Lamia Nureen, Joanna Biazik, Michael Carnell, Nick Di Girolamo
The narrow intersection between the cornea and conjunctiva, otherwise known as the limbus, is purported to harbor stem cells (SCs) that replenish the ocular surface epithelium throughout life. Damage to this site or depletion of its SCs can have dire consequences for eye health and vision. To date, various SC and keratin proteins have been used to identify the limbus, however, none could definitively mark its boundaries. Herein, we use the mouse as a model system to investigate whether structural and phenotypic features can be used to define the limbus and its boundaries with adjacent tissues. We demonstrate that differentially aligned blood and lymphatic vessels, intraepithelial nerves, and basal epithelial cellular and nuclei dimensions can be used as structural landmarks of the limbus. Identification of these features enabled approximation of the limbal expanse, which varied across distinct ocular surface quadrants, with the superior nasal and inferior temporal limbus being the widest and narrowest, respectively. Moreover, label-retaining SCs were unevenly distributed across the ocular circumference, with increased numbers in the superior temporal and inferior temporal moieties. These findings will heighten our current understanding of the SC niche, be beneficial for accurately predicting SC distribution to improve their isolation and devising efficacious cell therapies, and importantly, aid the ongoing search for novel SC markers.
{"title":"A detailed survey of the murine limbus, its stem cell distribution, and its boundaries with the cornea and conjunctiva.","authors":"Lamia Nureen, Joanna Biazik, Michael Carnell, Nick Di Girolamo","doi":"10.1093/stcltm/szae055","DOIUrl":"10.1093/stcltm/szae055","url":null,"abstract":"<p><p>The narrow intersection between the cornea and conjunctiva, otherwise known as the limbus, is purported to harbor stem cells (SCs) that replenish the ocular surface epithelium throughout life. Damage to this site or depletion of its SCs can have dire consequences for eye health and vision. To date, various SC and keratin proteins have been used to identify the limbus, however, none could definitively mark its boundaries. Herein, we use the mouse as a model system to investigate whether structural and phenotypic features can be used to define the limbus and its boundaries with adjacent tissues. We demonstrate that differentially aligned blood and lymphatic vessels, intraepithelial nerves, and basal epithelial cellular and nuclei dimensions can be used as structural landmarks of the limbus. Identification of these features enabled approximation of the limbal expanse, which varied across distinct ocular surface quadrants, with the superior nasal and inferior temporal limbus being the widest and narrowest, respectively. Moreover, label-retaining SCs were unevenly distributed across the ocular circumference, with increased numbers in the superior temporal and inferior temporal moieties. These findings will heighten our current understanding of the SC niche, be beneficial for accurately predicting SC distribution to improve their isolation and devising efficacious cell therapies, and importantly, aid the ongoing search for novel SC markers.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"1015-1027"},"PeriodicalIF":5.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465172/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leanne de Silva,Jeroen J J P van den Beucken,Antoine J W P Rosenberg,Alessia Longoni,Debby Gawlitta
Endochondral bone regeneration is a promising approach in regenerative medicine. Callus mimics (CMs) are engineered and remodeled into bone tissue upon implantation. The long-term objective is to fabricate a sustainable off-the-shelf treatment option for patients. Devitalization was introduced to facilitate storage and using allogeneic (donor) cells would further propel the off-the-shelf approach. However, allogeneic CMs for bone regeneration pose a potential antigenicity concern. Here, we explored the impact of devitalization on antigenicity and osteoinductive bone formation when implanting syngeneic or allogeneic CM in a vital or devitalized state. For this, we implanted chondrogenically differentiated rat-derived mesenchymal stromal cells using an allogeneic immunocompetent ectopic rat model. Vital syngeneic CMs demonstrated the highest bone formation, and vital allogeneic CMs showed the lowest bone formation, while both devitalized CMs showed comparable intermediate levels of bone formation. Preceding bone formation, the level of tartrate-resistant acid phosphatase staining at 7 and 14 days was proportional to the level of eventual bone formation. No differences were observed for local innate immune responses at any time point before or after bone formation. In contrast, allogeneic CMs elicit a mild adaptive immune response, which still permits bone formation in an immunocompetent environment, albeit at a reduced rate compared to the autologous living counterpart. Overall, devitalization delays bone formation when autologous CMs are implanted, whereas it accelerates bone formation in allogeneic CMs, highlighting the potential of this approach for achieving off-the-shelf treatment.
