Ayesha Rehman, Sameer Kumar Panda, Martina Torsiello, Martina Marigliano, Camilla Carmela Tufano, Aditya Nigam, Zahida Parveen, Gianpaolo Papaccio, Marcella La Noce
The tumor microenvironment (TME) significantly influences cancer progression, and mesenchymal stem cells (MSCs) play a crucial role in interacting with tumor cells via paracrine signaling, affecting behaviors such as proliferation, migration, and epithelial-mesenchymal transition. While conventional 2D culture models have provided valuable insights, they cannot fully replicate the complexity and diversity of the TME. Therefore, developing 3D culture systems that better mimic in vivo conditions is essential. This review delves into the heterogeneous nature of the TME, spotlighting MSC-tumor cellular signaling and advancements in 3D culture technologies. Utilizing MSCs in cancer therapy presents opportunities to enhance treatment effectiveness and overcome resistance mechanisms. Understanding MSC interactions within the TME and leveraging 3D culture models can advance novel cancer therapies and improve clinical outcomes. Additionally, this review underscores the therapeutic potential of engineered MSCs, emphasizing their role in targeted anti-cancer treatments.
{"title":"The crosstalk between primary MSCs and cancer cells in 2D and 3D cultures: potential therapeutic strategies and impact on drug resistance.","authors":"Ayesha Rehman, Sameer Kumar Panda, Martina Torsiello, Martina Marigliano, Camilla Carmela Tufano, Aditya Nigam, Zahida Parveen, Gianpaolo Papaccio, Marcella La Noce","doi":"10.1093/stcltm/szae077","DOIUrl":"10.1093/stcltm/szae077","url":null,"abstract":"<p><p>The tumor microenvironment (TME) significantly influences cancer progression, and mesenchymal stem cells (MSCs) play a crucial role in interacting with tumor cells via paracrine signaling, affecting behaviors such as proliferation, migration, and epithelial-mesenchymal transition. While conventional 2D culture models have provided valuable insights, they cannot fully replicate the complexity and diversity of the TME. Therefore, developing 3D culture systems that better mimic in vivo conditions is essential. This review delves into the heterogeneous nature of the TME, spotlighting MSC-tumor cellular signaling and advancements in 3D culture technologies. Utilizing MSCs in cancer therapy presents opportunities to enhance treatment effectiveness and overcome resistance mechanisms. Understanding MSC interactions within the TME and leveraging 3D culture models can advance novel cancer therapies and improve clinical outcomes. Additionally, this review underscores the therapeutic potential of engineered MSCs, emphasizing their role in targeted anti-cancer treatments.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1178-1185"},"PeriodicalIF":5.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.
{"title":"Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein.","authors":"Zixuan Sun, Tangrong Wang, Xiaomei Hou, Wenhuan Bai, Jiali Li, Yu Li, Jiaxin Zhang, Yuzhou Zheng, Zhijing Wu, Peipei Wu, Lirong Yan, Hui Qian","doi":"10.1093/stcltm/szae069","DOIUrl":"10.1093/stcltm/szae069","url":null,"abstract":"<p><p>Ultraviolet (UV) radiation is the primary extrinsic factor in skin aging, contributing to skin photoaging, actinic keratosis (AK), and even squamous cell carcinoma (SCC). Currently, the beneficial role of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) in cutaneous wound healing has been widely reported, but the field of photoaging remains to be explored. Our results suggested that human umbilical cord MSC-derived sEVs (hucMSC-sEVs) intervention could effectively alleviate skin photoaging phenotypes in vivo and in vitro, including ameliorating UV-induced histopathological changes in the skin and inhibiting oxidative stress and collagen degradation in dermal fibroblasts (DFs). Mechanistically, pretreatment with hucMSC-sEVs reversed UVA-induced down-regulation of pregnancy zone protein (PZP) in DFs, and achieved photoprotection by inhibiting matrix metalloproteinase-1 (MMP-1) expression and reducing DNA damage. Clinically, a significant decrease in PZP in AK and SCC in situ samples was observed, while a rebound appeared in the invasive SCC samples. Collectively, our findings reveal the effective role of hucMSC-sEVs in regulating PZP to combat photoaging and provide new pre-clinical evidence for the potential development of hucMSC-sEVs as an effective skin photoprotective agent.