Pub Date : 2024-08-29DOI: 10.1007/s00066-024-02280-0
Vesna Miladinovic, Yvonne L B Klaver, Augustinus D G Krol, Michiel Kroesen, Berit M Verbist, Steven J M Habraken, Wouter R van Furth, Ida E M Coremans
Background: Chordomas and chondrosarcomas of the skull base are rare, slowly growing malignant bone neoplasms. Despite their radioresistant properties, proton therapy has been successfully used as an adjunct to resection or as a definitive treatment. Herewith, we present our experience with robustly optimized intensity-modulated proton therapy (IMPT) and related toxicities in skull base chordoma and chondrosarcoma patients treated at HollandPTC, Delft, the Netherlands.
Methods: Clinical data, treatment plans, and acute toxicities of patients treated between July 2019 and August 2021 were reviewed. CT and 3.0T MRI scans for treatment planning were performed in supine position in a thermoplastic mold. In total, 21 dose optimization and 28 dose evaluation scenarios were simulated. Acute toxicity was scored weekly before and during the treatment according to the CTCAE v4.0. Median follow-up was 35 months (range 12-36 months).
Results: Overall, 9 chordoma and 3 chondrosarcoma patients with 1-3 resections prior to IMPT were included; 4 patients had titanium implants. Brainstem core and surface and spinal cord core and surface were used for nominal plan robust optimization in 11, 10, 8, and 7 patients, respectively. Middle ear inflammation, dry mouth, radiation dermatitis, taste disorder, and/or alopecia of grades 1-3 were noted at the end of treatment among 6 patients without similar complaints at inclusion; symptoms disappeared 3 months following the treatment.
Conclusion: Robustly optimized IMPT is clinically feasible as a postoperative treatment for skull base chordoma and chondrosarcoma patients. We observed acceptable early toxicities (grade 1-3) that disappeared within the first 3 months after irradiation.
{"title":"Robust IMPT and follow-up toxicity in skull base chordoma and chondrosarcoma-a single-institution clinical experience.","authors":"Vesna Miladinovic, Yvonne L B Klaver, Augustinus D G Krol, Michiel Kroesen, Berit M Verbist, Steven J M Habraken, Wouter R van Furth, Ida E M Coremans","doi":"10.1007/s00066-024-02280-0","DOIUrl":"https://doi.org/10.1007/s00066-024-02280-0","url":null,"abstract":"<p><strong>Background: </strong>Chordomas and chondrosarcomas of the skull base are rare, slowly growing malignant bone neoplasms. Despite their radioresistant properties, proton therapy has been successfully used as an adjunct to resection or as a definitive treatment. Herewith, we present our experience with robustly optimized intensity-modulated proton therapy (IMPT) and related toxicities in skull base chordoma and chondrosarcoma patients treated at HollandPTC, Delft, the Netherlands.</p><p><strong>Methods: </strong>Clinical data, treatment plans, and acute toxicities of patients treated between July 2019 and August 2021 were reviewed. CT and 3.0T MRI scans for treatment planning were performed in supine position in a thermoplastic mold. In total, 21 dose optimization and 28 dose evaluation scenarios were simulated. Acute toxicity was scored weekly before and during the treatment according to the CTCAE v4.0. Median follow-up was 35 months (range 12-36 months).</p><p><strong>Results: </strong>Overall, 9 chordoma and 3 chondrosarcoma patients with 1-3 resections prior to IMPT were included; 4 patients had titanium implants. Brainstem core and surface and spinal cord core and surface were used for nominal plan robust optimization in 11, 10, 8, and 7 patients, respectively. Middle ear inflammation, dry mouth, radiation dermatitis, taste disorder, and/or alopecia of grades 1-3 were noted at the end of treatment among 6 patients without similar complaints at inclusion; symptoms disappeared 3 months following the treatment.</p><p><strong>Conclusion: </strong>Robustly optimized IMPT is clinically feasible as a postoperative treatment for skull base chordoma and chondrosarcoma patients. We observed acceptable early toxicities (grade 1-3) that disappeared within the first 3 months after irradiation.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142112165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s00066-024-02288-6
C Zamboglou, D M Aebersold, C Albrecht, D Boehmer, U Ganswindt, N-S Schmidt-Hegemann, S Hoecht, T Hölscher, S A Koerber, A-C Mueller, P Niehoff, J C Peeken, M Pinkawa, B Polat, S K B Spohn, F Wolf, D Zips, T Wiegel
A significant number of prostate cancer patients are long-term survivors after primary definitive therapy, and the occurrence of late side effects, such as second primary cancers, has gained interest. The aim of this editorial is to discuss the most current evidence on second primary cancers based on six retrospective studies published in 2021-2024 using large data repositories not accounting for all possible confounding factors, such as smoking or pre-existing comorbidities. Overall, prostate cancer patients treated with curative radiotherapy have an increased risk (0.7-1%) of the development of second primary cancers compared to patients treated with surgery up to 25 years after treatment. However, current evidence suggests that the implementation of intensity modulated radiation therapy is not increasing the risk of second primary cancers compared to conformal 3D-planned radiotherapy. Furthermore, increasing evidence indicates that highly conformal radiotherapy techniques may not increase the probability of second primary cancers compared to radical prostatectomy. Consequently, future studies should consider the radiotherapy technique and other confounding factors to provide a more accurate estimation of the occurrence of second primary cancers.
