Zhiwu Wu, Hui Yang, Shaoying Duan, Qianqian Su, Ran Cheng, Tao Hu
Appropriate dental pulp repair is based on effective control of inflammation and involves the regeneration of dental pulp nerves, blood vessels (soft tissue), and dentin (hard tissue). Limited evidence has shown how to modulate the uncertainty due to individual variability in dental pulp repair. NRG1, a cytokine modulating nerve injury and repair, was intricately associated with the outcome of pulp repair. Yet, its mobilization in spontaneous pulp repair had individual variability. The study further explored the role of NRG1 during pulp repair as well as an epigenetic way to modulate NRG1 through histone acetylation to enhance pulp repair. Overexpression of NRG1 exhibited the effects of anti-inflammation and integrated regeneration of soft and hard tissue, by inhibiting pro-inflammatory factors IL-1β, IL-8, and promoting the expressions of DSPP, DMP1 (dentin regeneration), and nestin (nerve regeneration). Moreover, restricted H3K9 and H3K27 acetylation correlated with NRG1 expression in pulp repair both temporally and spatially, showing individual variability as well. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, enhanced H3K9ac and H3K27ac, which dramatically activated NRG1, suppressed pulp inflammation, and facilitated soft and hard tissue regeneration. In summary, targeting histone acetylation with HDAC inhibitors may be an effective approach to promote pulp repair by activating NRG1.
{"title":"Histone acetylation facilitates multidirectional pulp repair through Neuregulin-1 mobilization.","authors":"Zhiwu Wu, Hui Yang, Shaoying Duan, Qianqian Su, Ran Cheng, Tao Hu","doi":"10.1093/stcltm/szaf022","DOIUrl":"10.1093/stcltm/szaf022","url":null,"abstract":"<p><p>Appropriate dental pulp repair is based on effective control of inflammation and involves the regeneration of dental pulp nerves, blood vessels (soft tissue), and dentin (hard tissue). Limited evidence has shown how to modulate the uncertainty due to individual variability in dental pulp repair. NRG1, a cytokine modulating nerve injury and repair, was intricately associated with the outcome of pulp repair. Yet, its mobilization in spontaneous pulp repair had individual variability. The study further explored the role of NRG1 during pulp repair as well as an epigenetic way to modulate NRG1 through histone acetylation to enhance pulp repair. Overexpression of NRG1 exhibited the effects of anti-inflammation and integrated regeneration of soft and hard tissue, by inhibiting pro-inflammatory factors IL-1β, IL-8, and promoting the expressions of DSPP, DMP1 (dentin regeneration), and nestin (nerve regeneration). Moreover, restricted H3K9 and H3K27 acetylation correlated with NRG1 expression in pulp repair both temporally and spatially, showing individual variability as well. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, enhanced H3K9ac and H3K27ac, which dramatically activated NRG1, suppressed pulp inflammation, and facilitated soft and hard tissue regeneration. In summary, targeting histone acetylation with HDAC inhibitors may be an effective approach to promote pulp repair by activating NRG1.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 7","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrawin Wanakumjorn, Kazuto Kimura, Diego Castillo, Ehren McLarty, Rachel Formaker, Rachel Qiao, Katherine Farrell, Terza Brostoff, Raneesh Ramarapu, Jully Pires, Tamar Cohen-Davidyan, Jennifer Cassano, Brian Murphy, Krystle Reagan, Amir Kol
Severe coronavirus infections, including SARS-CoV-2, are marked by systemic inflammation, T-cell exhaustion, lymphopenia, and chronic immune dysfunction, with limited therapeutic options for recovery. Feline infectious peritonitis (FIP), a naturally occurring feline coronavirus infection, mirrors these immune pathologies, providing a valuable translational model. This study evaluated the safety and efficacy of allogeneic mesenchymal stem/stromal cell (MSC) therapy combined with antiviral treatment in cats with effusive FIP. Hematologic, virologic, and immunologic analyses were conducted over 12 weeks. Antiviral therapy reduced cytotoxic T-cell exhaustion by downregulating inhibitory receptors