首页 > 最新文献

Stem Cell Reviews and Reports最新文献

英文 中文
Commemorating Professor Hal Broxmeyer. 纪念Hal Broxmeyer教授。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 DOI: 10.1007/s12015-024-10837-w
{"title":"Commemorating Professor Hal Broxmeyer.","authors":"","doi":"10.1007/s12015-024-10837-w","DOIUrl":"10.1007/s12015-024-10837-w","url":null,"abstract":"","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"1"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atraric Acid Induces Hair Growth through the Stimulation of Sonic Hedgehog/GLI1 in Human Dermal Papilla Cells. 阿曲酸通过刺激人真皮乳头细胞中的Sonic Hedgehog/GLI1诱导毛发生长
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-10-03 DOI: 10.1007/s12015-024-10798-0
Sultan Pulat, Wonyong Kim, Jee-Hyun Hwang, Rui Zhou, Chathurika D B Gamage, Mücahit Varlı, İsa Taş, Yi Yang, So-Yeon Park, Kyung-Min Lim, Jae-Seoun Hur, Hangun Kim
{"title":"Atraric Acid Induces Hair Growth through the Stimulation of Sonic Hedgehog/GLI1 in Human Dermal Papilla Cells.","authors":"Sultan Pulat, Wonyong Kim, Jee-Hyun Hwang, Rui Zhou, Chathurika D B Gamage, Mücahit Varlı, İsa Taş, Yi Yang, So-Yeon Park, Kyung-Min Lim, Jae-Seoun Hur, Hangun Kim","doi":"10.1007/s12015-024-10798-0","DOIUrl":"10.1007/s12015-024-10798-0","url":null,"abstract":"","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"283-286"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Injectable Solution for Preservation of Hematopoietic Stem and Progenitors Cells in Hypothermic Condition. 低温条件下保存造血干细胞和祖细胞的注射溶液。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-12-12 DOI: 10.1007/s12015-024-10829-w
Jean Chevaleyre, Laura Rodriguez, Esther Attebi, Pascale Duchez, Zoran Ivanovic

To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose. Committed progenitors (CFU-GM, BFU-E, and CFU-Mix) were detected using methylcellulose culture colony-forming assays. Additionally, in some cases, the energetic metabolism (mitochondrial respiration) was evaluated using Seahorse technology. SEC was able to preserve the functionality of HSCs and HPCs in ex vivo expanded cell populations at + 4 °C for at least 48 h. Furthermore, SEC is also effective in fully preserving HSCs and HPCs in cytapheresis products for at least 72 h. Additionally, SEC enabled the full preservation of HSCs and HPCs for 72 h in freshly collected cord blood, maintaining a normal metabolic profile of CD34+ cells. The SEC medium exhibits a positive effect on the maintenance of both HSCs and HPCs at + 4 °C, regardless of their source. Therefore, SEC can be applied in cell therapy protocols based on HSCs and HPCs with a significant advantage: the product does not need to be washed and concentrated before injection into the patient.