{"title":"The risk of second malignancies following prostate cancer radiotherapy in the era of conformal radiotherapy: a statement of the Prostate Cancer Working Group of the German Society of Radiation Oncology (DEGRO).","authors":"C Zamboglou, D M Aebersold, C Albrecht, D Boehmer, U Ganswindt, N-S Schmidt-Hegemann, S Hoecht, T Hölscher, S A Koerber, A-C Mueller, P Niehoff, J C Peeken, M Pinkawa, B Polat, S K B Spohn, F Wolf, D Zips, T Wiegel","doi":"10.1007/s00066-024-02288-6","DOIUrl":"https://doi.org/10.1007/s00066-024-02288-6","url":null,"abstract":"<p><p>A significant number of prostate cancer patients are long-term survivors after primary definitive therapy, and the occurrence of late side effects, such as second primary cancers, has gained interest. The aim of this editorial is to discuss the most current evidence on second primary cancers based on six retrospective studies published in 2021-2024 using large data repositories not accounting for all possible confounding factors, such as smoking or pre-existing comorbidities. Overall, prostate cancer patients treated with curative radiotherapy have an increased risk (0.7-1%) of the development of second primary cancers compared to patients treated with surgery up to 25 years after treatment. However, current evidence suggests that the implementation of intensity modulated radiation therapy is not increasing the risk of second primary cancers compared to conformal 3D-planned radiotherapy. Furthermore, increasing evidence indicates that highly conformal radiotherapy techniques may not increase the probability of second primary cancers compared to radical prostatectomy. Consequently, future studies should consider the radiotherapy technique and other confounding factors to provide a more accurate estimation of the occurrence of second primary cancers.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1007/s00066-024-02264-0
H P Kok, J Crezee
Background: Hyperthermia treatment planning can be supportive to ensure treatment quality, provided reliable prediction of the heating characteristics (i.e., focus size and effects of phase-amplitude and frequency steering) of the device concerned is possible. This study validates the predictions made by the treatment planning system Plan2Heat for various clinically used phased-array systems.
Methods: The evaluated heating systems were AMC-2, AMC-4/ALBA-4D (Med-Logix srl, Rome, Italy), BSD Sigma-30, and Sigma-60 (Pyrexar Medical, Salt Lake City, UT, USA). Plan2Heat was used for specific absorption rate (SAR) simulations in phantoms representing measurement set-ups reported in the literature. SAR profiles from published measurement data based on E‑field or temperature rise were used to compare the device-specific heating characteristics predicted by Plan2Heat.
Results: Plan2Heat is able to predict the correct location and size of the SAR focus, as determined by phase-amplitude settings and operating frequency. Measured effects of phase-amplitude steering on focus shifts (i.e., local SAR minima or maxima) were also correctly reflected in treatment planning predictions. Deviations between measurements and simulations were typically < 10-20%, which is within the range of experimental uncertainty for such phased-array measurements.
Conclusion: Plan2Heat is capable of adequately predicting the heating characteristics of the AMC‑2, AMC-4/ALBA-4D, BSD Sigma-30, and Sigma-60 phased-array systems routinely used in clinical hyperthermia.