PD-1, TIM-3, and LAG-3. MSC-treated cats demonstrated enhanced immune recovery, evidenced by reduced expression of exhaustion-related transcription factors (IKZF2, ZEB2, PRDM1) and increased regulatory T-cell populations, promoting immune homeostasis. Single-cell RNA sequencing of mesenteric lymph nodes revealed transcriptomic shifts indicative of immune rejuvenation, including elevated memory T-cell markers (IKZF1, GZMK, IL7R) and reduced hyperproliferative lymphocyte subsets. Serum cytokine analysis revealed 3 distinct inflammatory mediator patterns using principal component analysis. Both treatment groups showed transitions toward cytokine profiles resembling those of healthy controls. Notably, residual cytokine elevations persisted at the study's end, mirroring features of chronic immune dysregulation. PDGF-bb, a marker of tissue repair, was uniquely associated with higher lymphocyte counts, suggesting its role in lymphoid recovery. This study highlights the potential of MSC therapy to modulate immune dysfunction and support durable immune recovery. The findings underscore its translational relevance for addressing severe viral diseases characterized by chronic inflammation and immune dysregulation, advancing both veterinary and human medicine.
{"title":"Mesenchymal stem/stromal cell therapy improves immune recovery in a feline model of severe coronavirus infection.","authors":"Patrawin Wanakumjorn, Kazuto Kimura, Diego Castillo, Ehren McLarty, Rachel Formaker, Rachel Qiao, Katherine Farrell, Terza Brostoff, Raneesh Ramarapu, Jully Pires, Tamar Cohen-Davidyan, Jennifer Cassano, Brian Murphy, Krystle Reagan, Amir Kol","doi":"10.1093/stcltm/szaf025","DOIUrl":"10.1093/stcltm/szaf025","url":null,"abstract":"<p><p>Severe coronavirus infections, including SARS-CoV-2, are marked by systemic inflammation, T-cell exhaustion, lymphopenia, and chronic immune dysfunction, with limited therapeutic options for recovery. Feline infectious peritonitis (FIP), a naturally occurring feline coronavirus infection, mirrors these immune pathologies, providing a valuable translational model. This study evaluated the safety and efficacy of allogeneic mesenchymal stem/stromal cell (MSC) therapy combined with antiviral treatment in cats with effusive FIP. Hematologic, virologic, and immunologic analyses were conducted over 12 weeks. Antiviral therapy reduced cytotoxic T-cell exhaustion by downregulating inhibitory receptors PD-1, TIM-3, and LAG-3. MSC-treated cats demonstrated enhanced immune recovery, evidenced by reduced expression of exhaustion-related transcription factors (IKZF2, ZEB2, PRDM1) and increased regulatory T-cell populations, promoting immune homeostasis. Single-cell RNA sequencing of mesenteric lymph nodes revealed transcriptomic shifts indicative of immune rejuvenation, including elevated memory T-cell markers (IKZF1, GZMK, IL7R) and reduced hyperproliferative lymphocyte subsets. Serum cytokine analysis revealed 3 distinct inflammatory mediator patterns using principal component analysis. Both treatment groups showed transitions toward cytokine profiles resembling those of healthy controls. Notably, residual cytokine elevations persisted at the study's end, mirroring features of chronic immune dysregulation. PDGF-bb, a marker of tissue repair, was uniquely associated with higher lymphocyte counts, suggesting its role in lymphoid recovery. This study highlights the potential of MSC therapy to modulate immune dysfunction and support durable immune recovery. The findings underscore its translational relevance for addressing severe viral diseases characterized by chronic inflammation and immune dysregulation, advancing both veterinary and human medicine.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 7","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144638128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingjuan Huang, Lina Nie, Haichao Diao, Ziyi Shang, Qizhi Shuai, Jun Xu, Jun Xie
Background: Bone mesenchymal stem cells (BMSCs) have demonstrated therapeutic potential in attenuating liver fibrosis. However, the precise molecular targets through which BMSCs regulate hepatic stellate cells (HSCs) activation, as well as liver fibrosis remains unclear.
