首页 > 最新文献

Stem Cells Translational Medicine最新文献

英文 中文
Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles. 中风患者干细胞的鼻脑传递:细胞外囊泡的作用。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-11-12 DOI: 10.1093/stcltm/szae072
Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman

Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.

干细胞移植是一种很有前景的疗法,可在中风后数天、数周或数月内进行。我们认识到,在中风的细胞疗法中,有两个主要的缓解因素仍未解决,特别是:(1)定义明确的供体干细胞和(2)作用机制。为此,我们推进了ProtheraCytes的使用,这是一种来自人类外周血和脐带血的非粘附CD34+细胞群,已按照良好生产规范进行处理,并在急性心肌梗死后的2期临床试验中完成了测试(NCT02669810)。我们还揭示了一种新的机制,即 ProtheraCytes 能分泌与血管生成和脉管生成相关的生长因子和细胞外囊泡 (EV)。我们最近的数据显示,在实验诱导成年大鼠中风3天后鼻内移植ProtheraCytes,可减少中风诱导的行为障碍和中风后28天的组织学损伤。此外,我们还在移植了 ProtheraCytes 的中风动物缺血脑中检测到了人 CD63+ EVs 的上调,这与 DCX 标记的神经发生和 VEGFR1 相关的血管生成和脉管生成水平的增加以及 Iba1 标记的炎症的减少相关。总之,这些研究结果克服了从实验室到临床转化的关键障碍,即鉴定出特征良好的临床级 ProtheraCytes,并阐明了 CD63+ EV 介导的潜在再生作用机制。我们预计,更多的转化研究将指导中风患者鼻内ProtheraCytes异体移植临床试验的开发,CD63将成为关键的生物标志物。
{"title":"Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles.","authors":"Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman","doi":"10.1093/stcltm/szae072","DOIUrl":"10.1093/stcltm/szae072","url":null,"abstract":"<p><p>Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1043-1052"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eIF6 modulates skin wound healing by upregulating keratin 6B. eIF6 通过上调角蛋白 6B 调节皮肤伤口愈合。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-11-12 DOI: 10.1093/stcltm/szae064
Xiaoyan Wang, Guangchao Xu, Fangyingnan Zhang, Yating Wei, Jiawen Deng, Lan Mu, Jinqing He, Dehua He, Meifang Yin, Ilaria Dal Pra, Xiaofang Liu, Weichao Cai, Linjing Yang, Chunmao Han, Guangtao Huang, Jun Wu

Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.

真核生物翻译起始因子 6(eIF6)在 60S 核糖体生物发生和蛋白质翻译以及增生性疤痕形成过程中起着至关重要的作用,但其在上皮化过程中的潜在作用仍鲜为人知。在这里,我们发现 eIF6 与伤口愈合过程呈负相关。基因敲除 eIF6(eIF6+/-)的小鼠表现出更快的再上皮化,这表现在新形成的表皮舌头更长。此外,eIF6角质形成细胞条件性敲除(eIF6f/+;Krt5-Cre+)小鼠通过靶向基底角质形成细胞消融加速了伤口愈合过程。RNA-seq、Western 免疫印迹和免疫荧光染色证明,在 eIF6f/+; Krt5-Cre+ 小鼠皮肤中,重要的伤口激活蛋白角蛋白 6B 被显著上调。此外,在稳定敲除 eIF6 的 HaCaT 细胞中也观察到 KRT6B 水平升高和增殖能力加快。综上所述,下调 eIF6 可通过上调 KRT6B 的表达和促进角质形成细胞的增殖来加速上皮化。我们的研究结果首次表明,eIF6 可能是调控上皮再形成的一个新靶点。
{"title":"eIF6 modulates skin wound healing by upregulating keratin 6B.","authors":"Xiaoyan Wang, Guangchao Xu, Fangyingnan Zhang, Yating Wei, Jiawen Deng, Lan Mu, Jinqing He, Dehua He, Meifang Yin, Ilaria Dal Pra, Xiaofang Liu, Weichao Cai, Linjing Yang, Chunmao Han, Guangtao Huang, Jun Wu","doi":"10.1093/stcltm/szae064","DOIUrl":"10.1093/stcltm/szae064","url":null,"abstract":"<p><p>Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1101-1112"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in modeling and treating diabetes using stem cell-derived islets. 利用干细胞胰岛建模和治疗糖尿病的最新进展。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae059
Marlie M Maestas, Maggie H Bui, Jeffrey R Millman

Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.