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1129-1143"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555477/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hypoxic-ischemic encephalopathy (HIE), associated with high mortality and neurological sequelae, lacks established treatment except therapeutic hypothermia. Clinical-grade multilineage-differentiating stress-enduring (Muse) cells (CL2020) demonstrated safety and efficacy in nonclinical HIE rat models, thereby leading to an investigator-initiated clinical trial to evaluate CL2020 safety and tolerability in neonatal HIE as a single-center open-label dose-escalation study with 9 neonates with moderate-to-severe HIE who received therapeutic hypothermia. Each patient received a single intravenous injection of CL2020 cells between 5 and 14 days of age. The low-dose (3 patients) and high-dose (6 patients) groups received 1.5 × 106 and 1.5 × 107 cells/dose, respectively. The occurrence of any adverse event within 12 weeks following CL2020 administration was the primary endpoint of this trial. No significant changes in physiological signs including heart rate, blood pressure, and oxygen saturation were observed during or after administration. The only adverse event that may be related to cell administration was a mild γ-glutamyltransferase level elevation in one neonate, which spontaneously resolved without any treatment. All patients enrolled in the trial survived, and normal developmental quotients (≥ 85) in all 3 domains of the Kyoto Scale of Psychological Development 2001 were observed in 67% of the patients in this trial. CL2020 administration was demonstrated to be safe and tolerable for neonates with HIE. Considering the small number of patients, a randomized controlled confirmatory study is warranted to verify these preliminary findings and evaluate the efficacy of this therapy.
{"title":"Safety and tolerability of a Muse cell-based product in neonatal hypoxic-ischemic encephalopathy with therapeutic hypothermia (SHIELD trial).","authors":"Yoshiaki Sato, Shinobu Shimizu, Kazuto Ueda, Toshihiko Suzuki, Sakiko Suzuki, Ryosuke Miura, Masahiko Ando, Kennosuke Tsuda, Osuke Iwata, Yukako Muramatsu, Hiroyuki Kidokoro, Akihiro Hirakawa, Masahiro Hayakawa","doi":"10.1093/stcltm/szae071","DOIUrl":"10.1093/stcltm/szae071","url":null,"abstract":"<p><p>Hypoxic-ischemic encephalopathy (HIE), associated with high mortality and neurological sequelae, lacks established treatment except therapeutic hypothermia. Clinical-grade multilineage-differentiating stress-enduring (Muse) cells (CL2020) demonstrated safety and efficacy in nonclinical HIE rat models, thereby leading to an investigator-initiated clinical trial to evaluate CL2020 safety and tolerability in neonatal HIE as a single-center open-label dose-escalation study with 9 neonates with moderate-to-severe HIE who received therapeutic hypothermia. Each patient received a single intravenous injection of CL2020 cells between 5 and 14 days of age. The low-dose (3 patients) and high-dose (6 patients) groups received 1.5 × 106 and 1.5 × 107 cells/dose, respectively. The occurrence of any adverse event within 12 weeks following CL2020 administration was the primary endpoint of this trial. No significant changes in physiological signs including heart rate, blood pressure, and oxygen saturation were observed during or after administration. The only adverse event that may be related to cell administration was a mild γ-glutamyltransferase level elevation in one neonate, which spontaneously resolved without any treatment. All patients enrolled in the trial survived, and normal developmental quotients (≥ 85) in all 3 domains of the Kyoto Scale of Psychological Development 2001 were observed in 67% of the patients in this trial. CL2020 administration was demonstrated to be safe and tolerable for neonates with HIE. Considering the small number of patients, a randomized controlled confirmatory study is warranted to verify these preliminary findings and evaluate the efficacy of this therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1053-1066"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.