Methods: BMSCs were isolated from rat bone marrow, cultured, and characterized. BMSCs were administered via tail vein injection into bile duct ligation (BDL)-induced liver fibrosis mice. The downstream target of BMSCs was analyzed using RNA-sequencing (RNA-seq) and detected in liver tissues of Primary Biliary Cholangitis (PBC) patients and mice liver fibrosis. Mechanistic evaluations were employed using immunofluorescence, Western blot, RT-qPCR, transmission electron microscope (TEM), and histological analyses.
Results: BMSCs transplantation markedly attenuated liver fibrosis. RNA-seq revealed Regulated in Development and DNA Damage Response 1 (REDD1) is a novel regulator of BMSCs-based antifibrotic liver fibrosis therapy and upregulated in liver tissues of PBC patients and mice liver fibrosis. Mechanistically, REDD1 overexpression suppressed HSCs activation by impairing HSCs autophagy, thereby potentiating BMSCs therapeutic efficacy. More importantly, the in vivo experiments revealed REDD1 treatment ameliorated liver function, alleviated liver injury, and attenuated liver fibrosis, and PI3K/AKT/mTOR and TGFβ/Smad3 pathway were involved in the regulation.
Conclusions: Our results provide preliminary evidence for the protective roles of BMSCs in liver fibrosis through REDD1/autophagy pathway and suggest that REDD1 may be a promising therapeutic target for treating liver fibrosis.
背景:骨间充质干细胞(BMSCs)在减轻肝纤维化方面已显示出治疗潜力。然而,骨髓间充质干细胞调节肝星状细胞(HSCs)活化和肝纤维化的精确分子靶点尚不清楚。方法:从大鼠骨髓中分离骨髓间充质干细胞,进行培养和鉴定。将骨髓间充质干细胞通过尾静脉注入胆管结扎(BDL)诱导的肝纤维化小鼠。采用rna测序(RNA-seq)技术对原发性胆道胆管炎(PBC)患者和肝纤维化小鼠肝组织中骨髓间充质干细胞的下游靶点进行分析和检测。采用免疫荧光、Western blot、RT-qPCR、透射电镜(TEM)和组织学分析进行机制评价。结果:骨髓间充质干细胞移植明显减轻肝纤维化。RNA-seq揭示了REDD1 (Regulated in Development and DNA Damage Response 1)是一种基于骨髓间质干细胞的抗纤维化肝纤维化治疗的新型调节因子,在PBC患者和肝纤维化小鼠的肝组织中表达上调。机制上,REDD1过表达通过损害造血干细胞自噬来抑制造血干细胞的活化,从而增强骨髓间充质干细胞的治疗效果。更重要的是,体内实验显示,REDD1治疗改善了肝功能,减轻了肝损伤,减轻了肝纤维化,PI3K/AKT/mTOR和TGFβ/Smad3通路参与了调节。结论:我们的研究结果为骨髓间充质干细胞通过REDD1/自噬途径在肝纤维化中的保护作用提供了初步证据,提示REDD1可能是治疗肝纤维化的一个有希望的治疗靶点。
{"title":"Bone mesenchymal stem cells attenuate hepatic stellate cell activation and liver fibrosis through REDD1/autophagy pathway.","authors":"Tingjuan Huang, Lina Nie, Haichao Diao, Ziyi Shang, Qizhi Shuai, Jun Xu, Jun Xie","doi":"10.1093/stcltm/szaf023","DOIUrl":"10.1093/stcltm/szaf023","url":null,"abstract":"<p><strong>Background: </strong>Bone mesenchymal stem cells (BMSCs) have demonstrated therapeutic potential in attenuating liver fibrosis. However, the precise molecular targets through which BMSCs regulate hepatic stellate cells (HSCs) activation, as well as liver fibrosis remains unclear.