干细胞衍生胰岛(SC-islets)为疾病建模和糖尿病治疗提供了无限的细胞来源。干细胞衍生胰岛可通过基因改造、使用化合物处理或从患者衍生干细胞分化而来,从而建立糖尿病模型。通过这些模型,可以深入了解疾病的发病机制和弱点,从而有针对性地提供治疗。目前还在研究将SC-胰岛细胞本身作为糖尿病的细胞疗法。然而,移植过程并不完美;使用免疫抑制剂产生的副作用降低了SC-小鼠的治疗潜力。替代的方法包括封装、使用免疫调节分子以及对SC-小岛进行基因改造。本综述介绍了利用SC-小岛了解不同糖尿病病理和作为细胞疗法的最新进展。
{"title":"Recent progress in modeling and treating diabetes using stem cell-derived islets.","authors":"Marlie M Maestas, Maggie H Bui, Jeffrey R Millman","doi":"10.1093/stcltm/szae059","DOIUrl":"10.1093/stcltm/szae059","url":null,"abstract":"<p><p>Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"949-958"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders. 改善新生儿疾病间充质基质细胞疗法的临床试验和转化前景。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae060
Yun Sil Chang, Misun Yang, So Yoon Ahn, Se In Sung, Won Soon Park

Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.

尽管新生儿重症监护医学取得了最新进展,但新生儿疾病(支气管肺发育不良[BPD]、脑室内出血[IVH]和缺氧缺血性脑病[HIE])仍是导致幸存者死亡和发病的主要原因,而有效的治疗方法却寥寥无几。最近的临床前研究表明,细胞疗法,尤其是间充质基质细胞(MSCs)疗法,对BPD、IVH和HIE具有多重宿主损伤反应性旁分泌保护作用。这些研究结果表明,间充质干细胞疗法可能会成为一种新的治疗方法,用于治疗目前具有破坏性的、病因复杂的新生儿疾病。尽管早期临床试验表明间充质干细胞具有安全性和可行性,但其临床治疗效果尚未得到证实。因此,根据目前可用的临床前研究和临床试验数据,我们重点讨论了未来成功开展临床试验和最终临床转化需要解决的关键问题,如选择合适的患者和最佳细胞类型、途径、剂量以及间充质干细胞治疗新生儿疾病(如 BPD、HIE 和 IVH)的时机。
{"title":"Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders.","authors":"Yun Sil Chang, Misun Yang, So Yoon Ahn, Se In Sung, Won Soon Park","doi":"10.1093/stcltm/szae060","DOIUrl":"10.1093/stcltm/szae060","url":null,"abstract":"<p><p>Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"941-948"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication. 就正畸适应症而言,压缩力对不同间充质干细胞类型的影响。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae057
Chloé Radermacher, Rogerio B Craveiro, Wilhelm Jahnen-Dechent, Justus P Beier, Astrid Bülow, Michael Wolf, Sabine Neuss

The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.