软骨内骨再生是再生医学中一种前景广阔的方法。胼胝体模拟物(CMs)经工程改造,植入后可重塑为骨组织。其长期目标是为患者提供一种可持续的现成治疗方案。引入去腐化技术是为了便于储存,而使用异体(供体)细胞将进一步推动现成方法的发展。然而,用于骨再生的异体骨髓造血干细胞存在潜在的抗原性问题。在此,我们探讨了在活力或失活状态下植入合成或异体 CM 时,失活对抗原性和骨诱导性骨形成的影响。为此,我们使用异体免疫功能健全的异位大鼠模型植入了软骨分化的大鼠间充质基质细胞。活力充沛的同种异体间充质干细胞显示出最高的骨形成,而活力充沛的异种间充质干细胞显示出最低的骨形成,而两种凋亡的间充质干细胞显示出相当的中间骨形成水平。在骨形成之前,7 天和 14 天抗酒石酸磷酸酶染色水平与最终骨形成水平成正比。在骨形成前后的任何时间点,均未观察到局部先天性免疫反应的差异。相比之下,异体骨髓造血干细胞会引起轻微的适应性免疫反应,但仍能在免疫功能正常的环境中形成骨,尽管与自体活体相比形成骨的速度有所降低。总之,在植入自体 CM 时,去活性会延迟骨形成,而在异体 CM 中,去活性则会加速骨形成,这凸显了这种方法在实现现成治疗方面的潜力。
{"title":"Unraveling devitalization: its impact on immune response and ectopic bone remodeling from autologous and allogeneic callus mimics.","authors":"Leanne de Silva,Jeroen J J P van den Beucken,Antoine J W P Rosenberg,Alessia Longoni,Debby Gawlitta","doi":"10.1093/stcltm/szae063","DOIUrl":"https://doi.org/10.1093/stcltm/szae063","url":null,"abstract":"Endochondral bone regeneration is a promising approach in regenerative medicine. Callus mimics (CMs) are engineered and remodeled into bone tissue upon implantation. The long-term objective is to fabricate a sustainable off-the-shelf treatment option for patients. Devitalization was introduced to facilitate storage and using allogeneic (donor) cells would further propel the off-the-shelf approach. However, allogeneic CMs for bone regeneration pose a potential antigenicity concern. Here, we explored the impact of devitalization on antigenicity and osteoinductive bone formation when implanting syngeneic or allogeneic CM in a vital or devitalized state. For this, we implanted chondrogenically differentiated rat-derived mesenchymal stromal cells using an allogeneic immunocompetent ectopic rat model. Vital syngeneic CMs demonstrated the highest bone formation, and vital allogeneic CMs showed the lowest bone formation, while both devitalized CMs showed comparable intermediate levels of bone formation. Preceding bone formation, the level of tartrate-resistant acid phosphatase staining at 7 and 14 days was proportional to the level of eventual bone formation. No differences were observed for local innate immune responses at any time point before or after bone formation. In contrast, allogeneic CMs elicit a mild adaptive immune response, which still permits bone formation in an immunocompetent environment, albeit at a reduced rate compared to the autologous living counterpart. Overall, devitalization delays bone formation when autologous CMs are implanted, whereas it accelerates bone formation in allogeneic CMs, highlighting the potential of this approach for achieving off-the-shelf treatment.","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"9 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Armin Garmany,D Kent Arrell,Satsuki Yamada,Ryounghoon Jeon,Atta Behfar,Sungjo Park,Andre Terzic
Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.
{"title":"Decoded cardiopoietic cell secretome linkage to heart repair biosignature.","authors":"Armin Garmany,D Kent Arrell,Satsuki Yamada,Ryounghoon Jeon,Atta Behfar,Sungjo Park,Andre Terzic","doi":"10.1093/stcltm/szae067","DOIUrl":"https://doi.org/10.1093/stcltm/szae067","url":null,"abstract":"Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":"11 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan T M Dao, Thu Thuy Vu, Quyen Thi Nguyen, Van T Hoang, Thanh Liem Nguyen
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.