背景:如果能对相关设备的加热特性(即病灶大小以及相位振幅和频率转向的影响)进行可靠的预测,那么热疗治疗计划将有助于确保治疗质量。本研究验证了治疗计划系统 Plan2Heat 对各种临床使用的相控阵系统所做的预测:评估的加热系统包括 AMC-2、AMC-4/ALBA-4D(Med-Logix srl,意大利罗马)、BSD Sigma-30 和 Sigma-60(Pyrexar Medical,美国犹他州盐湖城)。Plan2Heat 用于模拟模型中的比吸收率 (SAR),模型代表了文献中报道的测量设置。使用基于电场或温升的已发表测量数据的 SAR 曲线来比较 Plan2Heat 预测的特定设备加热特性:结果:Plan2Heat 能够预测由相位振幅设置和工作频率决定的 SAR 焦点的正确位置和大小。相位振幅转向对病灶偏移(即局部 SAR 最小值或最大值)的测量效果也正确反映在治疗计划预测中。测量结果与模拟结果之间的偏差通常为结论:Plan2Heat 能够充分预测临床热疗中常用的 AMC-2、AMC-4/ALBA-4D、BSD Sigma-30 和 Sigma-60 相控阵系统的加热特性。
{"title":"Validation of the implementation of phased-array heating systems in Plan2Heat.","authors":"H P Kok, J Crezee","doi":"10.1007/s00066-024-02264-0","DOIUrl":"https://doi.org/10.1007/s00066-024-02264-0","url":null,"abstract":"<p><strong>Background: </strong>Hyperthermia treatment planning can be supportive to ensure treatment quality, provided reliable prediction of the heating characteristics (i.e., focus size and effects of phase-amplitude and frequency steering) of the device concerned is possible. This study validates the predictions made by the treatment planning system Plan2Heat for various clinically used phased-array systems.</p><p><strong>Methods: </strong>The evaluated heating systems were AMC-2, AMC-4/ALBA-4D (Med-Logix srl, Rome, Italy), BSD Sigma-30, and Sigma-60 (Pyrexar Medical, Salt Lake City, UT, USA). Plan2Heat was used for specific absorption rate (SAR) simulations in phantoms representing measurement set-ups reported in the literature. SAR profiles from published measurement data based on E‑field or temperature rise were used to compare the device-specific heating characteristics predicted by Plan2Heat.</p><p><strong>Results: </strong>Plan2Heat is able to predict the correct location and size of the SAR focus, as determined by phase-amplitude settings and operating frequency. Measured effects of phase-amplitude steering on focus shifts (i.e., local SAR minima or maxima) were also correctly reflected in treatment planning predictions. Deviations between measurements and simulations were typically < 10-20%, which is within the range of experimental uncertainty for such phased-array measurements.</p><p><strong>Conclusion: </strong>Plan2Heat is capable of adequately predicting the heating characteristics of the AMC‑2, AMC-4/ALBA-4D, BSD Sigma-30, and Sigma-60 phased-array systems routinely used in clinical hyperthermia.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1007/s00066-024-02277-9
Moritz Rabe, Christopher Kurz, Adrian Thummerer, Guillaume Landry
Radiation therapy (RT) is a highly digitized field relying heavily on computational methods and, as such, has a high affinity for the automation potential afforded by modern artificial intelligence (AI). This is particularly relevant where imaging is concerned and is especially so during image-guided RT (IGRT). With the advent of online adaptive RT (ART) workflows at magnetic resonance (MR) linear accelerators (linacs) and at cone-beam computed tomography (CBCT) linacs, the need for automation is further increased. AI as applied to modern IGRT is thus one area of RT where we can expect important developments in the near future. In this review article, after outlining modern IGRT and online ART workflows, we cover the role of AI in CBCT and MRI correction for dose calculation, auto-segmentation on IGRT imaging, motion management, and response assessment based on in-room imaging.