干细胞,例如上颌骨上牙周韧带干细胞(u-PDLSC)和下颌骨上牙周韧带干细胞(l-PDLSC)、脂肪间充质干细胞(AD-MSC)和骨髓间充质干细胞(BM-MSC),在牙周重塑和正畸治疗方面的潜力具有重要意义。在这项工作中,我们重点研究了不同类型干细胞对机械力的综合适应性,目的是更好地理解细胞行为,并完善研究牙周重塑的新机制方法。我们对干细胞进行了全面分析,观察到不同干细胞类型在受压情况下的不同形态和增殖变化。细胞外信号调节激酶(ERK)和蛋白激酶B(又称AKT)的细胞信号传导及其各自的磷酸化对挤压表现出不同的反应。此外,在机械压力下,所有细胞类型的血管内皮生长因子和肝细胞生长因子分泌都会减少,但也有细胞特异性差异。骨蛋白激酶的分泌在挤压下减少,尤其是在u-PDLSC中。至少,在压力下观察到不同类型细胞的NF-kB配体可溶性受体分泌模式各不相同,为了解骨代谢提供了重要信息。这些发现加深了人们对间充质干细胞在机械刺激下行为的理解,突出了它们在正畸和再生医学背景下骨重塑、伤口愈合和组织再生中的作用。我们的研究结果强调了u-PDLSC、l-PDLSC和AD-MSC在牙周再生中的潜力,其中AD-MSC在压缩条件下表现出显著的恢复力,这表明它在正畸研究中的作用值得进一步研究。虽然这些发现令人鼓舞,但要充分理解基于干细胞的牙周疗法的机制,进一步的研究是必不可少的。
{"title":"Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication.","authors":"Chloé Radermacher, Rogerio B Craveiro, Wilhelm Jahnen-Dechent, Justus P Beier, Astrid Bülow, Michael Wolf, Sabine Neuss","doi":"10.1093/stcltm/szae057","DOIUrl":"10.1093/stcltm/szae057","url":null,"abstract":"<p><p>The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1028-1039"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study. 利用液滴数字 PCR 检测细胞治疗产品中残留的多能干细胞:一项国际多站点评估研究。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae058
Satoshi Yasuda, Kiyoko Bando, Marianne P Henry, Silvana Libertini, Takeshi Watanabe, Hiroto Bando, Connie Chen, Koki Fujimori, Kosuke Harada, Takuya Kuroda, Myriam Lemmens, Dragos Marginean, David Moss, Lucilia Pereira Mouriès, Nicole S Nicholas, Matthew J K Smart, Orie Terai, Yoji Sato

The presence of residual undifferentiated pluripotent stem cells (PSCs) in PSC-derived cell therapy products (CTPs) is a major safety issue for their clinical application, due to the potential risk of PSC-derived tumor formation. An international multidisciplinary multisite study to evaluate a droplet digital PCR (ddPCR) approach to detect residual undifferentiated PSCs in PSC-derived CTPs was conducted as part of the Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee. To evaluate the use of ddPCR in quantifying residual iPSCs in a cell sample, different quantities of induced pluripotent stem cells (iPSCs) were spiked into a background of iPSC-derived cardiomyocytes (CMs) to mimic different concentrations of residual iPSCs. A one step reverse transcription ddPCR (RT-ddPCR) was performed to measure mRNA levels of several iPSC-specific markers and to evaluate the assay performance (precision, sensitivity, and specificity) between and within laboratories. The RT-ddPCR assay variability was initially assessed by measuring the same RNA samples across all participating facilities. Subsequently, each facility independently conducted the entire process, incorporating the spiking step, to discern the parameters influencing potential variability. Our results show that a RT-ddPCR assay targeting ESRG, LINC00678, and LIN28A genes offers a highly sensitive and robust detection of impurities of iPSC-derived CMs and that the main contribution to variability between laboratories is the iPSC-spiking procedure, and not the RT-ddPCR. The RT-ddPCR assay would be generally applicable for tumorigenicity evaluation of PSC-derived CTPs with appropriate marker genes suitable for each CTP.