{"title":"Current cell therapies for systemic lupus erythematosus.","authors":"Lan T M Dao, Thu Thuy Vu, Quyen Thi Nguyen, Van T Hoang, Thanh Liem Nguyen","doi":"10.1093/stcltm/szae044","DOIUrl":"10.1093/stcltm/szae044","url":null,"abstract":"<p><p>Systemic lupus erythematosus (SLE) is a chronic autoimmune disease in which multiple organs are damaged by the immune system. Although standard treatment options such as hydroxychloroquine (HCQ), glucocorticoids (GCs), and other immunosuppressive or immune-modulating agents can help to manage symptoms, they do not offer a cure. Hence, there is an urgent need for the development of novel drugs and therapies. In recent decades, cell therapies have been used for the treatment of SLE with encouraging results. Hematopoietic stem cell transplantation, mesenchymal stem cells, regulatory T (Treg) cell, natural killer cells, and chimeric antigen receptor T (CAR T) cells are advanced cell therapies which have been developed and evaluated in clinical trials in humans. In clinical application, each of these approaches has shown advantages and disadvantages. In addition, further studies are necessary to conclusively establish the safety and efficacy of these therapies. This review provides a summary of recent clinical trials investigating cell therapies for SLE treatment, along with a discussion on the potential of other cell-based therapies. The factors influencing the selection of common cell therapies for individual patients are also highlighted.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"859-872"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386214/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huifang Zhai, Mengqi Jiang, Yaqin Zhao, Yujie Wang, Haitong Zhang, Yunxia Ji, Xiaodong Song, Jinjin Zhang, Changjun Lv, Minge Li
Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.
{"title":"Three-dimensional cultured human umbilical cord mesenchymal stem cells attenuate pulmonary fibrosis by improving the balance of mitochondrial fusion and fission.","authors":"Huifang Zhai, Mengqi Jiang, Yaqin Zhao, Yujie Wang, Haitong Zhang, Yunxia Ji, Xiaodong Song, Jinjin Zhang, Changjun Lv, Minge Li","doi":"10.1093/stcltm/szae051","DOIUrl":"10.1093/stcltm/szae051","url":null,"abstract":"<p><p>Pulmonary fibrosis is a kind of fibrotic interstitial pneumonia with poor prognosis. Aging, environmental pollution, and coronavirus disease 2019 are considered as independent risk factors for pulmonary fibrogenesis. Consequently, the morbidity and mortality striking continues to rise in recent years. However, the clinical therapeutic efficacy is very limited and unsatisfactory. So it is necessary to develop a new effective therapeutic approach for pulmonary fibrosis. Human umbilical cord mesenchymal stem cells (hucMSCs) are considered as a promising treatment for various diseases because of their multiple differentiation and immunomodulatory function. The key bottleneck in the clinical application of hucMSCs therapy is the high-quality and large-scale production. This study used FloTrix miniSpin bioreactor, a three-dimensional (3D) cell culture system, for large-scale expansion of hucMSCs in vitro, and proved 3D cultured hucMSCs inhibited the differentiation of fibroblasts into myofibroblasts and myofibroblasts proliferation and migration, leading to slow down the development of pulmonary fibrosis. Further mechanistic studies clarified that hucMSCs reduced the amount of binding between circELP2 and miR-630, resulting in blocking YAP/TAZ translocation from cytoplasm to nucleus. This condition inhibited mitochondrial fusion and promoted mitochondrial fission, and ultimately improved fusion/fission balance and cellular homeostasis. To sum up, this work clarified the anti-fibrosis and mechanism of hucMSCs cultured from the 3D FloTrix miniSpin bioreactor. We hope to provide new ideas and new methods for the clinical transformation and industrialization of hucMSCs therapy.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"912-926"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141793564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick Killela, Kieran Herrity, Ludwig Frontier, Roger Horton, Joanne Kurtzberg, Wouter Van't Hof
Cellular therapies rely on highly specialized supply chains that often depend on single source providers. Public cord blood banks (CBB) manufacturing the first cell therapy to be highly regulated by the FDA and related international agencies are a prime example of being subject to this phenomenon. In addition to banking unrelated donor cord blood units for transplantation, CBBs also source and characterize starting materials for supply to allogeneic cell therapy developers that often employ customized technologies offered by just a small number of manufacturers. As such, these supply chains are especially sensitive to even minor changes which often result in potential major impacts. Regulations can shape supply chain efficiencies, both directly via the definition of restricted technology and process requirements and indirectly by steering strategic business decisions of critical supply or service providers. We present 3 current supply chain issues with different root causes that are swaying efficiencies in cord blood banking and beyond. Specifically, the shortage of Hespan, a common supplement used in cord blood processing, the decision by the provider to stop supporting medical device marking of the Sepax system broadly used in cord blood banking, and a new European ruling on phasing out plasticizers that are critical for providing flexibility to cord blood collection bags, are all threatening downstream supply chain issues for the biologics field. We discuss overcoming these hurdles through the prism of unified mitigation strategies, defined, and implemented by multi-factorial teams and stakeholders, to negotiate resolutions with providers and regulators alike.
