Ayesha Rehman, Sameer Kumar Panda, Martina Torsiello, Martina Marigliano, Camilla Carmela Tufano, Aditya Nigam, Zahida Parveen, Gianpaolo Papaccio, Marcella La Noce
The tumor microenvironment (TME) significantly influences cancer progression, and mesenchymal stem cells (MSCs) play a crucial role in interacting with tumor cells via paracrine signaling, affecting behaviors such as proliferation, migration, and epithelial-mesenchymal transition. While conventional 2D culture models have provided valuable insights, they cannot fully replicate the complexity and diversity of the TME. Therefore, developing 3D culture systems that better mimic in vivo conditions is essential. This review delves into the heterogeneous nature of the TME, spotlighting MSC-tumor cellular signaling and advancements in 3D culture technologies. Utilizing MSCs in cancer therapy presents opportunities to enhance treatment effectiveness and overcome resistance mechanisms. Understanding MSC interactions within the TME and leveraging 3D culture models can advance novel cancer therapies and improve clinical outcomes. Additionally, this review underscores the therapeutic potential of engineered MSCs, emphasizing their role in targeted anti-cancer treatments.
{"title":"The crosstalk between primary MSCs and cancer cells in 2D and 3D cultures: potential therapeutic strategies and impact on drug resistance.","authors":"Ayesha Rehman, Sameer Kumar Panda, Martina Torsiello, Martina Marigliano, Camilla Carmela Tufano, Aditya Nigam, Zahida Parveen, Gianpaolo Papaccio, Marcella La Noce","doi":"10.1093/stcltm/szae077","DOIUrl":"10.1093/stcltm/szae077","url":null,"abstract":"<p><p>The tumor microenvironment (TME) significantly influences cancer progression, and mesenchymal stem cells (MSCs) play a crucial role in interacting with tumor cells via paracrine signaling, affecting behaviors such as proliferation, migration, and epithelial-mesenchymal transition. While conventional 2D culture models have provided valuable insights, they cannot fully replicate the complexity and diversity of the TME. Therefore, developing 3D culture systems that better mimic in vivo conditions is essential. This review delves into the heterogeneous nature of the TME, spotlighting MSC-tumor cellular signaling and advancements in 3D culture technologies. Utilizing MSCs in cancer therapy presents opportunities to enhance treatment effectiveness and overcome resistance mechanisms. Understanding MSC interactions within the TME and leveraging 3D culture models can advance novel cancer therapies and improve clinical outcomes. Additionally, this review underscores the therapeutic potential of engineered MSCs, emphasizing their role in targeted anti-cancer treatments.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1178-1185"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
{"title":"LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction.","authors":"Lujue Long, Chen Zhang, Zhengquan He, Ousheng Liu, Haoqing Yang, Zhipeng Fan","doi":"10.1093/stcltm/szae088","DOIUrl":"https://doi.org/10.1093/stcltm/szae088","url":null,"abstract":"<p><p>Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the objective of this study is to investigate whether CDSCs are a suitable candidate for achieving biological regeneration of tendon injuries.
Methods: Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis. Autophagic flux, transmission electron microscopy, and WB analysis were employed to elucidate the role of autophagy during CDSC tenogenic differentiation. Cell survival and tenogenesis of transplanted CDSCs were assessed using fluorescence detection of gross and frozen section images. Heterotopic ossification and quality of tendon healing were evaluated by immunofluorescence, hematoxylin-eosin (H&E), and Safrinin O/Fast Green stains.
Results: We found autophagy is activated in CDSCs when treated with cyclic tensile stress, which facilitates the preservation of their chondrogenic potential while impeding tenogenic differentiation. Inhibiting autophagy with chloroquine promoted tenogenic differentiation of CDSCs in response to cyclic tensile stress through activation of the Fgf2/Fgfr2 signaling pathway. This mechanism was further validated by 2 mouse transplantation models, revealed that autophagy inhibition could enhance the tendon regeneration efficacy of transplanted CDSCs at the patellar tendon resection site.