由于多能干细胞衍生的肿瘤形成的潜在风险,多能干细胞衍生的细胞治疗产品(CTPs)中残留的未分化多能干细胞(PSCs)是其临床应用的一个主要安全问题。作为健康与环境科学研究所细胞治疗-检测、循环与安全技术委员会(Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee)的一部分,开展了一项国际多学科多点研究,以评估用液滴数字 PCR(ddPCR)方法检测 PSC 衍生 CTP 中残留的未分化 PSC。为了评估 ddPCR 在量化细胞样本中残留 iPSCs 中的应用,在 iPSC 衍生的心肌细胞(CMs)背景中添加了不同数量的诱导多能干细胞(iPSCs),以模拟不同浓度的残留 iPSCs。采用一步反转录 ddPCR(RT-ddPCR)方法测量了几种 iPSC 特异性标记物的 mRNA 水平,并评估了实验室之间和实验室内部的检测性能(精确度、灵敏度和特异性)。RT-ddPCR 检测的可变性最初是通过测量所有参与机构的相同 RNA 样本来评估的。随后,每家机构都独立完成了包括加标步骤在内的整个过程,以确定影响潜在变异性的参数。我们的研究结果表明,针对 ESRG、LINC00678 和 LIN28A 基因的 RT-ddPCR 检测能高度灵敏、稳健地检测 iPSC 衍生 CM 的杂质,而造成实验室间变异的主要原因是 iPSC 加标步骤,而不是 RT-ddPCR。RT-ddPCR测定一般适用于PSC衍生的CTP的肿瘤致性评估,并配有适合每种CTP的适当标记基因。
{"title":"Detection of residual pluripotent stem cells in cell therapy products utilizing droplet digital PCR: an international multisite evaluation study.","authors":"Satoshi Yasuda, Kiyoko Bando, Marianne P Henry, Silvana Libertini, Takeshi Watanabe, Hiroto Bando, Connie Chen, Koki Fujimori, Kosuke Harada, Takuya Kuroda, Myriam Lemmens, Dragos Marginean, David Moss, Lucilia Pereira Mouriès, Nicole S Nicholas, Matthew J K Smart, Orie Terai, Yoji Sato","doi":"10.1093/stcltm/szae058","DOIUrl":"10.1093/stcltm/szae058","url":null,"abstract":"<p><p>The presence of residual undifferentiated pluripotent stem cells (PSCs) in PSC-derived cell therapy products (CTPs) is a major safety issue for their clinical application, due to the potential risk of PSC-derived tumor formation. An international multidisciplinary multisite study to evaluate a droplet digital PCR (ddPCR) approach to detect residual undifferentiated PSCs in PSC-derived CTPs was conducted as part of the Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee. To evaluate the use of ddPCR in quantifying residual iPSCs in a cell sample, different quantities of induced pluripotent stem cells (iPSCs) were spiked into a background of iPSC-derived cardiomyocytes (CMs) to mimic different concentrations of residual iPSCs. A one step reverse transcription ddPCR (RT-ddPCR) was performed to measure mRNA levels of several iPSC-specific markers and to evaluate the assay performance (precision, sensitivity, and specificity) between and within laboratories. The RT-ddPCR assay variability was initially assessed by measuring the same RNA samples across all participating facilities. Subsequently, each facility independently conducted the entire process, incorporating the spiking step, to discern the parameters influencing potential variability. Our results show that a RT-ddPCR assay targeting ESRG, LINC00678, and LIN28A genes offers a highly sensitive and robust detection of impurities of iPSC-derived CMs and that the main contribution to variability between laboratories is the iPSC-spiking procedure, and not the RT-ddPCR. The RT-ddPCR assay would be generally applicable for tumorigenicity evaluation of PSC-derived CTPs with appropriate marker genes suitable for each CTP.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1001-1014"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465167/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel long noncoding RNA AK029592 contributes to thermogenic adipocyte differentiation. 一种新型长非编码 RNA AK029592 有助于发热性脂肪细胞分化
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae056
Pengyu Hong, Dianri Wang, Yue Wu, Qi Zhang, Pan Liu, Jian Pan, Mei Yu, Weidong Tian

