患者可能只有轻微的自限性疾病。尤其令人担忧的是,长期服用 COVID-19 的患者可能会出现肺实质纤维化和肺功能障碍。此外,据观察,高达 43% 的 COVID-19 住院患者还伴有急性肾损伤 (AKI)。COVID-19急性期后的治疗应包括对肾、脑、肺、心血管、肝、眼和组织损伤的护理。牙科干细胞(DSCs)作为再生医学中一种强大的免疫调节工具,引起了广泛关注。许多免疫细胞和细胞因子参与了过度炎症反应,这对组织再生也有重大影响。大量研究表明,牙齿组织中可能蕴藏着治疗急性肺损伤(ALI)、肝损伤、神经系统疾病、心血管问题和肾损伤的独特干细胞(SC)。此外,越来越多的体内研究将DSC衍生的细胞外囊泡(DSC-EVs)与DSCs的有益作用联系起来。DSC-EVs含有生物活性成分,对某些疾病具有治疗潜力,在COVID-19后被证明是治疗组织损伤的潜在有效疗法。因此,我们在这项工作中探讨了 DSC 的特性。接下来,我们将研究 SARS-CoV-2 如何影响组织损伤。最后,我们研究了如何利用 DSCs 和 DSC-EVs 处理 COVID-19 和慢性组织损伤,如心脏、大脑、肺部和其他组织损伤。
{"title":"The Role of Dental-derived Stem Cell-based Therapy and Their Derived Extracellular Vesicles in Post-COVID-19 Syndrome-induced Tissue Damage.","authors":"Mitra Rostami, Pouria Farahani, Samar Esmaelian, Zahra Bahman, Abbas Fadel Hussein, Hareth A Alrikabi, Mohammad Hosseini Hooshiar, Saman Yasamineh","doi":"10.1007/s12015-024-10770-y","DOIUrl":"https://doi.org/10.1007/s12015-024-10770-y","url":null,"abstract":"<p><p>Long coronavirus disease 2019 (COVID-19) is linked to an increased risk of post-acute sequelae affecting the pulmonary and extrapulmonary organ systems. Up to 20% of COVID-19 patients may proceed to a more serious form, such as severe pneumonia, acute respiratory distress syndrome (ARDS), or pulmonary fibrosis. Still, the majority of patients may only have mild, self-limiting sickness. Of particular concern is the possibility of parenchymal fibrosis and lung dysfunction in long-term COVID-19 patients. Furthermore, it has been observed that up to 43% of individuals hospitalized with COVID-19 also had acute renal injury (AKI). Care for kidney, brain, lung, cardiovascular, liver, ocular, and tissue injuries should be included in post-acute COVID-19 treatment. As a powerful immunomodulatory tool in regenerative medicine, dental stem cells (DSCs) have drawn much interest. Numerous immune cells and cytokines are involved in the excessive inflammatory response, which also has a significant effect on tissue regeneration. A unique reservoir of stem cells (SCs) for treating acute lung injury (ALI), liver damage, neurological diseases, cardiovascular issues, and renal damage may be found in tooth tissue, according to much research. Moreover, a growing corpus of in vivo research is connecting DSC-derived extracellular vesicles (DSC-EVs), which are essential paracrine effectors, to the beneficial effects of DSCs. DSC-EVs, which contain bioactive components and therapeutic potential in certain disorders, have been shown as potentially effective therapies for tissue damage after COVID-19. Consequently, we explore the properties of DSCs in this work. Next, we'll look at how SARS-CoV-2 affects tissue damage. Lastly, we have looked at the use of DSCs and DSC-EVs in managing COVID-19 and chronic tissue damage, such as injury to the heart, brain, lung, and other tissues.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Non-Surgical Curative Regenerative Therapies for Knee Osteoarthritis. 目前治疗膝关节骨性关节炎的非手术治疗性再生疗法。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-15 DOI: 10.1007/s12015-024-10768-6
Ali Bahari Golamkaboudi, Elham Vojoudi, Kosar Babaeian Roshani, Pejman Porouhan, David Houshangi, Zahra Barabadi

Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.