Conclusion: Our findings provide insights into CDSC transplantation for achieving biological regeneration of tendon injuries, and demonstrate how modulation of autophagy in CDSCs can promote tenogenic differentiation in response to tensile stress both in vivo and in vitro.
{"title":"Autophagy modulates tenogenic differentiation of cartilage-derived stem cells in response to mechanical tension via FGF signaling.","authors":"Rui Zuo, Haoke Li, Chenhui Cai, Wen Xia, Jiabin Liu, Jie Li, Yuan Xu, Yi Zhang, Changqing Li, Yuzhang Wu, Chao Zhang","doi":"10.1093/stcltm/szae085","DOIUrl":"https://doi.org/10.1093/stcltm/szae085","url":null,"abstract":"<p><strong>Background: </strong>In our previous study, we demonstrated that cartilage-derived stem cells (CDSCs) possess multi-differentiation potential, enabling direct bone-to-tendon structure regeneration after transplantation in a rat model. Therefore, the objective of this study is to investigate whether CDSCs are a suitable candidate for achieving biological regeneration of tendon injuries.</p><p><strong>Methods: </strong>Tenogenic differentiation was evaluated through cell morphology observation, PCR, and Western blot (WB) analysis. Autophagic flux, transmission electron microscopy, and WB analysis were employed to elucidate the role of autophagy during CDSC tenogenic differentiation. Cell survival and tenogenesis of transplanted CDSCs were assessed using fluorescence detection of gross and frozen section images. Heterotopic ossification and quality of tendon healing were evaluated by immunofluorescence, hematoxylin-eosin (H&E), and Safrinin O/Fast Green stains.</p><p><strong>Results: </strong>We found autophagy is activated in CDSCs when treated with cyclic tensile stress, which facilitates the preservation of their chondrogenic potential while impeding tenogenic differentiation. Inhibiting autophagy with chloroquine promoted tenogenic differentiation of CDSCs in response to cyclic tensile stress through activation of the Fgf2/Fgfr2 signaling pathway. This mechanism was further validated by 2 mouse transplantation models, revealed that autophagy inhibition could enhance the tendon regeneration efficacy of transplanted CDSCs at the patellar tendon resection site.</p><p><strong>Conclusion: </strong>Our findings provide insights into CDSC transplantation for achieving biological regeneration of tendon injuries, and demonstrate how modulation of autophagy in CDSCs can promote tenogenic differentiation in response to tensile stress both in vivo and in vitro.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Schurer, Shira G Glushakow-Smith, Kira Gritsman
Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.
{"title":"Targeting chromatin modifying complexes in acute myeloid leukemia.","authors":"Alexandra Schurer, Shira G Glushakow-Smith, Kira Gritsman","doi":"10.1093/stcltm/szae089","DOIUrl":"10.1093/stcltm/szae089","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a devastating hematologic malignancy with high rates of relapse, which can, in part, be attributed to the dysregulation of chromatin modifications. These epigenetic modifications can affect the capacity of hematopoietic cells to self-renew or differentiate, which can lead to transformation. Aberrant histone modifications contribute to the derepression of self-renewal genes such as HOXA/B and MEIS1 in committed hematopoietic progenitors, which is considered a key mechanism of leukemogenesis in MLL-rearranged (MLL-r) and NPM1-mutated AML. As regulators of some of the key histone modifications in this disease, the menin-KMT2A and polycomb repressive (PRC1/2) complexes have been identified as promising targets for the treatment of AML. This review explores recent discoveries of how leukemic cells hijack these complexes and their interactions with other chromatin regulators to promote disease progression. We also discuss inhibitors targeting these complexes that have demonstrated therapeutic efficacy in preclinical and clinical studies and propose novel therapeutic combinations targeting the KMT2A and PRC1/2 broader interacting networks to overcome issues of resistance to existing monotherapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Cheng, Qiuyan Guo, Yulei Cheng, Dejun Wang, Liyuan Sun, Tian Liang, Jing Wang, Han Wu, Zhibin Peng, Guangmei Zhang
Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy. However, the effect and mechanism of action of endostatin-expressing endometrial MSCs (EMSCs) in endometriosis are unclear. Here, EMSCs were genetically modified to overexpress endostatin (EMSCs-Endo). A reduction in the angiogenic capacity of HUVECs was observed in vitro after treatment with EMSCs-Endo. EMSCs-Endo significantly suppressed endometriotic lesion growth in vivo. The limited efficacy was associated with suppressed angiogenesis. The miRNA-21-5p level and the levels of p-PI3K, p-mTOR, and p-Akt in HUVECs and mouse endometriotic lesions significantly decreased after treatment with EMSCs-Endo, whereas TIMP3 expression significantly increased. In summary, targeted gene therapy with EMSCs-Endo is feasible, and its efficacy in regulating endometriosis can be attributed to the inhibition of angiogenesis, suggesting that EMSCs could be used as promising vehicles for targeted gene therapy.