Exploration of factors originating from brown adipose tissue that govern the thermogenic adipocyte differentiation is imperative for comprehending the regulatory framework underlying brown fat biogenesis and for devising therapeutic approaches for metabolic disorders associated with obesity. Prior evidence has illuminated the pivotal role of long noncoding RNAs (lncRNAs) in orchestrating thermogenesis within adipose tissue. Here, we aimed to explore and identify the critical lncRNA that could promote thermogenic adipocyte differentiation and to provide a novel strategy to treat obesity-related metabolic diseases in the future. In this study, through amalgamation with our previous lncRNA microarray data from small extracellular vesicles derived from BAT (sEV-BAT), we have identified sEV-BAT-enriched lncRNA AK029592 as a critical constituent of the thermogenic program, which actively fostered beige adipocyte differentiation and enhanced the thermogenic capacities of adipose tissue. Moreover, lncRNA AK029592 could sponge miR-199a-5p in adipocytes to stimulate thermogenic gene expression. Consequently, we concluded lncRNA AK029592 as a crucial lncRNA component of the thermogenic program that regulated beige adipocyte differentiation and white adipose tissue browning, thereby providing a novel therapeutic target and strategy in combating obesity and related metabolic diseases.

要理解棕色脂肪生物生成的基本调控框架,并针对与肥胖有关的代谢紊乱制定治疗方法,就必须探索源自棕色脂肪组织、控制产热脂肪细胞分化的因子。已有证据表明,长非编码 RNA(lncRNA)在协调脂肪组织内的产热过程中发挥着关键作用。在此,我们旨在探索和鉴定可促进生热脂肪细胞分化的关键lncRNA,并为未来治疗肥胖相关代谢性疾病提供一种新策略。在这项研究中,通过与我们之前从BAT衍生的小细胞外囊泡(sEV-BAT)中获得的lncRNA微阵列数据相结合,我们发现sEV-BAT富集的lncRNA AK029592是生热程序的关键成分,它能积极促进米色脂肪细胞分化并增强脂肪组织的生热能力。此外,lncRNA AK029592还能在脂肪细胞中海绵化miR-199a-5p,刺激生热基因的表达。因此,我们认为lncRNA AK029592是生热程序中调控米色脂肪细胞分化和白色脂肪组织褐变的关键lncRNA成分,从而为防治肥胖及相关代谢性疾病提供了新的治疗靶点和策略。
{"title":"A novel long noncoding RNA AK029592 contributes to thermogenic adipocyte differentiation.","authors":"Pengyu Hong, Dianri Wang, Yue Wu, Qi Zhang, Pan Liu, Jian Pan, Mei Yu, Weidong Tian","doi":"10.1093/stcltm/szae056","DOIUrl":"10.1093/stcltm/szae056","url":null,"abstract":"<p><p>Exploration of factors originating from brown adipose tissue that govern the thermogenic adipocyte differentiation is imperative for comprehending the regulatory framework underlying brown fat biogenesis and for devising therapeutic approaches for metabolic disorders associated with obesity. Prior evidence has illuminated the pivotal role of long noncoding RNAs (lncRNAs) in orchestrating thermogenesis within adipose tissue. Here, we aimed to explore and identify the critical lncRNA that could promote thermogenic adipocyte differentiation and to provide a novel strategy to treat obesity-related metabolic diseases in the future. In this study, through amalgamation with our previous lncRNA microarray data from small extracellular vesicles derived from BAT (sEV-BAT), we have identified sEV-BAT-enriched lncRNA AK029592 as a critical constituent of the thermogenic program, which actively fostered beige adipocyte differentiation and enhanced the thermogenic capacities of adipose tissue. Moreover, lncRNA AK029592 could sponge miR-199a-5p in adipocytes to stimulate thermogenic gene expression. Consequently, we concluded lncRNA AK029592 as a crucial lncRNA component of the thermogenic program that regulated beige adipocyte differentiation and white adipose tissue browning, thereby providing a novel therapeutic target and strategy in combating obesity and related metabolic diseases.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"985-1000"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cryopreserved apoptotic mesenchymal stromal cells retain functional efficacy in suppressing an allergic inflammation in a murine model. 冷冻保存的凋亡间充质基质细胞在抑制小鼠模型中的过敏性炎症方面保留了功能功效。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae061
Richard T Amison, Tik S Cheung, Chiara Giacomini, Yanira Riffo-Vasquez, Antonio Galleu, Roberto Savoldelli, Ryan Hicks, Anna Kozlowska, Francesco Dazzi