</p><p><strong>Methods: </strong>BMSCs were isolated from rat bone marrow, cultured, and characterized. BMSCs were administered via tail vein injection into bile duct ligation (BDL)-induced liver fibrosis mice. The downstream target of BMSCs was analyzed using RNA-sequencing (RNA-seq) and detected in liver tissues of Primary Biliary Cholangitis (PBC) patients and mice liver fibrosis. Mechanistic evaluations were employed using immunofluorescence, Western blot, RT-qPCR, transmission electron microscope (TEM), and histological analyses.</p><p><strong>Results: </strong>BMSCs transplantation markedly attenuated liver fibrosis. RNA-seq revealed Regulated in Development and DNA Damage Response 1 (REDD1) is a novel regulator of BMSCs-based antifibrotic liver fibrosis therapy and upregulated in liver tissues of PBC patients and mice liver fibrosis. Mechanistically, REDD1 overexpression suppressed HSCs activation by impairing HSCs autophagy, thereby potentiating BMSCs therapeutic efficacy. More importantly, the in vivo experiments revealed REDD1 treatment ameliorated liver function, alleviated liver injury, and attenuated liver fibrosis, and PI3K/AKT/mTOR and TGFβ/Smad3 pathway were involved in the regulation.</p><p><strong>Conclusions: </strong>Our results provide preliminary evidence for the protective roles of BMSCs in liver fibrosis through REDD1/autophagy pathway and suggest that REDD1 may be a promising therapeutic target for treating liver fibrosis.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 7","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144485720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji Eun Lee, Kyu Won Oh, Jin Young Shin, Yeon Ju Kim, Seung-Jae Lee, Phil Hyu Lee
Ample evidence suggests that α-synuclein (αSyn) accumulation in the endoplasmic reticulum (ER) leads to ER stress, resulting in neurodegeneration in Parkinson's disease (PD). Selective degradation of accumulated αSyn through ER-phagy can alleviate ER stress and rescue neurodegeneration. In the present study, we investigated whether mesenchymal stem cells (MSCs) exert neuroprotective effects against PD by modulating ER-phagy. In a cellular model overexpressing αSyn specifically in the ER (ER-αSyn), co-culture with MSCs promoted ER-αSyn clearance through selective ER-phagy and also recovered cell viability. Injection of MSCs to an animal model using adeno-associated virus vectors to overexpress αSyn in the ER (AAV-ER- αSyn), also decreased the expression of aSyn in the ER and attenuated the dopaminergic neuronal loss in substantia nigra (SN) and denervation in striatum (ST), followed by functional improvement of motor deficits. In vitro screening identified that MSCs promoted family with sequence similarity 134 member B (FAM134B)-mediated ER-phagy via regulating transcription factor of nuclear subfamily 4 group A member 1 (NR4A1), and it underwent in vivo validation. This study suggests that MSCs modulate FAM134B-mediated ER-phagy under the regulation of NR4A1, promoting the clearance of ER-accumulated αSyn in PD cellular and murine models.