{"title":"Endostatin-expressing endometrial mesenchymal stem cells inhibit angiogenesis in endometriosis through the miRNA-21-5p/TIMP3/PI3K/Akt/mTOR pathway.","authors":"Yan Cheng, Qiuyan Guo, Yulei Cheng, Dejun Wang, Liyuan Sun, Tian Liang, Jing Wang, Han Wu, Zhibin Peng, Guangmei Zhang","doi":"10.1093/stcltm/szae079","DOIUrl":"https://doi.org/10.1093/stcltm/szae079","url":null,"abstract":"<p><p>Endometriosis is a chronic inflammatory and neoangiogenic disease. Endostatin is one of the most effective inhibitors of angiogenesis. Mesenchymal stem cells (MSCs) have been investigated as compelling options for cell therapy. However, the effect and mechanism of action of endostatin-expressing endometrial MSCs (EMSCs) in endometriosis are unclear. Here, EMSCs were genetically modified to overexpress endostatin (EMSCs-Endo). A reduction in the angiogenic capacity of HUVECs was observed in vitro after treatment with EMSCs-Endo. EMSCs-Endo significantly suppressed endometriotic lesion growth in vivo. The limited efficacy was associated with suppressed angiogenesis. The miRNA-21-5p level and the levels of p-PI3K, p-mTOR, and p-Akt in HUVECs and mouse endometriotic lesions significantly decreased after treatment with EMSCs-Endo, whereas TIMP3 expression significantly increased. In summary, targeted gene therapy with EMSCs-Endo is feasible, and its efficacy in regulating endometriosis can be attributed to the inhibition of angiogenesis, suggesting that EMSCs could be used as promising vehicles for targeted gene therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingshu Wang, Liming Wang, Falian He, Jia Song, Jingting Qiao, Jun Qin, Li Chen, Xinguo Hou
Given the high heterogeneity of type 2 diabetes mellitus (T2DM), it is imperative to develop personalized stem cell infusion regimen for targeted metabolic phenotype in order to ensure optimal therapeutic efficacy. In this study, we conducted a comparative analysis of 4 infusion regimens involving single and repeated infusions of human umbilical cord Wharton's jelly-derived MSCs (hucMSCs), single infusions of umbilical cord blood mononuclear cells (UCB), and sequential infusions of hucMSCs and UCB in T2DM rats. Results showed all 4 infusion regimens exhibited comparable efficacy in lowering fasting blood glucose levels and suppressing glucagon secretion. Single and double infusions of hucMSCs exhibited a tendency to migrate to the liver, thereby better at ameliorating hepatic glucose metabolism by enhancing glycogen synthesis and storage, promoting glycolysis, inhibiting gluconeogenesis, and improving insulin signal transduction. The sequential infusion of hucMSCs and UCB demonstrated specific cell tropism toward the pancreas, leading to prolonged glucose-lowering effects following a glucose tolerance test, restoration of early-phase insulin secretion, stimulation of islet beta cell proliferation and improvement in the beta/alpha ratio. Multiple injections, regardless of cell type, reduced the expression of systemic chronic inflammatory markers such as IL-1β, IL-6, IL-17, IL-22, and IFN-γ. Finally, a single dose of UCB exhibited a greater tendency to target visceral fat and enhanced effectiveness in regulating levels of total cholesterol and triglycerides. In conclusion, our study provided personalized stem cell regimens for diverse T2DM metabolic phenotypes, thereby offering improved treatment alternatives for future clinical trials and applications.