Mesenchymal stromal cell (MSC) apoptosis is required for in vivo immunosuppression. However, the induction of apoptosis is heavily dependent on the recipient's immune system. In graft-versus-host disease (GvHD), patients who fail to respond to MSCs are in fact those whose immune cells are unable to induce MSC apoptosis ex vivo. The information is critical to explain why responses in clinical trials vary even though the same sources of MSC products are infused. More importantly, it highlights the need for an alternative MSC treatment for the nonresponders. By using a mouse model of ovalbumin (OVA)-induced allergic inflammation, we demonstrated that we could generate apoptotic MSCs (ApoMSCs) in vitro and use them to successfully reduce allergic airway inflammation. In order to address the logistics of their potential future clinical application, we have shown that ApoMSCs could be cryopreserved without impairing efficacy compared to freshly generated ApoMSCs. We have also highlighted that MSCs need to undergo complete apoptosis before cryopreservation to retain their immunosuppressive activity. The cryopreserved ApoMSCs could serve as a potential future off-the-shelf cellular product, in particular for patients who suffer from inflammatory conditions yet do not harbor the immune capacity to induce MSC apoptosis in vivo. Our data provide proof-of-concept that under laboratory conditions, ApoMSCs can be successfully frozen and thawed without affecting their anti-inflammatory activity, as tested in a murine model of allergic inflammation.