{"title":"Mitigation of supply chain challenges in cell therapy manufacturing: perspectives from the cord blood alliance.","authors":"Patrick Killela, Kieran Herrity, Ludwig Frontier, Roger Horton, Joanne Kurtzberg, Wouter Van't Hof","doi":"10.1093/stcltm/szae048","DOIUrl":"10.1093/stcltm/szae048","url":null,"abstract":"<p><p>Cellular therapies rely on highly specialized supply chains that often depend on single source providers. Public cord blood banks (CBB) manufacturing the first cell therapy to be highly regulated by the FDA and related international agencies are a prime example of being subject to this phenomenon. In addition to banking unrelated donor cord blood units for transplantation, CBBs also source and characterize starting materials for supply to allogeneic cell therapy developers that often employ customized technologies offered by just a small number of manufacturers. As such, these supply chains are especially sensitive to even minor changes which often result in potential major impacts. Regulations can shape supply chain efficiencies, both directly via the definition of restricted technology and process requirements and indirectly by steering strategic business decisions of critical supply or service providers. We present 3 current supply chain issues with different root causes that are swaying efficiencies in cord blood banking and beyond. Specifically, the shortage of Hespan, a common supplement used in cord blood processing, the decision by the provider to stop supporting medical device marking of the Sepax system broadly used in cord blood banking, and a new European ruling on phasing out plasticizers that are critical for providing flexibility to cord blood collection bags, are all threatening downstream supply chain issues for the biologics field. We discuss overcoming these hurdles through the prism of unified mitigation strategies, defined, and implemented by multi-factorial teams and stakeholders, to negotiate resolutions with providers and regulators alike.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"843-847"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena Giuranno, Jolanda A F Piepers, Evelien Korsten, Reitske Borman, Gerarda van de Kamp, Dirk De Ruysscher, Jeroen Essers, Marc A Vooijs
Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications. Because lung stem cells are crucial for the regeneration of lung tissue following injury, we hypothesized that airway stem cells from patients with COPD with lung cancer might contribute to increased radiation sensitivity. We used the air-liquid interface model, a three-dimensional (3D) culture system, to compare the radiation response of primary human airway stem cells from healthy and patients with COPD. We found that COPD-derived airway stem cells, compared to healthy airway stem cell cultures, exhibited disproportionate pathological mucociliary differentiation, aberrant cell cycle checkpoints, residual DNA damage, reduced survival of stem cells and self-renewal, and terminally differentiated cells post-irradiation, which could be reversed by blocking the Notch pathway using small-molecule γ-secretase inhibitors. Our findings shed light on the mechanisms underlying the increased radiation sensitivity of COPD and suggest that airway stem cells reflect part of the pathological remodeling seen in lung tissue from patients with lung cancer receiving thoracic RT.
{"title":"Enhanced radiation sensitivity, decreased DNA damage repair, and differentiation defects in airway stem cells derived from patients with chronic obstructive pulmonary disease.","authors":"Lorena Giuranno, Jolanda A F Piepers, Evelien Korsten, Reitske Borman, Gerarda van de Kamp, Dirk De Ruysscher, Jeroen Essers, Marc A Vooijs","doi":"10.1093/stcltm/szae043","DOIUrl":"10.1093/stcltm/szae043","url":null,"abstract":"<p><p>Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications. Because lung stem cells are crucial for the regeneration of lung tissue following injury, we hypothesized that airway stem cells from patients with COPD with lung cancer might contribute to increased radiation sensitivity. We used the air-liquid interface model, a three-dimensional (3D) culture system, to compare the radiation response of primary human airway stem cells from healthy and patients with COPD. We found that COPD-derived airway stem cells, compared to healthy airway stem cell cultures, exhibited disproportionate pathological mucociliary differentiation, aberrant cell cycle checkpoints, residual DNA damage, reduced survival of stem cells and self-renewal, and terminally differentiated cells post-irradiation, which could be reversed by blocking the Notch pathway using small-molecule γ-secretase inhibitors. Our findings shed light on the mechanisms underlying the increased radiation sensitivity of COPD and suggest that airway stem cells reflect part of the pathological remodeling seen in lung tissue from patients with lung cancer receiving thoracic RT.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"927-939"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386216/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: EPHA2 is a novel cell surface marker of OCT4-positive undifferentiated cells during the differentiation of mouse and human pluripotent stem cells.","authors":"","doi":"10.1093/stcltm/szae054","DOIUrl":"10.1093/stcltm/szae054","url":null,"abstract":"","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"940"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taylor N Brinsfield, Noah R Pinson, Aaron D Levine
Unproven cell-based interventions (CBIs) emerged early in the 2000s as a particularly problematic form of unproven therapy and remain a vexing policy problem to this day. These unproven interventions can harm patients both physically and financially and can complicate the process of developing a rigorous evidence base to support the translation of novel stem cell or other cell therapies. In this concise review, we examine the emergence of unproven CBIs and the various policy approaches that have been pursued or proposed to address this problem. We review the evolution of this field over the last 2 decades and explore why these policy efforts have proven challenging. We conclude by highlighting potential directions that the field could evolve and urging continued attention to both current and future forms of unproven CBIs to minimize future risks to patients and the field and to promote the development of evidence-based cell therapies.