{"title":"Tailoring cell therapies for diabetic metabolic phenotypes: a comparative study on the efficacy of various umbilical cord-derived cell regimens.","authors":"Lingshu Wang, Liming Wang, Falian He, Jia Song, Jingting Qiao, Jun Qin, Li Chen, Xinguo Hou","doi":"10.1093/stcltm/szae083","DOIUrl":"10.1093/stcltm/szae083","url":null,"abstract":"<p><p>Given the high heterogeneity of type 2 diabetes mellitus (T2DM), it is imperative to develop personalized stem cell infusion regimen for targeted metabolic phenotype in order to ensure optimal therapeutic efficacy. In this study, we conducted a comparative analysis of 4 infusion regimens involving single and repeated infusions of human umbilical cord Wharton's jelly-derived MSCs (hucMSCs), single infusions of umbilical cord blood mononuclear cells (UCB), and sequential infusions of hucMSCs and UCB in T2DM rats. Results showed all 4 infusion regimens exhibited comparable efficacy in lowering fasting blood glucose levels and suppressing glucagon secretion. Single and double infusions of hucMSCs exhibited a tendency to migrate to the liver, thereby better at ameliorating hepatic glucose metabolism by enhancing glycogen synthesis and storage, promoting glycolysis, inhibiting gluconeogenesis, and improving insulin signal transduction. The sequential infusion of hucMSCs and UCB demonstrated specific cell tropism toward the pancreas, leading to prolonged glucose-lowering effects following a glucose tolerance test, restoration of early-phase insulin secretion, stimulation of islet beta cell proliferation and improvement in the beta/alpha ratio. Multiple injections, regardless of cell type, reduced the expression of systemic chronic inflammatory markers such as IL-1β, IL-6, IL-17, IL-22, and IFN-γ. Finally, a single dose of UCB exhibited a greater tendency to target visceral fat and enhanced effectiveness in regulating levels of total cholesterol and triglycerides. In conclusion, our study provided personalized stem cell regimens for diverse T2DM metabolic phenotypes, thereby offering improved treatment alternatives for future clinical trials and applications.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.
{"title":"Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein.","authors":"Zixuan Sun, Tangrong Wang, Xiaomei Hou, Wenhuan Bai, Jiali Li, Yu Li, Jiaxin Zhang, Yuzhou Zheng, Zhijing Wu, Peipei Wu, Lirong Yan, Hui Qian","doi":"10.1093/stcltm/szae069","DOIUrl":"10.1093/stcltm/szae069","url":null,"abstract":"<p><p>Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1129-1143"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypoxic-ischemic encephalopathy (HIE), associated with high mortality and neurological sequelae, lacks established treatment except therapeutic hypothermia. Clinical-grade multilineage-differentiating stress-enduring (Muse) cells (CL2020) demonstrated safety and efficacy in nonclinical HIE rat models, thereby leading to an investigator-initiated clinical trial to evaluate CL2020 safety and tolerability in neonatal HIE as a single-center open-label dose-escalation study with 9 neonates with moderate-to-severe HIE who received therapeutic hypothermia. Each patient received a single intravenous injection of CL2020 cells between 5 and 14 days of age. The low-dose (3 patients) and high-dose (6 patients) groups received 1.5 × 106 and 1.5 × 107 cells/dose, respectively. The occurrence of any adverse event within 12 weeks following CL2020 administration was the primary endpoint of this trial. No significant changes in physiological signs including heart rate, blood pressure, and oxygen saturation were observed during or after administration. The only adverse event that may be related to cell administration was a mild γ-glutamyltransferase level elevation in one neonate, which spontaneously resolved without any treatment. All patients enrolled in the trial survived, and normal developmental quotients (≥ 85) in all 3 domains of the Kyoto Scale of Psychological Development 2001 were observed in 67% of the patients in this trial. CL2020 administration was demonstrated to be safe and tolerable for neonates with HIE. Considering the small number of patients, a randomized controlled confirmatory study is warranted to verify these preliminary findings and evaluate the efficacy of this therapy.