{"title":"Mesenchymal stem cells enhance selective ER-phagy to promote α-synuclein clearance in Parkinson's disease.","authors":"Ji Eun Lee, Kyu Won Oh, Jin Young Shin, Yeon Ju Kim, Seung-Jae Lee, Phil Hyu Lee","doi":"10.1093/stcltm/szaf019","DOIUrl":"10.1093/stcltm/szaf019","url":null,"abstract":"<p><p>Ample evidence suggests that α-synuclein (αSyn) accumulation in the endoplasmic reticulum (ER) leads to ER stress, resulting in neurodegeneration in Parkinson's disease (PD). Selective degradation of accumulated αSyn through ER-phagy can alleviate ER stress and rescue neurodegeneration. In the present study, we investigated whether mesenchymal stem cells (MSCs) exert neuroprotective effects against PD by modulating ER-phagy. In a cellular model overexpressing αSyn specifically in the ER (ER-αSyn), co-culture with MSCs promoted ER-αSyn clearance through selective ER-phagy and also recovered cell viability. Injection of MSCs to an animal model using adeno-associated virus vectors to overexpress αSyn in the ER (AAV-ER- αSyn), also decreased the expression of aSyn in the ER and attenuated the dopaminergic neuronal loss in substantia nigra (SN) and denervation in striatum (ST), followed by functional improvement of motor deficits. In vitro screening identified that MSCs promoted family with sequence similarity 134 member B (FAM134B)-mediated ER-phagy via regulating transcription factor of nuclear subfamily 4 group A member 1 (NR4A1), and it underwent in vivo validation. This study suggests that MSCs modulate FAM134B-mediated ER-phagy under the regulation of NR4A1, promoting the clearance of ER-accumulated αSyn in PD cellular and murine models.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150288/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144258954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Hsin Liu, Anat Globerson Levin, Assaf Lask, Galit Horn, Tova Waks, Bar Nathansohn Levi, Irit Milman Krentsis, Einav Shoshan, Xiaohua Su, Maksim Mamonkin, Richard E Champlin, Yair Reisner, Esther Bachar Lustig
Central memory CD8 T cells exhibit marked veto activity enhancing engraftment in several mouse models of T cell-depleted bone marrow (TDBM) allografting. Graft-versus-host disease (GVHD) can be prevented by stimulation of mouse or human memory CD8 T cells against their cognate antigens under cytokine deprivation, in the early phase of culture followed by further expansion with IL21, IL15, and IL7. Thus, human anti-viral CD8 central memory veto T cells generated from CMV and EBV-positive donors are currently evaluated in a clinical trial at MD Anderson Cancer Centre (MDACC). Results in 15 patients indicate a low risk of GVHD. Considering that these cells could offer an attractive platform for CAR cell therapy, we evaluated methodologies for their effective transduction with 2 retroviral vectors. Initially, a vector directed against Her2 was tested and optimal transduction was attained at day 5 of culture. The transduced cells were expanded for an additional 7 days and exhibited marked anti-tumor reactivity ex-vivo while retaining their veto activity. Transduction with a vector directed at CD19 was effectively attained at days 4-5 allowing for substantial harvest of transduced cells at day 12 of culture. These Veto-CD19CAR central memory CD8 T cells exhibited marked anti-tumor reactivity in-vitro and in-vivo without GVHD, measured following transplantation into immune-deficient mice. These results strongly suggest that Veto-CAR T cells offer an attractive platform for CAR T cell therapy without gene editing for addressing the risk of GVHD or graft rejection.