间充质基质细胞(MSC)凋亡是体内免疫抑制的必要条件。然而,诱导细胞凋亡在很大程度上取决于受体的免疫系统。在移植物抗宿主疾病(GvHD)中,对间叶干细胞无效的患者实际上是那些免疫细胞无法在体内诱导间叶干细胞凋亡的患者。这些信息对于解释为什么即使输注了相同来源的间充质干细胞产品,临床试验中的反应却各不相同至关重要。更重要的是,它强调了为无应答者提供其他间充质干细胞治疗方法的必要性。通过使用卵清蛋白(OVA)诱导过敏性炎症的小鼠模型,我们证明了可以在体外生成凋亡间充质干细胞(ApoMSCs),并用它们成功减轻过敏性气道炎症。为了解决未来临床应用的后勤问题,我们证明了凋亡间充质干细胞与新鲜产生的凋亡间充质干细胞相比,可以低温保存而不影响疗效。我们还强调,间充质干细胞在冷冻保存前需要完全凋亡,以保持其免疫抑制活性。冷冻保存的 ApoMSCs 可作为未来潜在的现成细胞产品,尤其适用于患有炎症但体内不具备诱导间充质干细胞凋亡的免疫能力的患者。我们的数据提供了概念证明,即在实验室条件下,载脂微粒干细胞可以成功冷冻和解冻而不影响其抗炎活性。
{"title":"Cryopreserved apoptotic mesenchymal stromal cells retain functional efficacy in suppressing an allergic inflammation in a murine model.","authors":"Richard T Amison, Tik S Cheung, Chiara Giacomini, Yanira Riffo-Vasquez, Antonio Galleu, Roberto Savoldelli, Ryan Hicks, Anna Kozlowska, Francesco Dazzi","doi":"10.1093/stcltm/szae061","DOIUrl":"10.1093/stcltm/szae061","url":null,"abstract":"<p><p>Mesenchymal stromal cell (MSC) apoptosis is required for in vivo immunosuppression. However, the induction of apoptosis is heavily dependent on the recipient's immune system. In graft-versus-host disease (GvHD), patients who fail to respond to MSCs are in fact those whose immune cells are unable to induce MSC apoptosis ex vivo. The information is critical to explain why responses in clinical trials vary even though the same sources of MSC products are infused. More importantly, it highlights the need for an alternative MSC treatment for the nonresponders. By using a mouse model of ovalbumin (OVA)-induced allergic inflammation, we demonstrated that we could generate apoptotic MSCs (ApoMSCs) in vitro and use them to successfully reduce allergic airway inflammation. In order to address the logistics of their potential future clinical application, we have shown that ApoMSCs could be cryopreserved without impairing efficacy compared to freshly generated ApoMSCs. We have also highlighted that MSCs need to undergo complete apoptosis before cryopreservation to retain their immunosuppressive activity. The cryopreserved ApoMSCs could serve as a potential future off-the-shelf cellular product, in particular for patients who suffer from inflammatory conditions yet do not harbor the immune capacity to induce MSC apoptosis in vivo. Our data provide proof-of-concept that under laboratory conditions, ApoMSCs can be successfully frozen and thawed without affecting their anti-inflammatory activity, as tested in a murine model of allergic inflammation.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"979-984"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs. 更正:肺泡骨源性间充质干细胞中的 NLRP3 和 AIM2 炎症小体的表达受 LPS 和钛离子的影响,从而增加了活性 IL-1β 的释放。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae068
{"title":"Correction to: NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs.","authors":"","doi":"10.1093/stcltm/szae068","DOIUrl":"10.1093/stcltm/szae068","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1040-1042"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-based therapy in the treatment of musculoskeletal diseases. 治疗肌肉骨骼疾病的细胞疗法。
IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING Pub Date : 2024-10-10 DOI: 10.1093/stcltm/szae049
Justin Trapana, Jonathan Weinerman, Danny Lee, Anil Sedani, David Constantinescu, Thomas M Best, Francis J Hornicek, Joshua M Hare

A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.

受伤后能自发再生的组织数量有限,能再生到与成熟、健康的成人组织相媲美的状态的组织更是少之又少。间充质干细胞(MSCs)最早由弗里登斯坦(Friedenstein)等人于20世纪60-70年代描述,是一小部分具有成骨潜能和分化为软骨细胞能力的骨髓细胞。1991 年,阿诺德-卡普兰(Arnold Caplan)在确定间充质细胞是骨、软骨、肌腱、韧带、骨髓基质、脂肪细胞、真皮、肌肉和结缔组织的理论前体后,创造了 "间充质细胞 "一词。间充质干细胞来源于骨膜、脂肪和肌肉。间充质干细胞的另一个诱人特性是其免疫调节和再生特性,这是与微环境和先天性免疫系统成分相互作用的结果。总之,这些特性使得间充质干细胞具有用于各种治疗目的的潜在吸引力。间充质干细胞在运动医学方面具有潜力,有助于肌肉恢复、半月板撕裂、肌腱和韧带损伤。在关节疾病方面,间充质干细胞具有软骨生成和逆转骨关节炎影响的潜力。间充质干细胞还具有治疗颈椎、胸椎和腰椎椎间盘退行性疾病的潜力。
{"title":"Cell-based therapy in the treatment of musculoskeletal diseases.","authors":"Justin Trapana, Jonathan Weinerman, Danny Lee, Anil Sedani, David Constantinescu, Thomas M Best, Francis J Hornicek, Joshua M Hare","doi":"10.1093/stcltm/szae049","DOIUrl":"10.1093/stcltm/szae049","url":null,"abstract":"<p><p>A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term \"mesenchymal cells\" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"959-978"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stem Cells Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1