为了确保功能性造血干细胞(HSC)和固定祖细胞(HPC)在+ 4°C的体外扩增脐带血产品中在全球运输和随后的输注中保存-无需洗涤和细胞浓缩-我们开发了一种称为扩增细胞稳定器(SEC)的保存介质,该介质完全由可注射的药理学产品组成。采用免疫缺陷小鼠体内植入法检测+ 4℃保存前后的原始造血干细胞。在一些实验中,基于CD34、CD38和CD133表达的复杂表型被用于此目的。采用甲基纤维素培养菌落形成试验检测固定祖细胞(CFU-GM、BFU-E和CFU-Mix)。此外,在某些情况下,使用海马技术评估了能量代谢(线粒体呼吸)。SEC能够在+ 4°C的体外扩增细胞群中保存hsc和HPCs的功能至少48小时。此外,SEC还能有效地将造血干细胞和HPCs完全保存在造血分离产品中至少72小时。此外,SEC能够在新鲜采集的脐带血中完全保存hsc和HPCs 72小时,保持CD34+细胞的正常代谢谱。无论来源如何,SEC培养基对+ 4℃时造血干细胞和造血干细胞的维持均有积极作用。因此,SEC可以应用于基于造血干细胞和造血干细胞的细胞治疗方案,其显著优势是:产品在注射到患者体内之前不需要清洗和浓缩。
{"title":"An Injectable Solution for Preservation of Hematopoietic Stem and Progenitors Cells in Hypothermic Condition.","authors":"Jean Chevaleyre, Laura Rodriguez, Esther Attebi, Pascale Duchez, Zoran Ivanovic","doi":"10.1007/s12015-024-10829-w","DOIUrl":"10.1007/s12015-024-10829-w","url":null,"abstract":"<p><p>To ensure the preservation of functional hematopoietic stem cells (HSC) and committed progenitor cells (HPC) at + 4 °C in ex vivo expanded cord blood cell products during worldwide transportation and subsequent infusion-without the need for washing and cell concentration-we developed a conservation medium called Stabilizer of Expanded Cells (SEC), composed exclusively of injectable pharmacological products. The in vivo engraftment assay in immunodeficient mice was used to detect primitive HSCs before and after preservation at + 4 °C. In some experiments, a complex phenotype based on CD34, CD38, and CD133 expression was utilized for this purpose. Committed progenitors (CFU-GM, BFU-E, and CFU-Mix) were detected using methylcellulose culture colony-forming assays. Additionally, in some cases, the energetic metabolism (mitochondrial respiration) was evaluated using Seahorse technology. SEC was able to preserve the functionality of HSCs and HPCs in ex vivo expanded cell populations at + 4 °C for at least 48 h. Furthermore, SEC is also effective in fully preserving HSCs and HPCs in cytapheresis products for at least 72 h. Additionally, SEC enabled the full preservation of HSCs and HPCs for 72 h in freshly collected cord blood, maintaining a normal metabolic profile of CD34<sup>+</sup> cells. The SEC medium exhibits a positive effect on the maintenance of both HSCs and HPCs at + 4 °C, regardless of their source. Therefore, SEC can be applied in cell therapy protocols based on HSCs and HPCs with a significant advantage: the product does not need to be washed and concentrated before injection into the patient.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"96-106"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy? 间充质干细胞-EV 中的 miRNA 能否为缺氧缺血性脑病提供一种潜在的治疗方法?
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-11-06 DOI: 10.1007/s12015-024-10803-6
Hisham Al-Ward, Wei Chen, Wenxia Gao, Chunxue Zhang, Xueyan Yang, Yao Xiong, Xinyi Wang, Rafeq Agila, Hui Xu, Yi Eve Sun

Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.

新生儿缺氧缺血性脑病(HIE)是一种危重病症,是由于出生时脑部氧气和血流受损,导致神经炎症、神经细胞凋亡和长期神经功能缺损。尽管使用了治疗性低温,但目前的治疗方法仍不足以完全防止脑损伤。间充质干细胞衍生细胞外囊泡(MSC-EVs)的最新进展提供了一种新颖的无细胞治疗方法,因为这些EVs可穿过血脑屏障(BBB),输送功能性microRNAs(miRNAs)以调节炎症和神经保护的关键通路。这篇综述探讨了间充质干细胞-EV中封装的特定miRNA(包括miR-21、miR-124、miR-146和miR-17-92簇)如何靶向驱动HIE病理学的复杂炎症反应。通过调节 NF-κB、STAT3 和 PI3K/Akt 等通路,这些 miRNA 可影响神经炎症过程、减少神经元凋亡并促进组织修复。研究的目的是评估miRNA负载的间充质干细胞-EVs在减轻炎症和神经元损伤方面的治疗潜力,从而解决目前疗法(如治疗性低温)的局限性。
{"title":"Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy?","authors":"Hisham Al-Ward, Wei Chen, Wenxia Gao, Chunxue Zhang, Xueyan Yang, Yao Xiong, Xinyi Wang, Rafeq Agila, Hui Xu, Yi Eve Sun","doi":"10.1007/s12015-024-10803-6","DOIUrl":"10.1007/s12015-024-10803-6","url":null,"abstract":"<p><p>Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"236-253"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Different Responsiveness of C3- and C5-deficient Murine BM Cells to Oxidative Stress Explains Why C3 Deficiency, in Contrast to C5 Deficiency, Correlates with Better Pharmacological Mobilization and Engraftment of Hematopoietic Cells. C3和C5缺乏的小鼠基础母细胞对氧化应激的不同反应解释了为什么C3缺乏与C5缺乏相比能更好地药理调动和移植造血细胞。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-09-28 DOI: 10.1007/s12015-024-10792-6
Adrian Konopko, Agnieszka Łukomska, Magdalena Kucia, Mariusz Z Ratajczak