{"title":"Impact of immunosuppressive drugs on efficacy of mesenchymal stem cell therapy for suppressing renal fibrosis.","authors":"Kisho Miyasako, Ayumu Nakashima, Naoki Ishiuchi, Yoshiki Tanaka, Keisuke Morimoto, Kensuke Sasaki, Shogo Nagamatsu, Go Matsuda, Takao Masaki","doi":"10.1093/stcltm/szae073","DOIUrl":"10.1093/stcltm/szae073","url":null,"abstract":"<p><p>Preemptive regenerative medicine using mesenchymal stem cells (MSCs) may provide a novel therapeutic approach to prevent the progression from organ damage to organ failure. Although immunosuppressive drugs are often used in patients with organ disorder, their impact on MSC therapy remains unclear. We investigated the effects of immunosuppressive drugs on the therapeutic efficacy of MSCs. We created unilateral ureteral obstruction models, as a well-established model of renal fibrosis, a preliminary stage of organ failure. Three immunosuppressive drugs (methylprednisolone, cyclosporine, and cyclophosphamide) were intraperitoneally administered 3 days after surgery, and MSCs were injected via tail vein the following day. Preadministration of methylprednisolone or cyclophosphamide interfered with MSC activation by reducing expression of interferon-gamma (IFN-γ) and high-mobility group box-1 protein, thus significantly attenuating the therapeutic efficacy of MSCs. Preadministration of cyclophosphamide downregulated the expression of stromal cell-derived factor-1/C-X-C motif ligand 12, which is a potent migration factor for MSCs, resulting in reduced MSC engraftment in the renal cortex. IFN-γ-preconditioned activated MSCs were unaffected by these drugs and maintained their beneficial therapeutic effects. Cyclosporine preadministration had no effect on the therapeutic efficacy of MSCs. Our study demonstrated that the administration of certain immunosuppressive drugs interfered with MSC activation and engraftment at the site of injury, resulting in a significant attenuation of their therapeutic efficacy. These findings provide crucial information for selecting patients suitable for MSC therapy. Use of MSCs preactivated with IFN-γ or other means is preferred for patients on methylprednisolone or cyclophosphamide.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1067-1085"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keitaro Yamagami, Bumpei Samata, Daisuke Doi, Ryosuke Tsuchimochi, Tetsuhiro Kikuchi, Naoya Amimoto, Megumi Ikeda, Koji Yoshimoto, Jun Takahashi
Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.
{"title":"Progranulin enhances the engraftment of transplanted human iPS cell-derived cerebral neurons.","authors":"Keitaro Yamagami, Bumpei Samata, Daisuke Doi, Ryosuke Tsuchimochi, Tetsuhiro Kikuchi, Naoya Amimoto, Megumi Ikeda, Koji Yoshimoto, Jun Takahashi","doi":"10.1093/stcltm/szae066","DOIUrl":"10.1093/stcltm/szae066","url":null,"abstract":"<p><p>Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1113-1128"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman
Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.
{"title":"Nose-to-brain delivery of stem cells in stroke: the role of extracellular vesicles.","authors":"Cesar V Borlongan, Jea-Young Lee, Francesco D'Egidio, Matthieu de Kalbermatten, Ibon Garitaonandia, Raphael Guzman","doi":"10.1093/stcltm/szae072","DOIUrl":"10.1093/stcltm/szae072","url":null,"abstract":"<p><p>Stem cell transplantation offers a promising therapy that can be administered days, weeks, or months after a stroke. We recognize 2 major mitigating factors that remain unresolved in cell therapy for stroke, notably: (1) well-defined donor stem cells and (2) mechanism of action. To this end, we advance the use of ProtheraCytes, a population of non-adherent CD34+ cells derived from human peripheral blood and umbilical cord blood, which have been processed under good manufacturing practice, with testing completed in a phase 2 clinical trial in post-acute myocardial infarction (NCT02669810). We also reveal a novel mechanism whereby ProtheraCytes secrete growth factors and extracellular vesicles (EVs) that are associated with angiogenesis and vasculogenesis. Our recent data revealed that intranasal transplantation of ProtheraCytes at 3 days after experimentally induced stroke in adult rats reduced stroke-induced behavioral deficits and histological damage up to 28 days post-stroke. Moreover, we detected upregulation of human CD63+ EVs in the ischemic brains of stroke animals that were transplanted with ProtheraCytes, which correlated with increased levels of DCX-labeled neurogenesis and VEGFR1-associated angiogenesis and vasculogenesis, as well as reduced Iba1-marked inflammation. Altogether, these findings overcome key laboratory-to-clinic translational hurdles, namely the identification of well-characterized, clinical grade ProtheraCytes and the elucidation of a potential CD63+ EV-mediated regenerative mechanism of action. We envision that additional translational studies will guide the development of clinical trials for intranasal ProtheraCytes allografts in stroke patients, with CD63 serving as a critical biomarker.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1043-1052"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.