{"title":"Artificial intelligence for treatment delivery: image-guided radiotherapy.","authors":"Moritz Rabe, Christopher Kurz, Adrian Thummerer, Guillaume Landry","doi":"10.1007/s00066-024-02277-9","DOIUrl":"https://doi.org/10.1007/s00066-024-02277-9","url":null,"abstract":"<p><p>Radiation therapy (RT) is a highly digitized field relying heavily on computational methods and, as such, has a high affinity for the automation potential afforded by modern artificial intelligence (AI). This is particularly relevant where imaging is concerned and is especially so during image-guided RT (IGRT). With the advent of online adaptive RT (ART) workflows at magnetic resonance (MR) linear accelerators (linacs) and at cone-beam computed tomography (CBCT) linacs, the need for automation is further increased. AI as applied to modern IGRT is thus one area of RT where we can expect important developments in the near future. In this review article, after outlining modern IGRT and online ART workflows, we cover the role of AI in CBCT and MRI correction for dose calculation, auto-segmentation on IGRT imaging, motion management, and response assessment based on in-room imaging.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1007/s00066-024-02286-8
Nuo Yu, Xiankai Chen, Jiao Li, Xiaozheng Kang, Zhen Wang, Ruixiang Zhang, Jianjun Qin, Yong Li, Qingfeng Zheng, Guojie Feng, Lei Deng, Tao Zhang, Wenqing Wang, Wenyang Liu, Jianyang Wang, Qinfu Feng, Jima Lv, Zongmei Zhou, Zefen Xiao, Nan Bi, Yin Li, Xin Wang
Background: To evaluate the efficacy and safety of nab-paclitaxel plus cisplatin as the regimen of conversional chemoradiotherapy (cCRT) in locally advanced borderline resectable or unresectable esophageal squamous cell carcinoma (ESCC).
Methods: Patients with locally advanced ESCC (cT3‑4, Nany, M0‑1, M1 was limited to lymph node metastasis in the supraclavicular area) were enrolled. All the patients received the cCRT of nab-paclitaxel plus cisplatin. After the cCRT, those resectable patients received esophagectomy; those unresectable patients continued to receive the definitive chemoradiotherapy (dCRT). The locoregional control (LRC), overall survival (OS), event-free survival (EFS), distant metastasis free survival (DMFS), pathological complete response (pCR), R0 resection rate, adverse events (AEs) and postoperative complications were calculated.
Results: 45 patients with ESCC treated from October 2019 to May 2021 were finally included. The median follow-up time was 30.3 months. The LRC, OS, EFS, DMFS at 1 and 2 years were 81.5%, 86.6%, 64.3%, 73.2 and 72.4%, 68.8%, 44.8%, 52.7% respectively. 21 patients (46.7%) received conversional chemoradiotherapy plus surgery (cCRT+S). The pCR rate and R0 resection rate were 47.6 and 84.0%. The LRC rate at 1 and 2 years were 95.0%, 87.1% in cCRT+S patitents and 69.3%, 58.7% in dCRT patients respectively (HR, 5.14; 95%CI, 1.10-23.94; P = 0.021). The toxicities during chemoradiotherapy were tolerated, and the most common grade 3-4 toxicitiy was radiation esophagitis (15.6%). The most common postoperative complication was pleural effusion (38.1%) and no grade ≥ IIIb complications were observed.
Conclusion: nab-paclitaxel plus cisplatin are safe as the regimen of conversional chemoradiotherapy of ESCC.
{"title":"Conversion chemoradiotherapy combined with nab-paclitaxel plus cisplatin in patients with locally advanced borderline-resectable or unresectable esophageal squamous cell carcinoma: a phase i/ii prospective cohort study.","authors":"Nuo Yu, Xiankai Chen, Jiao Li, Xiaozheng Kang, Zhen Wang, Ruixiang Zhang, Jianjun Qin, Yong Li, Qingfeng Zheng, Guojie Feng, Lei Deng, Tao Zhang, Wenqing Wang, Wenyang Liu, Jianyang Wang, Qinfu Feng, Jima Lv, Zongmei Zhou, Zefen Xiao, Nan Bi, Yin Li, Xin Wang","doi":"10.1007/s00066-024-02286-8","DOIUrl":"https://doi.org/10.1007/s00066-024-02286-8","url":null,"abstract":"<p><strong>Background: </strong>To evaluate the efficacy and safety of nab-paclitaxel plus cisplatin as the regimen of conversional chemoradiotherapy (cCRT) in locally advanced borderline resectable or unresectable esophageal squamous cell carcinoma (ESCC).