The liver-derived circulating in peripheral blood and intrinsic cell-expressed complement known as complosome orchestrate the trafficking of hematopoietic stem/progenitor cells (HSPCs) both during pharmacological mobilization and homing/engraftment after transplantation. Our previous research demonstrated that C3 deficient mice are easy mobilizers, and their HSPCs engraft properly in normal mice. In contrast, C5 deficiency correlates with poor mobilization and defects in HSPCs' homing and engraftment. The trafficking of HSPCs during mobilization and homing/engraftment follows the sterile inflammation cues in the BM microenvironment caused by stress induced by pro-mobilizing drugs or myeloablative conditioning for transplantation. Therefore, to explain deficiencies in HSPC trafficking between C3-KO and C5-KO mice, we evaluated the responsiveness of C3 and C5 deficient cells to low oxidative stress. As reported, oxidative stress in BM is mediated by the activation of purinergic signaling, which is triggered by the elevated level of extracellular adenosine triphosphate (eATP) and by the activation of the complement cascade (ComC). In the current work, we noticed that BM lineage negative cells (lin-) isolated from C3-KO mice display several mitochondrial defects reflected by an impaired ability to adapt to oxidative stress. In contrast, C5-KO-derived BM cells show a high level of adaptation to this challenge. To support this data, C3-KO BM lin- cells were highly responsive to eATP stimulation, which correlates with enhanced levels of reactive oxygen species (ROS) generation and more efficient activation of intracellular Nlrp3 inflammasome. We conclude that the enhanced sensitivity of C3-KO mice cells to oxidative stress and better activation of the Nox2-ROS-Nlrp3 inflammasome signaling axis explains the molecular level differences in trafficking between C3- and C5-deficient HSPCs.

外周血中循环的肝源性补体和细胞固有表达的补体(称为 "补体组")在药物动员和移植后的归巢/移植过程中协调造血干细胞/祖细胞(HSPCs)的迁移。我们之前的研究表明,C3缺乏的小鼠很容易动员,其造血干细胞在正常小鼠中也能正常移植。与此相反,C5 缺乏会导致动员能力差以及 HSPCs 归巢和移植缺陷。在动员和归巢/移植过程中,HSPCs 的迁移遵循由促动员药物或移植用髓脱落调理引起的应激所导致的 BM 微环境中的无菌炎症线索。因此,为了解释C3-KO和C5-KO小鼠之间HSPC迁移的缺陷,我们评估了C3和C5缺陷细胞对低氧化应激的反应性。据报道,细胞外三磷酸腺苷(eATP)水平的升高和补体级联(ComC)的激活会激活嘌呤能信号传导,从而介导血液中的氧化应激。在目前的工作中,我们注意到从 C3-KO 小鼠体内分离出的 BM 系阴性细胞(lin-)显示出多种线粒体缺陷,这反映在对氧化应激的适应能力受损。与此相反,C5-KO 衍生的骨髓细胞对这种挑战表现出高度的适应性。为了支持这一数据,C3-KO 的 BM lin- 细胞对 eATP 刺激具有高度反应性,这与活性氧(ROS)生成水平的提高和细胞内 Nlrp3 炎症小体的更有效激活有关。我们的结论是,C3-KO小鼠细胞对氧化应激的敏感性增强以及Nox2-ROS-Nlrp3炎性体信号轴被更好地激活,解释了C3-和C5缺陷HSPCs之间分子水平的迁移差异。
{"title":"The Different Responsiveness of C3- and C5-deficient Murine BM Cells to Oxidative Stress Explains Why C3 Deficiency, in Contrast to C5 Deficiency, Correlates with Better Pharmacological Mobilization and Engraftment of Hematopoietic Cells.","authors":"Adrian Konopko, Agnieszka Łukomska, Magdalena Kucia, Mariusz Z Ratajczak","doi":"10.1007/s12015-024-10792-6","DOIUrl":"10.1007/s12015-024-10792-6","url":null,"abstract":"<p><p>The liver-derived circulating in peripheral blood and intrinsic cell-expressed complement known as complosome orchestrate the trafficking of hematopoietic stem/progenitor cells (HSPCs) both during pharmacological mobilization and homing/engraftment after transplantation. Our previous research demonstrated that C3 deficient mice are easy mobilizers, and their HSPCs engraft properly in normal mice. In contrast, C5 deficiency correlates with poor mobilization and defects in HSPCs' homing and engraftment. The trafficking of HSPCs during mobilization and homing/engraftment follows the sterile inflammation cues in the BM microenvironment caused by stress induced by pro-mobilizing drugs or myeloablative conditioning for transplantation. Therefore, to explain deficiencies in HSPC trafficking between C3-KO and C5-KO mice, we evaluated the responsiveness of C3 and C5 deficient cells to low oxidative stress. As reported, oxidative stress in BM is mediated by the activation of purinergic signaling, which is triggered by the elevated level of extracellular adenosine triphosphate (eATP) and by the activation of the complement cascade (ComC). In the current work, we noticed that BM lineage negative cells (lin<sup>-</sup>) isolated from C3-KO mice display several mitochondrial defects reflected by an impaired ability to adapt to oxidative stress. In contrast, C5-KO-derived BM cells show a high level of adaptation to this challenge. To support this data, C3-KO BM lin<sup>-</sup> cells were highly responsive to eATP stimulation, which correlates with enhanced levels of reactive oxygen species (ROS) generation and more efficient activation of intracellular Nlrp3 inflammasome. We conclude that the enhanced sensitivity of C3-KO mice cells to oxidative stress and better activation of the Nox2-ROS-Nlrp3 inflammasome signaling axis explains the molecular level differences in trafficking between C3- and C5-deficient HSPCs.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"59-67"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Knowledge Map and Emerging Research Trends in Induced Pluripotent Stem Cells and Hereditary Diseases: A CiteSpace-based Visualization and Analysis. 诱导多能干细胞和遗传性疾病的全球知识地图和新兴研究趋势:基于 CiteSpace 的可视化和分析。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-10-08 DOI: 10.1007/s12015-024-10799-z
Jiajun Xu, Weiwei Gong, Chune Mo, Xianliang Hou, Minglin Ou