{"title":"eIF6 modulates skin wound healing by upregulating keratin 6B.","authors":"Xiaoyan Wang, Guangchao Xu, Fangyingnan Zhang, Yating Wei, Jiawen Deng, Lan Mu, Jinqing He, Dehua He, Meifang Yin, Ilaria Dal Pra, Xiaofang Liu, Weichao Cai, Linjing Yang, Chunmao Han, Guangtao Huang, Jun Wu","doi":"10.1093/stcltm/szae064","DOIUrl":"10.1093/stcltm/szae064","url":null,"abstract":"<p><p>Eukaryotic translation initiation factor 6 (eIF6) plays a crucial role in 60S ribosome biogenesis and protein translation, as well as in hypertrophic scar formation, but its potential role in epithelialization is still poorly understood. Herein, we found that eIF6 negatively correlated with the wound healing process. Mice with genetically knockdown eIF6 (eIF6+/-) showed faster re-epithelization as shown by the longer tongue of the newly formed epidermis. Furthermore, eIF6 ablation accelerated the wound healing process by targeting basal keratinocytes in the eIF6 keratinocyte-conditional knockout (eIF6f/+; Krt5-Cre+) mice. Mechanistically, keratin 6B, an important wound-activated protein, was significantly upregulated in eIF6f/+; Krt5-Cre+ mice skin as proved by RNA-seq, western immunoblots, and immunofluorescence staining. Moreover, an elevated level of KRT6B and accelerated proliferative capacity were also observed in stable knockdown eIF6 HaCaT cells. Taken together, eIF6 downregulation could accelerate epithelialization by upregulating KRT6B expression and promoting keratinocyte proliferation. Our results for the first time indicate that eIF6 might be a novel target to regulate re-epithelialization.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1101-1112"},"PeriodicalIF":5.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.
{"title":"Recent progress in modeling and treating diabetes using stem cell-derived islets.","authors":"Marlie M Maestas, Maggie H Bui, Jeffrey R Millman","doi":"10.1093/stcltm/szae059","DOIUrl":"10.1093/stcltm/szae059","url":null,"abstract":"<p><p>Stem cell-derived islets (SC-islets) offer the potential to be an unlimited source of cells for disease modeling and the treatment of diabetes. SC-islets can be genetically modified, treated with chemical compounds, or differentiated from patient derived stem cells to model diabetes. These models provide insights into disease pathogenesis and vulnerabilities that may be targeted to provide treatment. SC-islets themselves are also being investigated as a cell therapy for diabetes. However, the transplantation process is imperfect; side effects from immunosuppressant use have reduced SC-islet therapeutic potential. Alternative methods to this include encapsulation, use of immunomodulating molecules, and genetic modification of SC-islets. This review covers recent advances using SC-islets to understand different diabetes pathologies and as a cell therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"949-958"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465181/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun Sil Chang, Misun Yang, So Yoon Ahn, Se In Sung, Won Soon Park
Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.
{"title":"Improving the future of clinical trials and translation of mesenchymal stromal cell therapies for neonatal disorders.","authors":"Yun Sil Chang, Misun Yang, So Yoon Ahn, Se In Sung, Won Soon Park","doi":"10.1093/stcltm/szae060","DOIUrl":"10.1093/stcltm/szae060","url":null,"abstract":"<p><p>Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"941-948"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chloé Radermacher, Rogerio B Craveiro, Wilhelm Jahnen-Dechent, Justus P Beier, Astrid Bülow, Michael Wolf, Sabine Neuss
The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.
{"title":"Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication.","authors":"Chloé Radermacher, Rogerio B Craveiro, Wilhelm Jahnen-Dechent, Justus P Beier, Astrid Bülow, Michael Wolf, Sabine Neuss","doi":"10.1093/stcltm/szae057","DOIUrl":"10.1093/stcltm/szae057","url":null,"abstract":"<p><p>The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1028-1039"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}