</p><p><strong>Methods: </strong>Patients with locally advanced ESCC (cT3‑4, Nany, M0‑1, M1 was limited to lymph node metastasis in the supraclavicular area) were enrolled. All the patients received the cCRT of nab-paclitaxel plus cisplatin. After the cCRT, those resectable patients received esophagectomy; those unresectable patients continued to receive the definitive chemoradiotherapy (dCRT). The locoregional control (LRC), overall survival (OS), event-free survival (EFS), distant metastasis free survival (DMFS), pathological complete response (pCR), R0 resection rate, adverse events (AEs) and postoperative complications were calculated.</p><p><strong>Results: </strong>45 patients with ESCC treated from October 2019 to May 2021 were finally included. The median follow-up time was 30.3 months. The LRC, OS, EFS, DMFS at 1 and 2 years were 81.5%, 86.6%, 64.3%, 73.2 and 72.4%, 68.8%, 44.8%, 52.7% respectively. 21 patients (46.7%) received conversional chemoradiotherapy plus surgery (cCRT+S). The pCR rate and R0 resection rate were 47.6 and 84.0%. The LRC rate at 1 and 2 years were 95.0%, 87.1% in cCRT+S patitents and 69.3%, 58.7% in dCRT patients respectively (HR, 5.14; 95%CI, 1.10-23.94; P = 0.021). The toxicities during chemoradiotherapy were tolerated, and the most common grade 3-4 toxicitiy was radiation esophagitis (15.6%). The most common postoperative complication was pleural effusion (38.1%) and no grade ≥ IIIb complications were observed.</p><p><strong>Conclusion: </strong>nab-paclitaxel plus cisplatin are safe as the regimen of conversional chemoradiotherapy of ESCC.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1007/s00066-024-02271-1
Raluca Stoian, Hannes P Neeff, Mark Gainey, Michael Kollefrath, Simon Kirste, Constantinos Zamboglou, Jan Philipp Harald Exner, Dimos Baltas, Stefan Fichtner Feigl, Anca-Ligia Grosu, Tanja Sprave
Background: Locally advanced recurrent rectal cancer (RRC) requires a multimodal approach. Intraoperative high-dose-rate brachytherapy (HDR-BT) may reduce the risk of local recurrence. However, the optimal therapeutic regimen remains unclear. The aim of this retrospective monocentric study was to evaluate the toxicity of HDR-BT after resection of RRC.
Methods: Between 2018 and 2022, 17 patients with RRC received resection and HDR-BT. HDR-BT was delivered alone or as an anticipated boost with a median dose of 13 Gy (range 10-13 Gy) using an 192iridium microSelectron HDR remote afterloader (Elekta AB, Stockholm, Sweden). All participants were followed for assessment of acute and late adverse events using the Common Terminology Criteria for Adverse Events version 5.0 and the modified Late Effects in Normal Tissues criteria (subjective, objective, management, and analytic; LENT-SOMA) at 3‑ to 6‑month intervals.
Results: A total of 17 patients were treated by HDR-BT with median dose of 13 Gy (range 10-13 Gy). Most patients (47%) had an RRC tumor stage of cT3‑4 N0. At the time of RRC diagnosis, 7 patients (41.2%) had visceral metastases (hepatic, pulmonary, or peritoneal) in the sense of oligometastatic disease. The median interval between primary tumor resection and diagnosis of RRC was 17 months (range 1-65 months). In addition to HDR-BT, 2 patients received long-course chemoradiotherapy (CRT; up to 50.4 Gy in 1.8-Gy fractions) and 2 patients received short-course CRT up to 36 Gy in 2‑Gy fractions. For concomitant CRT, all patients received 5‑fluorouracil (5-FU) or capecitabine. Median follow-up was 13 months (range 1-54). The most common acute grade 1-2 toxicities were pain in 7 patients (41.2%), wound healing disorder in 3 patients (17.6%), and lymphedema in 2 patients (11.8%). Chronic toxicities were similar: grade 1-2 pain in 7 patients (41.2%), wound healing disorder in 3 patients (17.6%), and incontinence in 2 patients (11.8%). No patient experienced a grade ≥3 event.
Conclusion: Reirradiation using HDR-BT is well tolerated with low toxicity. An individualized multimodality approach using HDR-BT in the oligometastatic setting should be evaluated in prospective multi-institutional studies.