The rise of induced pluripotent stem cells (iPSCs) technology has ushered in a landmark shift in the study of hereditary diseases. However, there is a scarcity of reports that offer a comprehensive and objective overview of the current state of research at the intersection of iPSCs and hereditary diseases. Therefore, this study endeavors to categorize and synthesize the publications in this field over the past decade through bibliometric methods and visual knowledge mapping, aiming to visually analyze their research focus and clinical trends. The English language literature on iPSCs and hereditary diseases, published from 2014 to 2023 in the Web of Science Core Collection (WoSCC), was examined. The CiteSpace (version 6.3.R1) software was utilized to visualize and analyze country/region, institution, scholar, co-cited authors, and co-cited journals. Additionally, the co-occurrence, clustering, and bursting of co-cited references were displayed. Analysis of 347 articles that met the inclusion criteria revealed a steady increase in the number of published articles and citation frequency in the field over the past decade. With regard to the countries/regions, institutions, scholars, and journals where the articles were published, the highest numbers were found in the USA, the University of California System, Suren M. Zakian, and Stem Cell Research, respectively. The current research is focused on the construction of disease models, both before and after correction, as well as drug target testing for single-gene hereditary diseases. Chromosome transplantation genomic therapy for hereditary diseases with abnormal chromosome structures may emerge as a future research hotspot in this field.