{"title":"Anti-viral CD8 central memory veto cells as a new platform for CAR T cell therapy.","authors":"Wei-Hsin Liu, Anat Globerson Levin, Assaf Lask, Galit Horn, Tova Waks, Bar Nathansohn Levi, Irit Milman Krentsis, Einav Shoshan, Xiaohua Su, Maksim Mamonkin, Richard E Champlin, Yair Reisner, Esther Bachar Lustig","doi":"10.1093/stcltm/szaf020","DOIUrl":"10.1093/stcltm/szaf020","url":null,"abstract":"<p><p>Central memory CD8 T cells exhibit marked veto activity enhancing engraftment in several mouse models of T cell-depleted bone marrow (TDBM) allografting. Graft-versus-host disease (GVHD) can be prevented by stimulation of mouse or human memory CD8 T cells against their cognate antigens under cytokine deprivation, in the early phase of culture followed by further expansion with IL21, IL15, and IL7. Thus, human anti-viral CD8 central memory veto T cells generated from CMV and EBV-positive donors are currently evaluated in a clinical trial at MD Anderson Cancer Centre (MDACC). Results in 15 patients indicate a low risk of GVHD. Considering that these cells could offer an attractive platform for CAR cell therapy, we evaluated methodologies for their effective transduction with 2 retroviral vectors. Initially, a vector directed against Her2 was tested and optimal transduction was attained at day 5 of culture. The transduced cells were expanded for an additional 7 days and exhibited marked anti-tumor reactivity ex-vivo while retaining their veto activity. Transduction with a vector directed at CD19 was effectively attained at days 4-5 allowing for substantial harvest of transduced cells at day 12 of culture. These Veto-CD19CAR central memory CD8 T cells exhibited marked anti-tumor reactivity in-vitro and in-vivo without GVHD, measured following transplantation into immune-deficient mice. These results strongly suggest that Veto-CAR T cells offer an attractive platform for CAR T cell therapy without gene editing for addressing the risk of GVHD or graft rejection.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144192230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qifeng Ou, Sarah Cormican, Rachael Power, Sarah Hontz, Shirley A Hanley, Md Nahidul Islam, Georgina Shaw, Laura M Deedigan, Emma Horan, Stephen J Elliman, Barbara Fazekas, Janusz Krawczyk, Neema Negi, Matthew D Griffin
Clinical trials have demonstrated the safety and potential efficacy of ex vivo expanded regulatory T cells (Tregs) for immune-mediated diseases. Nonetheless, achieving consistent and timely Treg yield and purity remains challenging. We aimed to evaluate the potential to enhance culture expansion of primary human total Treg (CD4+/CD25+/CD127lo) and Treg subpopulations through coculture with human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). In 14- to 21-day anti-CD3/anti-CD28-, interleukin-2-, and rapamycin-containing cultures, fluorescence-activated cell sorting (FACS)-purified total Treg underwent 4-fold greater expansion following hUC-MSC coculture. Potency to suppress T effector cell (Teff) proliferation was equivalent for hUC-MSC-cocultured and control Tregs and correlated with the expression of HLA-DR, CD39, and inducible costimulator (ICOS). The impact of hUC-MSC coculture on ex vivo expansion of 3 FACS-purified Treg subpopulations [CD45RA+ (Subtype I), CD45RA-HLA-DR+ (Subtype II), and CD45RA-HLA-DR- (Subtype III)] was then investigated. Both initial and continuous hUC-MSC coculture yielded significantly higher fold expansion of each Treg subpopulation compared to control. However, the magnitude of enhancement was substantially greater for non-naive (Subtypes II and III) than for naive (Subtype I) Treg. Coculture with hUC-MSC increased HLA-DR expression of all 3 expanded Treg subpopulations while maintaining comparable Teff suppressive potency. For non-naive Treg (Subtypes II and III), both initial and continuous hUC-MSC coculture also increased the final %Foxp3+ and %Helios+. Thus, coculture with clinical-grade hUC-MSC substantially enhances the ex vivo yield, preserves the suppressive potency, and modulates HLA-DR expression of FACS-purified Treg subpopulations with greatest effect on non-naive (CD45RA-) Treg. The findings have potential to facilitate identification, functional characterization, and manufacturing of Treg subpopulations with distinct therapeutic benefits.