{"title":"The evolution and ongoing challenge of unproven cell-based interventions.","authors":"Taylor N Brinsfield, Noah R Pinson, Aaron D Levine","doi":"10.1093/stcltm/szae050","DOIUrl":"10.1093/stcltm/szae050","url":null,"abstract":"<p><p>Unproven cell-based interventions (CBIs) emerged early in the 2000s as a particularly problematic form of unproven therapy and remain a vexing policy problem to this day. These unproven interventions can harm patients both physically and financially and can complicate the process of developing a rigorous evidence base to support the translation of novel stem cell or other cell therapies. In this concise review, we examine the emergence of unproven CBIs and the various policy approaches that have been pursued or proposed to address this problem. We review the evolution of this field over the last 2 decades and explore why these policy efforts have proven challenging. We conclude by highlighting potential directions that the field could evolve and urging continued attention to both current and future forms of unproven CBIs to minimize future risks to patients and the field and to promote the development of evidence-based cell therapies.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"851-858"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eun Joo Lee, Sun Jeong Kim, Su Yeon Jeon, Soobeen Chung, Sang Eon Park, Jae-Sung Kim, Suk-Joo Choi, Soo-Young Oh, Gyu Ha Ryu, Hong Bae Jeon, Jong Wook Chang
Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.
{"title":"Glutaminase-1 inhibition alleviates senescence of Wharton's jelly-derived mesenchymal stem cells via senolysis.","authors":"Eun Joo Lee, Sun Jeong Kim, Su Yeon Jeon, Soobeen Chung, Sang Eon Park, Jae-Sung Kim, Suk-Joo Choi, Soo-Young Oh, Gyu Ha Ryu, Hong Bae Jeon, Jong Wook Chang","doi":"10.1093/stcltm/szae053","DOIUrl":"10.1093/stcltm/szae053","url":null,"abstract":"<p><p>Replicative senescence of mesenchymal stem cells (MSCs) caused by repeated cell culture undermines their potential as a cell therapy because of the reduction in their proliferation and therapeutic potential. Glutaminase-1 (GLS1) is reported to be involved in the survival of senescent cells, and inhibition of GLS1 alleviates age-related dysfunction via senescent cell removal. In the present study, we attempted to elucidate the association between MSC senescence and GLS1. We conducted in vitro and in vivo experiments to analyze the effect of GLS1 inhibition on senolysis and the therapeutic effects of MSCs. Inhibition of GLS1 in Wharton's jelly-derived MSCs (WJ-MSCs) reduced the expression of aging-related markers, such as p16, p21, and senescence-associated secretory phenotype genes, by senolysis. Replicative senescence-alleviated WJ-MSCs, which recovered after short-term treatment with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES), showed increased proliferation and therapeutic effects compared to those observed with senescent WJ-MSCs. Moreover, compared to senescent WJ-MSCs, replicative senescence-alleviated WJ-MSCs inhibited apoptosis in serum-starved C2C12 cells, enhanced muscle formation, and hindered apoptosis and fibrosis in mdx mice. These results imply that GLS1 inhibition can ameliorate the therapeutic effects of senescent WJ-MSCs in patients with muscle diseases such as Duchenne muscular dystrophy. In conclusion, GLS1 is a key factor in modulating the senescence mechanism of MSCs, and regulation of GLS1 may enhance the therapeutic effects of senescent MSCs, thereby increasing the success rate of clinical trials involving MSCs.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"873-885"},"PeriodicalIF":5.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}