骨关节炎(OA)是一种影响中老年人的常见肌肉骨骼疾病,膝关节疼痛是常见的主诉。标准的治疗方法通常试图利用各种药物和非药物疗法来缓解疼痛和炎症。然而,这些疗法对长期组织修复的疗效仍存在争议。作为一种替代方法,再生医学提供了一种前景广阔的策略,其不良反应率降低,安全性和有效性的证据不断增加。本综述将概述再生医学在治疗膝关节 OA 方面的最新进展,重点介绍使用骨生物制品和非生物制品的门诊疗法。本文将讨论基于骨生物制品的不同策略,作为治疗膝关节 OA 的潜在再生方案。讨论的无细胞疗法包括富血小板血浆、自体抗炎药、外泌体、人类胎盘提取物和线粒体移植,重点是它们在软骨再生方面的潜力。此外,还在研究具有再生特性的细胞疗法,包括骨髓抽吸物浓缩物、脂肪基质血管成分、微脂、纳米脂、干细胞疗法以及作为矫形生物制剂一部分的基因修饰细胞。此外,这项研究还在研究非生物疗法,如使用金诱导细胞因子、体外冲击波疗法和臭氧疗法。目前正在探索每种疗法的作用机制、有效性和临床应用,以便深入了解它们在膝关节 OA 治疗中的作用。
{"title":"Current Non-Surgical Curative Regenerative Therapies for Knee Osteoarthritis.","authors":"Ali Bahari Golamkaboudi, Elham Vojoudi, Kosar Babaeian Roshani, Pejman Porouhan, David Houshangi, Zahra Barabadi","doi":"10.1007/s12015-024-10768-6","DOIUrl":"https://doi.org/10.1007/s12015-024-10768-6","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defect in Migration of HSPCs in Nox-2 Deficient Mice Explained by Impaired Activation of Nlrp3 Inflammasome and Impaired Formation of Membrane Lipid Rafts. Nox-2缺陷小鼠HSPCs迁移缺陷可通过Nlrp3炎症小体激活受损和膜脂筏形成受损来解释
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-13 DOI: 10.1007/s12015-024-10775-7
Kamila Bujko, Mateusz Adamiak, Adrian Konopko, Vira Chumak, Janina Ratajczak, Katarzyna Brzezniakiewicz-Janus, Magdalena Kucia, Mariusz Z Ratajczak

NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.

NADPH 氧化酶 2(Nox2)是一种超氧化物生成酶,是活性氧(ROS)的来源之一,它调节细胞内的氧化还原状态、自我更新以及造血干细胞/祖细胞(HSPCs)的命运。HSPCs 上表达的 Nox2 复合物与几种活化的细胞膜受体有关,增加了细胞内的 ROS 水平。此外,线粒体也会释放 ROS,所有这些都是细胞内模式识别受体 Nlrp3 炎性体的强效激活剂,而 Nlrp3 炎性体可调节 HSPCs 的贩运、增殖和新陈代谢。在目前的研究中,我们注意到,尽管骨髓(BM)中的 HSPC 数量增加,但 Nox2 缺陷小鼠却表现出造血缺陷,表现为亚致死性辐照后外周血(PB)造血参数恢复延迟,并且在给予 G-CSF 和 AMD3100 后动员的 HSPC 数量较少。此外,Nox2缺陷的HSPCs在移植到正常的合成受体后,移植效果很差。为了在分子水平上解释这些缺陷,我们假设 Nox2-KO 降低的 ROS 水平不能有效激活 Nlrp3 炎性体,而后者在调节 HSPCs 的迁移中起着至关重要的作用。在此,我们报告了Nox2缺陷的HSPCs表现出:i)对主要趋化吸引因子的迁移缺陷;ii)Nlrp3炎性体的胞内激活受损;iii)膜脂筏(MLRs)形成缺陷,而MLRs是对促迁移因子做出适当趋化反应所必需的。我们的结论是,Nox2 衍生的 ROS 通过促进 MLRs 在细胞外膜上的组装,以 Nlrp3 炎性体依赖的方式增强了 HSPCs 的迁移,而 Nox2 表达缺陷导致 Nlrp3 炎性体的活化受损,从而影响了 HSPCs 的迁移。
{"title":"Defect in Migration of HSPCs in Nox-2 Deficient Mice Explained by Impaired Activation of Nlrp3 Inflammasome and Impaired Formation of Membrane Lipid Rafts.","authors":"Kamila Bujko, Mateusz Adamiak, Adrian Konopko, Vira Chumak, Janina Ratajczak, Katarzyna Brzezniakiewicz-Janus, Magdalena Kucia, Mariusz Z Ratajczak","doi":"10.1007/s12015-024-10775-7","DOIUrl":"https://doi.org/10.1007/s12015-024-10775-7","url":null,"abstract":"<p><p>NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs. In the current study, we noticed that Nox2-deficient mice, despite the increased number of HSPCs in the bone marrow (BM), show hematopoietic defects illustrated by delayed recovery of peripheral blood (PB) hematopoietic parameters after sublethal irradiation and mobilize fewer HSPCs after administration of G-CSF and AMD3100. Moreover, Nox2-deficient HSPCs engraft poorly after transplantation into normal syngeneic recipients. To explain these defects at the molecular level, we hypothesized that Nox2-KO decreased ROS level does not efficiently activate Nlrp3 inflammasome, which plays a crucial role in regulating the trafficking of HSPCs. Herein, we report Nox2-deficient HSPCs display i) defective migration to major chemoattractant, ii) impaired intracellular activation of Nlrp3 inflammasome, and iii) a defect in membrane lipid raft (MLRs) formation that is required for a proper chemotactic response to pro-migratory factors. We conclude that Nox2-derived ROS enhances in Nlrp3 inflammasome-dependent manner HSPCs trafficking by facilitating MLRs assemble on the outer cell membranes, and defect in Nox2 expression results in impaired activation of Nlrp3 inflammasome, which affects HSPCs migration.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Basic Studies of Low-Intensity Pulsed Ultrasound in Periodontal Tissue Regeneration: A Systematic Review. 低强度脉冲超声在牙周组织再生中的基础研究最新进展:系统回顾
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-12 DOI: 10.1007/s12015-024-10769-5
Facai Li, Yujiao Li, Yuan Zhu, Xiaomei Bao, Lei Wang