临床试验已经证明体外扩增调节性T细胞(Tregs)治疗免疫介导性疾病的安全性和潜在疗效。尽管如此,实现一致和及时的Treg产量和纯度仍然具有挑战性。我们的目的是评估通过与人脐带源性间充质间质细胞(hucc - mscs)共培养增强人原代总Treg (CD4+/CD25+/CD127lo)和Treg亚群培养扩增的潜力。在14- 21天的抗cd3 /抗cd28 -、白细胞介素-2-和含雷帕霉素的培养中,荧光活化细胞分选(FACS)纯化的总Treg在hUC-MSC共培养后扩增了4倍。抑制T效应细胞(Teff)增殖的效力与huc - msc共培养和对照Tregs相同,并与HLA-DR、CD39和诱导共刺激因子(ICOS)的表达相关。然后研究hUC-MSC共培养对3个facs纯化Treg亚群[CD45RA+(亚型I), CD45RA- hla - dr +(亚型II)和CD45RA- hla - dr -(亚型III)]体外扩增的影响。与对照组相比,初始和连续的hUC-MSC共培养产生了显著更高的每个Treg亚群的倍数扩增。然而,非初始Treg(亚型II和亚型III)的增强幅度明显大于初始Treg(亚型I)。与hUC-MSC共培养增加了所有3个扩增的Treg亚群的HLA-DR表达,同时保持了相当的Teff抑制效力。对于非初始Treg(亚型II和III),初始和连续的hUC-MSC共培养也增加了最终的%Foxp3+和%Helios+。因此,与临床级hUC-MSC共培养可显著提高体外产量,保持抑制效力,并调节facs纯化Treg亚群的HLA-DR表达,对非初始(CD45RA-) Treg的影响最大。这些发现有可能促进具有独特治疗效益的Treg亚群的鉴定、功能表征和制造。
{"title":"Initial or continuous coculture with umbilical cord-derived mesenchymal stromal cells facilitates in vitro expansion of human regulatory T-cell subpopulations.","authors":"Qifeng Ou, Sarah Cormican, Rachael Power, Sarah Hontz, Shirley A Hanley, Md Nahidul Islam, Georgina Shaw, Laura M Deedigan, Emma Horan, Stephen J Elliman, Barbara Fazekas, Janusz Krawczyk, Neema Negi, Matthew D Griffin","doi":"10.1093/stcltm/szaf012","DOIUrl":"10.1093/stcltm/szaf012","url":null,"abstract":"<p><p>Clinical trials have demonstrated the safety and potential efficacy of ex vivo expanded regulatory T cells (Tregs) for immune-mediated diseases. Nonetheless, achieving consistent and timely Treg yield and purity remains challenging. We aimed to evaluate the potential to enhance culture expansion of primary human total Treg (CD4+/CD25+/CD127lo) and Treg subpopulations through coculture with human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). In 14- to 21-day anti-CD3/anti-CD28-, interleukin-2-, and rapamycin-containing cultures, fluorescence-activated cell sorting (FACS)-purified total Treg underwent 4-fold greater expansion following hUC-MSC coculture. Potency to suppress T effector cell (Teff) proliferation was equivalent for hUC-MSC-cocultured and control Tregs and correlated with the expression of HLA-DR, CD39, and inducible costimulator (ICOS). The impact of hUC-MSC coculture on ex vivo expansion of 3 FACS-purified Treg subpopulations [CD45RA+ (Subtype I), CD45RA-HLA-DR+ (Subtype II), and CD45RA-HLA-DR- (Subtype III)] was then investigated. Both initial and continuous hUC-MSC coculture yielded significantly higher fold expansion of each Treg subpopulation compared to control. However, the magnitude of enhancement was substantially greater for non-naive (Subtypes II and III) than for naive (Subtype I) Treg. Coculture with hUC-MSC increased HLA-DR expression of all 3 expanded Treg subpopulations while maintaining comparable Teff suppressive potency. For non-naive Treg (Subtypes II and III), both initial and continuous hUC-MSC coculture also increased the final %Foxp3+ and %Helios+. Thus, coculture with clinical-grade hUC-MSC substantially enhances the ex vivo yield, preserves the suppressive potency, and modulates HLA-DR expression of FACS-purified Treg subpopulations with greatest effect on non-naive (CD45RA-) Treg. The findings have potential to facilitate identification, functional characterization, and manufacturing of Treg subpopulations with distinct therapeutic benefits.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Mesenchymal stromal cells-derived small extracellular vesicles protect against UV-induced photoaging via regulating pregnancy zone protein.","authors":"","doi":"10.1093/stcltm/szaf028","DOIUrl":"10.1093/stcltm/szaf028","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Upregulating CXCR4 in Human Fetal Mesenchymal Stem Cells Enhances Engraftment and Bone Mechanics in a Mouse Model of Osteogenesis Imperfecta.","authors":"","doi":"10.1093/stcltm/szaf027","DOIUrl":"10.1093/stcltm/szaf027","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12166519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nader Hejrati, Zijian Lou, Sogolie Kouhzaei, Oliver Zhang, Jian Wang, Mohamad Khazaei, Michael G Fehlings