{"title":"Outcome of intraoperative brachytherapy as a salvage treatment for locally recurrent rectal cancer.","authors":"Raluca Stoian, Hannes P Neeff, Mark Gainey, Michael Kollefrath, Simon Kirste, Constantinos Zamboglou, Jan Philipp Harald Exner, Dimos Baltas, Stefan Fichtner Feigl, Anca-Ligia Grosu, Tanja Sprave","doi":"10.1007/s00066-024-02271-1","DOIUrl":"https://doi.org/10.1007/s00066-024-02271-1","url":null,"abstract":"<p><strong>Background: </strong>Locally advanced recurrent rectal cancer (RRC) requires a multimodal approach. Intraoperative high-dose-rate brachytherapy (HDR-BT) may reduce the risk of local recurrence. However, the optimal therapeutic regimen remains unclear. The aim of this retrospective monocentric study was to evaluate the toxicity of HDR-BT after resection of RRC.</p><p><strong>Methods: </strong>Between 2018 and 2022, 17 patients with RRC received resection and HDR-BT. HDR-BT was delivered alone or as an anticipated boost with a median dose of 13 Gy (range 10-13 Gy) using an <sup>192</sup>iridium microSelectron HDR remote afterloader (Elekta AB, Stockholm, Sweden). All participants were followed for assessment of acute and late adverse events using the Common Terminology Criteria for Adverse Events version 5.0 and the modified Late Effects in Normal Tissues criteria (subjective, objective, management, and analytic; LENT-SOMA) at 3‑ to 6‑month intervals.</p><p><strong>Results: </strong>A total of 17 patients were treated by HDR-BT with median dose of 13 Gy (range 10-13 Gy). Most patients (47%) had an RRC tumor stage of cT3‑4 N0. At the time of RRC diagnosis, 7 patients (41.2%) had visceral metastases (hepatic, pulmonary, or peritoneal) in the sense of oligometastatic disease. The median interval between primary tumor resection and diagnosis of RRC was 17 months (range 1-65 months). In addition to HDR-BT, 2 patients received long-course chemoradiotherapy (CRT; up to 50.4 Gy in 1.8-Gy fractions) and 2 patients received short-course CRT up to 36 Gy in 2‑Gy fractions. For concomitant CRT, all patients received 5‑fluorouracil (5-FU) or capecitabine. Median follow-up was 13 months (range 1-54). The most common acute grade 1-2 toxicities were pain in 7 patients (41.2%), wound healing disorder in 3 patients (17.6%), and lymphedema in 2 patients (11.8%). Chronic toxicities were similar: grade 1-2 pain in 7 patients (41.2%), wound healing disorder in 3 patients (17.6%), and incontinence in 2 patients (11.8%). No patient experienced a grade ≥3 event.</p><p><strong>Conclusion: </strong>Reirradiation using HDR-BT is well tolerated with low toxicity. An individualized multimodality approach using HDR-BT in the oligometastatic setting should be evaluated in prospective multi-institutional studies.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1007/s00066-024-02272-0
Yixing Huang, Ahmed Gomaa, Daniel Höfler, Philipp Schubert, Udo Gaipl, Benjamin Frey, Rainer Fietkau, Christoph Bert, Florian Putz
Purpose: In the rapidly expanding field of artificial intelligence (AI) there is a wealth of literature detailing the myriad applications of AI, particularly in the realm of deep learning. However, a review that elucidates the technical principles of deep learning as relevant to radiation oncology in an easily understandable manner is still notably lacking. This paper aims to fill this gap by providing a comprehensive guide to the principles of deep learning that is specifically tailored toward radiation oncology.
Methods: In light of the extensive variety of AI methodologies, this review selectively concentrates on the specific domain of deep learning. It emphasizes the principal categories of deep learning models and delineates the methodologies for training these models effectively.
Results: This review initially delineates the distinctions between AI and deep learning as well as between supervised and unsupervised learning. Subsequently, it elucidates the fundamental principles of major deep learning models, encompassing multilayer perceptrons (MLPs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), transformers, generative adversarial networks (GANs), diffusion-based generative models, and reinforcement learning. For each category, it presents representative networks alongside their specific applications in radiation oncology. Moreover, the review outlines critical factors essential for training deep learning models, such as data preprocessing, loss functions, optimizers, and other pivotal training parameters including learning rate and batch size.
Conclusion: This review provides a comprehensive overview of deep learning principles tailored toward radiation oncology. It aims to enhance the understanding of AI-based research and software applications, thereby bridging the gap between complex technological concepts and clinical practice in radiation oncology.