{"title":"Safety and tolerability of a Muse cell-based product in neonatal hypoxic-ischemic encephalopathy with therapeutic hypothermia (SHIELD trial).","authors":"Yoshiaki Sato, Shinobu Shimizu, Kazuto Ueda, Toshihiko Suzuki, Sakiko Suzuki, Ryosuke Miura, Masahiko Ando, Kennosuke Tsuda, Osuke Iwata, Yukako Muramatsu, Hiroyuki Kidokoro, Akihiro Hirakawa, Masahiro Hayakawa","doi":"10.1093/stcltm/szae071","DOIUrl":"10.1093/stcltm/szae071","url":null,"abstract":"<p><p>Hypoxic-ischemic encephalopathy (HIE), associated with high mortality and neurological sequelae, lacks established treatment except therapeutic hypothermia. Clinical-grade multilineage-differentiating stress-enduring (Muse) cells (CL2020) demonstrated safety and efficacy in nonclinical HIE rat models, thereby leading to an investigator-initiated clinical trial to evaluate CL2020 safety and tolerability in neonatal HIE as a single-center open-label dose-escalation study with 9 neonates with moderate-to-severe HIE who received therapeutic hypothermia. Each patient received a single intravenous injection of CL2020 cells between 5 and 14 days of age. The low-dose (3 patients) and high-dose (6 patients) groups received 1.5 × 106 and 1.5 × 107 cells/dose, respectively. The occurrence of any adverse event within 12 weeks following CL2020 administration was the primary endpoint of this trial. No significant changes in physiological signs including heart rate, blood pressure, and oxygen saturation were observed during or after administration. The only adverse event that may be related to cell administration was a mild γ-glutamyltransferase level elevation in one neonate, which spontaneously resolved without any treatment. All patients enrolled in the trial survived, and normal developmental quotients (≥ 85) in all 3 domains of the Kyoto Scale of Psychological Development 2001 were observed in 67% of the patients in this trial. CL2020 administration was demonstrated to be safe and tolerable for neonates with HIE. Considering the small number of patients, a randomized controlled confirmatory study is warranted to verify these preliminary findings and evaluate the efficacy of this therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1053-1066"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.
{"title":"Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis.","authors":"Kisho Miyasako, Ayumu Nakashima, Naoki Ishiuchi, Yoshiki Tanaka, Keisuke Morimoto, Kensuke Sasaki, Shogo Nagamatsu, Go Matsuda, Takao Masaki","doi":"10.1093/stcltm/szae073","DOIUrl":"10.1093/stcltm/szae073","url":null,"abstract":"<p><p>Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1067-1085"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keitaro Yamagami, Bumpei Samata, Daisuke Doi, Ryosuke Tsuchimochi, Tetsuhiro Kikuchi, Naoya Amimoto, Megumi Ikeda, Koji Yoshimoto, Jun Takahashi
Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.
{"title":"Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons.","authors":"Keitaro Yamagami, Bumpei Samata, Daisuke Doi, Ryosuke Tsuchimochi, Tetsuhiro Kikuchi, Naoya Amimoto, Megumi Ikeda, Koji Yoshimoto, Jun Takahashi","doi":"10.1093/stcltm/szae066","DOIUrl":"10.1093/stcltm/szae066","url":null,"abstract":"<p><p>Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1113-1128"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}