Spinal cord injury (SCI) elicits a hostile microenvironment characterized by inflammation, gliosis, and disrupted signaling pathways that collectively impede neural repair. Neural progenitor cells (NPCs) represent a promising regenerative approach, yet their survival and differentiation are often compromised in this setting. Here, we investigated whether engineering NPCs to overexpress the Notch pathway modulator Delta-like non-canonical Notch ligand 1 (DLK1) could overcome these limitations and improve functional outcomes after cervical SCI in rats. NPCs were engineered to express DLK1 under a Pax6 promoter-driven expression system, ensuring elevated DLK1 levels during the progenitor state. Following transplantation of DLK1-overexpressing NPCs or control NPCs, we assessed graft survival, lineage differentiation, behavioral performance, and electrophysiological integration over 12 weeks. DLK1-expressing NPCs exhibited significantly greater retention in the injured spinal cord and showed enhanced neuronal differentiation alongside reduced astrocytic commitment compared to controls. Behavioral tests-including forelimb grip strength and CatWalk gait assessments-demonstrated that DLK1-modified NPCs conferred robust improvements in forelimb motor coordination and overall locomotion. Concordantly, electrophysiological recordings revealed increased motor-evoked potential amplitudes and area-under-the-curve values in animals receiving DLK1-transduced NPC grafts, indicative of strengthened synaptic integration within the host motor circuitry.
{"title":"DLK1-expressing neural progenitor cells promote tissue repair and functional recovery after cervical spinal cord injury.","authors":"Nader Hejrati, Zijian Lou, Sogolie Kouhzaei, Oliver Zhang, Jian Wang, Mohamad Khazaei, Michael G Fehlings","doi":"10.1093/stcltm/szaf014","DOIUrl":"10.1093/stcltm/szaf014","url":null,"abstract":"<p><p>Spinal cord injury (SCI) elicits a hostile microenvironment characterized by inflammation, gliosis, and disrupted signaling pathways that collectively impede neural repair. Neural progenitor cells (NPCs) represent a promising regenerative approach, yet their survival and differentiation are often compromised in this setting. Here, we investigated whether engineering NPCs to overexpress the Notch pathway modulator Delta-like non-canonical Notch ligand 1 (DLK1) could overcome these limitations and improve functional outcomes after cervical SCI in rats. NPCs were engineered to express DLK1 under a Pax6 promoter-driven expression system, ensuring elevated DLK1 levels during the progenitor state. Following transplantation of DLK1-overexpressing NPCs or control NPCs, we assessed graft survival, lineage differentiation, behavioral performance, and electrophysiological integration over 12 weeks. DLK1-expressing NPCs exhibited significantly greater retention in the injured spinal cord and showed enhanced neuronal differentiation alongside reduced astrocytic commitment compared to controls. Behavioral tests-including forelimb grip strength and CatWalk gait assessments-demonstrated that DLK1-modified NPCs conferred robust improvements in forelimb motor coordination and overall locomotion. Concordantly, electrophysiological recordings revealed increased motor-evoked potential amplitudes and area-under-the-curve values in animals receiving DLK1-transduced NPC grafts, indicative of strengthened synaptic integration within the host motor circuitry.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"14 6","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144192231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}