Approximately half of the adult population is suffering from periodontal disease, and conventional periodontal treatment strategies can only slow the progression of the disease. As a kind of tissue engineering, periodontal regeneration brings hope for the treatment of periodontal disease. Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound with a frequency of 1-3 MHz and a much lower intensity (< 1W/cm2) than traditional ultrasound energy and output. LIPUS has been adopted for a variety of therapeutic purposes due to its bioeffects such as thermal, mechanical, and cavitation effects, which induce intracellular biochemical effects and lead to tissue repair and regeneration ultimately. In this systematic review, we summarize the basic research of LIPUS in the treatment of periodontal disease in periodontal disease animal models and the influence of LIPUS on the biological behavior (including promoting osteogenic differentiation of stem cells and inhibiting inflammatory response) and potential mechanism of periodontal ligament stem cells (PDLSCs), hoping to provide new ideas for the treatment of periodontal disease. We believe that LIPUS can be used as an auxiliary strategy in the treatment of periodontal disease and play an exciting and positive role in periodontal regeneration.

大约一半的成年人患有牙周病,而传统的牙周治疗策略只能延缓疾病的发展。作为一种组织工程,牙周再生为牙周病的治疗带来了希望。低强度脉冲超声(LIPUS)是一种频率为1-3 MHz、强度(2)远低于传统超声能量和输出的超声形式。LIPUS 具有热效应、机械效应和空化效应等生物效应,可诱导细胞内生化效应,最终实现组织修复和再生,因此已被广泛用于各种治疗目的。在这篇系统综述中,我们总结了LIPUS在牙周病动物模型中治疗牙周病的基础研究,以及LIPUS对牙周韧带干细胞(PDLSCs)的生物学行为(包括促进干细胞成骨分化和抑制炎症反应)和潜在机制的影响,希望能为牙周病的治疗提供新思路。我们相信,LIPUS 可作为治疗牙周病的辅助策略,在牙周再生中发挥令人振奋的积极作用。
{"title":"Recent Advances in Basic Studies of Low-Intensity Pulsed Ultrasound in Periodontal Tissue Regeneration: A Systematic Review.","authors":"Facai Li, Yujiao Li, Yuan Zhu, Xiaomei Bao, Lei Wang","doi":"10.1007/s12015-024-10769-5","DOIUrl":"https://doi.org/10.1007/s12015-024-10769-5","url":null,"abstract":"<p><p>Approximately half of the adult population is suffering from periodontal disease, and conventional periodontal treatment strategies can only slow the progression of the disease. As a kind of tissue engineering, periodontal regeneration brings hope for the treatment of periodontal disease. Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound with a frequency of 1-3 MHz and a much lower intensity (< 1W/cm<sup>2</sup>) than traditional ultrasound energy and output. LIPUS has been adopted for a variety of therapeutic purposes due to its bioeffects such as thermal, mechanical, and cavitation effects, which induce intracellular biochemical effects and lead to tissue repair and regeneration ultimately. In this systematic review, we summarize the basic research of LIPUS in the treatment of periodontal disease in periodontal disease animal models and the influence of LIPUS on the biological behavior (including promoting osteogenic differentiation of stem cells and inhibiting inflammatory response) and potential mechanism of periodontal ligament stem cells (PDLSCs), hoping to provide new ideas for the treatment of periodontal disease. We believe that LIPUS can be used as an auxiliary strategy in the treatment of periodontal disease and play an exciting and positive role in periodontal regeneration.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Umbilical Cord Mesenchymal Stem Cells Promote Anti-Inflammation and Angiogenesis by Targeting Macrophages in a Rat Uterine Scar Model. 人脐带间充质干细胞在大鼠子宫疤痕模型中通过靶向巨噬细胞促进抗炎和血管生成
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-05-04 DOI: 10.1007/s12015-024-10730-6
Qian Yang, Jinfa Huang, Yixuan Liu, Qiqing Mai, Yuan Zhou, Lei Zhou, Lingling Zeng, Kaixian Deng