诱导多能干细胞(iPSCs)技术的兴起为遗传性疾病研究带来了里程碑式的转变。然而,能够全面客观地概述 iPSCs 与遗传疾病交叉研究现状的报告却十分稀少。因此,本研究试图通过文献计量学方法和可视化知识图谱对过去十年该领域的出版物进行分类和综合,旨在直观地分析其研究重点和临床趋势。本文研究了2014年至2023年发表在《科学网核心文库》(Web of Science Core Collection,WoSCC)中有关iPSCs和遗传性疾病的英文文献。利用CiteSpace(6.3.R1版)软件对国家/地区、机构、学者、共被引作者和共被引期刊进行可视化分析。此外,还显示了共引参考文献的共现、聚类和突发性。对符合纳入标准的 347 篇文章进行分析后发现,在过去十年中,该领域发表的文章数量和引用频率稳步增长。在发表文章的国家/地区、机构、学者和期刊方面,数量最多的分别是美国、加利福尼亚大学系统、Suren M. Zakian 和《干细胞研究》。目前的研究主要集中在疾病模型的构建(包括矫正前和矫正后),以及单基因遗传疾病的药物靶点测试。针对染色体结构异常的遗传性疾病的染色体移植基因组疗法可能会成为该领域未来的研究热点。
{"title":"Global Knowledge Map and Emerging Research Trends in Induced Pluripotent Stem Cells and Hereditary Diseases: A CiteSpace-based Visualization and Analysis.","authors":"Jiajun Xu, Weiwei Gong, Chune Mo, Xianliang Hou, Minglin Ou","doi":"10.1007/s12015-024-10799-z","DOIUrl":"10.1007/s12015-024-10799-z","url":null,"abstract":"<p><p>The rise of induced pluripotent stem cells (iPSCs) technology has ushered in a landmark shift in the study of hereditary diseases. However, there is a scarcity of reports that offer a comprehensive and objective overview of the current state of research at the intersection of iPSCs and hereditary diseases. Therefore, this study endeavors to categorize and synthesize the publications in this field over the past decade through bibliometric methods and visual knowledge mapping, aiming to visually analyze their research focus and clinical trends. The English language literature on iPSCs and hereditary diseases, published from 2014 to 2023 in the Web of Science Core Collection (WoSCC), was examined. The CiteSpace (version 6.3.R1) software was utilized to visualize and analyze country/region, institution, scholar, co-cited authors, and co-cited journals. Additionally, the co-occurrence, clustering, and bursting of co-cited references were displayed. Analysis of 347 articles that met the inclusion criteria revealed a steady increase in the number of published articles and citation frequency in the field over the past decade. With regard to the countries/regions, institutions, scholars, and journals where the articles were published, the highest numbers were found in the USA, the University of California System, Suren M. Zakian, and Stem Cell Research, respectively. The current research is focused on the construction of disease models, both before and after correction, as well as drug target testing for single-gene hereditary diseases. Chromosome transplantation genomic therapy for hereditary diseases with abnormal chromosome structures may emerge as a future research hotspot in this field.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"126-146"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Scaffolds in 3D Cell Models: Driving Innovation in Drug Discovery. 三维细胞模型中的生物支架:推动药物发现的创新。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-10-10 DOI: 10.1007/s12015-024-10800-9
Raj Dave, Kshipra Pandey, Ritu Patel, Nidhi Gour, Dhiraj Bhatia

The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.

三维细胞建模学科目前正经历着一场令人着迷的发展热潮,它正在提高组织模拟的逼真度和实用性。利用代表细胞、支架和生长因子的生物墨水,科学家们可以通过三维生物打印等创新技术逐层构建复杂的组织结构。由于微流体技术和片上器官装置可对细胞环境进行精确控制,因此可以加快药物测试,更精确地复制器官功能。随着水凝胶和智能生物材料的出现,组织工程变得更加动态,其材料可以改变周围环境。球形组织和器官组织的进步不仅使我们获得了更有效的定制化疗法,还提高了它们与实际人体组织相似的能力。共焦显微镜和双光子显微镜是先进成像方法的范例,可提供细胞功能和相互作用的精确图像。人工智能模型可用于增强支架设计和预测组织对药物的反应。此外,通过加强预测模型、优化数据分析和简化三维细胞培养设计,人工智能正在彻底改变这一领域。这些技术结合在一起,正在提高我们开展研究的能力,并使我们朝着更个性化、更有效的医疗干预方向迈进。
{"title":"Biological Scaffolds in 3D Cell Models: Driving Innovation in Drug Discovery.","authors":"Raj Dave, Kshipra Pandey, Ritu Patel, Nidhi Gour, Dhiraj Bhatia","doi":"10.1007/s12015-024-10800-9","DOIUrl":"10.1007/s12015-024-10800-9","url":null,"abstract":"<p><p>The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"147-166"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma. 线粒体在肝细胞癌中维持癌干细胞的作用
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-10-18 DOI: 10.1007/s12015-024-10797-1
Manar A Elhinnawi, Michael Ibrahim Boushra, Donia Mohamed Hussien, Fatema Hesham Hussein, Islam Ahmed Abdelmawgood

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.