{"title":"Principles of artificial intelligence in radiooncology.","authors":"Yixing Huang, Ahmed Gomaa, Daniel Höfler, Philipp Schubert, Udo Gaipl, Benjamin Frey, Rainer Fietkau, Christoph Bert, Florian Putz","doi":"10.1007/s00066-024-02272-0","DOIUrl":"https://doi.org/10.1007/s00066-024-02272-0","url":null,"abstract":"<p><strong>Purpose: </strong>In the rapidly expanding field of artificial intelligence (AI) there is a wealth of literature detailing the myriad applications of AI, particularly in the realm of deep learning. However, a review that elucidates the technical principles of deep learning as relevant to radiation oncology in an easily understandable manner is still notably lacking. This paper aims to fill this gap by providing a comprehensive guide to the principles of deep learning that is specifically tailored toward radiation oncology.</p><p><strong>Methods: </strong>In light of the extensive variety of AI methodologies, this review selectively concentrates on the specific domain of deep learning. It emphasizes the principal categories of deep learning models and delineates the methodologies for training these models effectively.</p><p><strong>Results: </strong>This review initially delineates the distinctions between AI and deep learning as well as between supervised and unsupervised learning. Subsequently, it elucidates the fundamental principles of major deep learning models, encompassing multilayer perceptrons (MLPs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), transformers, generative adversarial networks (GANs), diffusion-based generative models, and reinforcement learning. For each category, it presents representative networks alongside their specific applications in radiation oncology. Moreover, the review outlines critical factors essential for training deep learning models, such as data preprocessing, loss functions, optimizers, and other pivotal training parameters including learning rate and batch size.</p><p><strong>Conclusion: </strong>This review provides a comprehensive overview of deep learning principles tailored toward radiation oncology. It aims to enhance the understanding of AI-based research and software applications, thereby bridging the gap between complex technological concepts and clinical practice in radiation oncology.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1007/s00066-024-02262-2
Ayhan Can Erdur, Daniel Rusche, Daniel Scholz, Johannes Kiechle, Stefan Fischer, Óscar Llorián-Salvador, Josef A Buchner, Mai Q Nguyen, Lucas Etzel, Jonas Weidner, Marie-Christin Metz, Benedikt Wiestler, Julia Schnabel, Daniel Rueckert, Stephanie E Combs, Jan C Peeken
The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.
{"title":"Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.","authors":"Ayhan Can Erdur, Daniel Rusche, Daniel Scholz, Johannes Kiechle, Stefan Fischer, Óscar Llorián-Salvador, Josef A Buchner, Mai Q Nguyen, Lucas Etzel, Jonas Weidner, Marie-Christin Metz, Benedikt Wiestler, Julia Schnabel, Daniel Rueckert, Stephanie E Combs, Jan C Peeken","doi":"10.1007/s00066-024-02262-2","DOIUrl":"https://doi.org/10.1007/s00066-024-02262-2","url":null,"abstract":"<p><p>The rapid development of artificial intelligence (AI) has gained importance, with many tools already entering our daily lives. The medical field of radiation oncology is also subject to this development, with AI entering all steps of the patient journey. In this review article, we summarize contemporary AI techniques and explore the clinical applications of AI-based automated segmentation models in radiotherapy planning, focusing on delineation of organs at risk (OARs), the gross tumor volume (GTV), and the clinical target volume (CTV). Emphasizing the need for precise and individualized plans, we review various commercial and freeware segmentation tools and also state-of-the-art approaches. Through our own findings and based on the literature, we demonstrate improved efficiency and consistency as well as time savings in different clinical scenarios. Despite challenges in clinical implementation such as domain shifts, the potential benefits for personalized treatment planning are substantial. The integration of mathematical tumor growth models and AI-based tumor detection further enhances the possibilities for refining target volumes. As advancements continue, the prospect of one-stop-shop segmentation and radiotherapy planning represents an exciting frontier in radiotherapy, potentially enabling fast treatment with enhanced precision and individualization.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s00066-024-02266-y
Philipp Schubert, Vratislav Strnad, Thomas Weißmann, Claudia Schweizer, Michael Lotter, Stephan Kreppner, Andre Karius, Rainer Fietkau, Ricarda Merten
Objective: There are numerous curative treatment possibilities for prostate cancer. In patients who have undergone rectal extirpation for rectal cancer treatment, curative options are limited due to anatomic changes and previous irradiation of the pelvis. In this analysis, we validate the feasibility of CT-guided transperineal interstitial brachytherapy for this specific scenario.