Background: Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have demonstrated efficacy in repairing uterine scars, although the underlying mechanisms remain unclear.

Methods: Uterine injury was surgically induced in a rat model, followed by immediate transplantation of 5 × 10 ^ 5 hUC-MSCs to each side of the uterus. Uterine morphology was evaluated at days 14 and 30 using HE and Masson staining. Immunohistochemistry assessed macrophage polarization, angiogenesis and endometrial receptivity in the endometrium. Additionally, the regulatory effects of hUC-MSCs on macrophage polarization were explored through coculture. qRT-PCR quantified the expression of anti-inflammatory (IL10 and Arg1) and pro-inflammatory (iNOS and TNF-α) factors. Western blotting evaluated CD163 expression.

Results: Transplantation of hUC-MSCs promoted the healing of uterine injuries and tissue regeneration while inhibiting tissue fibrosis. Immunohistochemistry at days 14 and 30 post-transplantation demonstrated the polarization of macrophages toward the M2 phenotype in the uterine injury area in the presence of hUC-MSCs. Furthermore, hUC-MSC transplantation improved angiogenesis and endometrial receptivity in the uterine injury rat model, associated with increased IL10 expression. hUC-MSC-induced angiogenesis can be resisted by depleted macrophages. In vitro coculture experiments further demonstrated that hUC-MSCs promoted IL10 expression in macrophages while suppressing TNF-α and iNOS expression. Western blotting showed enhanced CD163 expression in macrophages following hUC-MSC treatment.

Conclusions: hUC-MSCs contribute to the healing of uterine injuries by targeting macrophages to promote angiogenesis and the expression of anti-inflammatory factors.

背景:人脐带间充质干细胞(hUC-MSCs人脐带间充质干细胞(hUC-MSCs)在修复子宫疤痕方面具有疗效,但其潜在机制仍不清楚:方法:在大鼠模型中通过手术诱导子宫损伤,然后将 5 × 10 ^ 5 hUC-间充质干细胞立即移植到子宫两侧。第 14 天和第 30 天,使用 HE 和 Masson 染色法对子宫形态进行评估。免疫组化评估了子宫内膜的巨噬细胞极化、血管生成和子宫内膜接受性。qRT-PCR 定量了抗炎因子(IL10 和 Arg1)和促炎因子(iNOS 和 TNF-α)的表达。Western 印迹分析评估了 CD163 的表达:结果:hUC-间充质干细胞移植促进了子宫损伤的愈合和组织再生,同时抑制了组织纤维化。移植后第14天和第30天的免疫组化结果显示,在有hUC-间充质干细胞存在的情况下,子宫损伤区的巨噬细胞向M2表型极化。此外,hUC-间充质干细胞移植改善了子宫损伤大鼠模型中的血管生成和子宫内膜接受能力,这与IL10表达的增加有关。体外共培养实验进一步证明,hUC-间充质干细胞能促进巨噬细胞中IL10的表达,同时抑制TNF-α和iNOS的表达。结论:hUC-间充质干细胞通过靶向巨噬细胞促进血管生成和抗炎因子的表达,有助于子宫损伤的愈合。
{"title":"Human Umbilical Cord Mesenchymal Stem Cells Promote Anti-Inflammation and Angiogenesis by Targeting Macrophages in a Rat Uterine Scar Model.","authors":"Qian Yang, Jinfa Huang, Yixuan Liu, Qiqing Mai, Yuan Zhou, Lei Zhou, Lingling Zeng, Kaixian Deng","doi":"10.1007/s12015-024-10730-6","DOIUrl":"10.1007/s12015-024-10730-6","url":null,"abstract":"<p><strong>Background: </strong>Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have demonstrated efficacy in repairing uterine scars, although the underlying mechanisms remain unclear.</p><p><strong>Methods: </strong>Uterine injury was surgically induced in a rat model, followed by immediate transplantation of 5 × 10 ^ 5 hUC-MSCs to each side of the uterus. Uterine morphology was evaluated at days 14 and 30 using HE and Masson staining. Immunohistochemistry assessed macrophage polarization, angiogenesis and endometrial receptivity in the endometrium. Additionally, the regulatory effects of hUC-MSCs on macrophage polarization were explored through coculture. qRT-PCR quantified the expression of anti-inflammatory (IL10 and Arg1) and pro-inflammatory (iNOS and TNF-α) factors. Western blotting evaluated CD163 expression.</p><p><strong>Results: </strong>Transplantation of hUC-MSCs promoted the healing of uterine injuries and tissue regeneration while inhibiting tissue fibrosis. Immunohistochemistry at days 14 and 30 post-transplantation demonstrated the polarization of macrophages toward the M2 phenotype in the uterine injury area in the presence of hUC-MSCs. Furthermore, hUC-MSC transplantation improved angiogenesis and endometrial receptivity in the uterine injury rat model, associated with increased IL10 expression. hUC-MSC-induced angiogenesis can be resisted by depleted macrophages. In vitro coculture experiments further demonstrated that hUC-MSCs promoted IL10 expression in macrophages while suppressing TNF-α and iNOS expression. Western blotting showed enhanced CD163 expression in macrophages following hUC-MSC treatment.</p><p><strong>Conclusions: </strong>hUC-MSCs contribute to the healing of uterine injuries by targeting macrophages to promote angiogenesis and the expression of anti-inflammatory factors.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140866291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases. 类器官模型在胃肠道疾病生物医学研究中的转化应用。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2024-08-01 Epub Date: 2024-05-17 DOI: 10.1007/s12015-024-10733-3
Pratibha Banerjee, Sabyasachi Senapati

Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.

类器官模型最近被用于研究三维人源组织系统,以揭示组织结构和成体干细胞生物学。患者衍生的器官组织无疑是研究具有实际遗传背景的疾病生物学最合适的体外系统。随着不断改进和创新的方法的出现,患者衍生的器官组织有可能用于再生医学。与传统的体外细胞系培养方法和体内模型相比,多种人体组织具有多重优势,因此被用来开发类器官。人们对胃肠道(GI)组织进行了广泛研究,以建立器官组织和芯片上器官,用于筛选药物、营养保健品和其他具有治疗潜力的小分子物质。此外,还解释了通道蛋白、转运体和跨膜蛋白的功能。最近有报道称,使用 CRISPR-Cas 方法在器官组织中成功应用了基因组编辑。研究人员已利用多个源自患者的类器官模型对乳糜泻(Celiac disease,CeD)、炎症性肠病(Inflammatory bowel disease,IBD)和常见消化道癌症等消化道疾病进行了研究。类器官生物库和三维生物打印技术的最新进展极大地促进了个性化疾病管理和治疗。本文综述了有关患者来源消化道类器官模型的研究和转化应用的现有文献,特别是在阐明肠道微生物相互作用和表观遗传修饰方面。
{"title":"Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases.","authors":"Pratibha Banerjee, Sabyasachi Senapati","doi":"10.1007/s12015-024-10733-3","DOIUrl":"10.1007/s12015-024-10733-3","url":null,"abstract":"<p><p>Organoid models have recently been utilized to study 3D human-derived tissue systems to uncover tissue architecture and adult stem cell biology. Patient-derived organoids unambiguously provide the most suitable in vitro system to study disease biology with the actual genetic background. With the advent of much improved and innovative approaches, patient-derived organoids can potentially be used in regenerative medicine. Various human tissues were explored to develop organoids due to their multifold advantage over the conventional in vitro cell line culture approach and in vivo models. Gastrointestinal (GI) tissues have been widely studied to establish organoids and organ-on-chip for screening drugs, nutraceuticals, and other small molecules having therapeutic potential. The function of channel proteins, transporters, and transmembrane proteins was also explained. The successful application of genome editing in organoids using the CRISPR-Cas approach has been reported recently. GI diseases such as Celiac disease (CeD), Inflammatory bowel disease (IBD), and common GI cancers have been investigated using several patient-derived organoid models. Recent advancements on organoid bio-banking and 3D bio-printing contributed significantly in personalized disease management and therapeutics. This article reviews the available literature on investigations and translational applications of patient-derived GI organoid models, notably on elucidating gut-microbial interaction and epigenetic modifications.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stem Cell Reviews and Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1