肝细胞癌(HCC)是肝癌的主要形式,也是全球公认的导致癌症相关死亡率的主要因素。癌症干细胞(CSCs)是一类极小的癌细胞,具有自我再生、形成肿瘤和进行分化的强大能力。癌症干细胞在癌症的发生、扩散、复发和抗药性方面起着关键作用。因此,它们很容易成为治疗干预的靶点。通过有效靶向药物根除癌症干细胞,有可能治愈 HCC。线粒体在通过线粒体代谢、生物生成和动力学赋予癌症干细胞抗药性方面具有重要功能。线粒体代谢过程(如线粒体氧化磷酸化(OXPHOS)、钙信号转导和活性氧(ROS)生成)的功能障碍是包括 HCC 在内的人类恶性肿瘤发病和恶化的原因。活性氧的浓度不同,既有有益的影响,也有有害的影响。因此,ROS 已成为研究 HCC 基本机制的一个重要课题。此外,创建新线粒体过程中的失衡是 CSCs 的一个特征,线粒体生物生成的增加与 CSCs 中观察到的抵抗力增强有关。本文详细探讨了线粒体参与 CSCs 保存以及 HCC 扩散的情况。深入了解线粒体是如何参与肿瘤发生和耐药性的,有助于发现新型癌症治疗方法。
{"title":"Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma.","authors":"Manar A Elhinnawi, Michael Ibrahim Boushra, Donia Mohamed Hussien, Fatema Hesham Hussein, Islam Ahmed Abdelmawgood","doi":"10.1007/s12015-024-10797-1","DOIUrl":"10.1007/s12015-024-10797-1","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is recognized as a major contributor to cancer-related mortality worldwide. Cancer stem cells (CSCs) are a tiny group of cancer cells that possess a significant ability to regenerate themselves, form tumors, and undergo differentiation. CSCs have a pivotal role in the initiation, spread, recurrence, and resistance to treatment of cancer. As a result, they are very susceptible to being targeted for therapeutic intervention. The potential to cure HCC may be achieved by efficiently targeting drugs that eradicate cancer stem cells. Mitochondria have a crucial function in granting drug resistance to cancer stem cells by means of mitochondrial metabolism, biogenesis, and dynamics. Dysfunction in mitochondrial metabolic processes, such as mitochondrial oxidative phosphorylation (OXPHOS), calcium signaling, and reactive oxygen species (ROS) generation, contributes to the initiation and progression of human malignancies, including HCC. ROS have both beneficial and detrimental effects depending on their concentration. Consequently, ROS have become a prominent subject in the study of the fundamental mechanisms of HCC. Furthermore, an imbalance in the process of creating new mitochondria is a characteristic feature of CSCs, and an increase in mitochondrial biogenesis is associated with the heightened resistance observed in CSCs. This article provides a detailed examination of the involvement of mitochondria in the preservation of CSCs, as well as the spread of HCC. A deeper understanding of how mitochondria participate in tumorigenesis and drug resistance could result in the discovery of novel cancer treatments.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"198-210"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cirrhotic Patients Exhibit Remarkable Vascular Regenerative Profile One Month after Liver Transplantation. 肝硬化患者在肝移植一个月后表现出明显的血管再生特征
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-10-08 DOI: 10.1007/s12015-024-10796-2
Daniel Eyraud, Aurélien Philippe, Coralie Guerin, Ignacio Sarmiento, Ludovic Suner, Louis Puybasset, Sébastien Bertil, Jean-Christophe Vaillant, Dominique Helley, Benjamin Granger, David M Smadja, Pascale Gaussem
{"title":"Cirrhotic Patients Exhibit Remarkable Vascular Regenerative Profile One Month after Liver Transplantation.","authors":"Daniel Eyraud, Aurélien Philippe, Coralie Guerin, Ignacio Sarmiento, Ludovic Suner, Louis Puybasset, Sébastien Bertil, Jean-Christophe Vaillant, Dominique Helley, Benjamin Granger, David M Smadja, Pascale Gaussem","doi":"10.1007/s12015-024-10796-2","DOIUrl":"10.1007/s12015-024-10796-2","url":null,"abstract":"","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"276-279"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Therapeutic Strategies for Oral Submucous Fibrosis through Stem Cell Therapy. 通过干细胞疗法治疗口腔黏膜下纤维化的先进治疗策略。
IF 4.5 3区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-01-01 Epub Date: 2024-10-10 DOI: 10.1007/s12015-024-10801-8
Manoj Kumar Karuppan Perumal, Sava Nanda Gopal, Remya Rajan Renuka, Suresh Kumar Subbiah
{"title":"Advanced Therapeutic Strategies for Oral Submucous Fibrosis through Stem Cell Therapy.","authors":"Manoj Kumar Karuppan Perumal, Sava Nanda Gopal, Remya Rajan Renuka, Suresh Kumar Subbiah","doi":"10.1007/s12015-024-10801-8","DOIUrl":"10.1007/s12015-024-10801-8","url":null,"abstract":"","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":" ","pages":"287-289"},"PeriodicalIF":4.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stem Cell Reviews and Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1