Patients and methods: We analyzed the treatment procedures and outcomes of 5 patients with metachronic nonmetastatic prostate cancer. Ultrasound-guided brachytherapy was not possible in any of the patients. Of these 5 patients, 3 were treated for prostate cancer using temporary brachytherapy with Ir-192 only, and 2 were treated with external-beam radiation therapy and temporary brachytherapy as a boost. CT-guided brachytherapy was performed in all patients. We analyzed the feasibility, efficacy, treatment-related toxicity, and quality of life (EORTC-30, IEFF, IPSS, and ICIQ questionnaires) of the treatments.
Results: Median follow-up was 35 months. Two out of five patients received boost irradiation (HDR 2 × 9 Gy, PDR 30 Gy). Three out of five patients were treated with PDR brachytherapy in two sessions up to a total dose of 60 Gy. Dosimetric parameters were documented as median values as follows: V100 94.7% (94.5-98.4%), D2bladder 64.3% (50.9-78.3%), D10urethra 131.05% (123.2%-141.2%), and D30urethra 122.45% (116.2%-129.5%). At the time of analysis, no biochemical recurrence had been documented. Furthermore, neither early nor late side effects exceeding CTCAE grade 2 were documented.
Conclusion: CT-guided transperineal brachytherapy of the prostate in patients with previous rectal surgery and radiation therapy is safe and represents a possible curative treatment option. Brachytherapy can be considered for patients with metachronic prostate cancer in this specific scenario, albeit preferably in experienced high-volume centers.
{"title":"Protocol-based CT-guided brachytherapy for patients with prostate cancer and previous rectal extirpation-a curative approach.","authors":"Philipp Schubert, Vratislav Strnad, Thomas Weißmann, Claudia Schweizer, Michael Lotter, Stephan Kreppner, Andre Karius, Rainer Fietkau, Ricarda Merten","doi":"10.1007/s00066-024-02266-y","DOIUrl":"https://doi.org/10.1007/s00066-024-02266-y","url":null,"abstract":"<p><strong>Objective: </strong>There are numerous curative treatment possibilities for prostate cancer. In patients who have undergone rectal extirpation for rectal cancer treatment, curative options are limited due to anatomic changes and previous irradiation of the pelvis. In this analysis, we validate the feasibility of CT-guided transperineal interstitial brachytherapy for this specific scenario.</p><p><strong>Patients and methods: </strong>We analyzed the treatment procedures and outcomes of 5 patients with metachronic nonmetastatic prostate cancer. Ultrasound-guided brachytherapy was not possible in any of the patients. Of these 5 patients, 3 were treated for prostate cancer using temporary brachytherapy with Ir-192 only, and 2 were treated with external-beam radiation therapy and temporary brachytherapy as a boost. CT-guided brachytherapy was performed in all patients. We analyzed the feasibility, efficacy, treatment-related toxicity, and quality of life (EORTC-30, IEFF, IPSS, and ICIQ questionnaires) of the treatments.</p><p><strong>Results: </strong>Median follow-up was 35 months. Two out of five patients received boost irradiation (HDR 2 × 9 Gy, PDR 30 Gy). Three out of five patients were treated with PDR brachytherapy in two sessions up to a total dose of 60 Gy. Dosimetric parameters were documented as median values as follows: V100 94.7% (94.5-98.4%), D2<sub>bladder</sub> 64.3% (50.9-78.3%), D10<sub>urethra</sub> 131.05% (123.2%-141.2%), and D30<sub>urethra</sub> 122.45% (116.2%-129.5%). At the time of analysis, no biochemical recurrence had been documented. Furthermore, neither early nor late side effects exceeding CTCAE grade 2 were documented.</p><p><strong>Conclusion: </strong>CT-guided transperineal brachytherapy of the prostate in patients with previous rectal surgery and radiation therapy is safe and represents a possible curative treatment option. Brachytherapy can be considered for patients with metachronic prostate cancer in this specific scenario, albeit preferably in experienced high-volume centers.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}