首页 > 最新文献

Surface Innovations最新文献

英文 中文
Study on the structure and corrosion resistance of micro-arc oxidation coatings on TA10 titanium alloy with different graphite additions 不同石墨添加量TA10钛合金微弧氧化膜的组织及耐蚀性研究
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-10-04 DOI: 10.1680/jsuin.23.00040
X W Chen, S Tang, C Wu, W L Xie, M Zhang, D F Zhang
To improve the corrosion resistance of the Ti–0.3Mo–0.8Ni (TA10) titanium alloy, a micro-arc oxidation coating was prepared on its surface, and the effect of different amounts of graphite addition on the structure and corrosion resistance of the coatings was studied. Through methods such as X-ray diffraction phase analysis, microscopic morphology analysis, roughness analysis, coating thickness analysis and hardness testing, it was found that the added graphite particles can react with silicon (Si) in the electrolyte to promote the formation of the silicon carbide (SiC) phase, thereby improving the surface morphology of the coatings, increasing the thickness of the coatings and improving the microhardness of the coatings. At the same time, dynamic potential polarization curve and scanning electrochemical test results show that the formation of the silicon carbide phase can increase self-corrosion potential and reduce self-corrosion current density. When the amount of graphite added is 1.0 g/l, the self-corrosion potential and self-corrosion current density are −0.129 V and 2.9 × 10 −8 A/cm 2 , respectively. This indicates that adding graphite particles can enhance the corrosion resistance of the TA10 titanium alloy.
为了提高Ti-0.3Mo-0.8Ni (TA10)钛合金的耐蚀性,在其表面制备了微弧氧化涂层,研究了石墨添加量对涂层组织和耐蚀性的影响。通过x射线衍射物相分析、微观形貌分析、粗糙度分析、涂层厚度分析和硬度测试等方法发现,添加的石墨颗粒可以与电解液中的硅(Si)发生反应,促进碳化硅(SiC)相的形成,从而改善涂层的表面形貌,增加涂层的厚度,提高涂层的显微硬度。同时,动态电位极化曲线和扫描电化学测试结果表明,碳化硅相的形成可以提高自腐蚀电位,降低自腐蚀电流密度。当石墨添加量为1.0 g/l时,自腐蚀电位为−0.129 V,自腐蚀电流密度为2.9 × 10−8 A/ cm2。这说明石墨颗粒的加入可以提高TA10钛合金的耐腐蚀性。
{"title":"Study on the structure and corrosion resistance of micro-arc oxidation coatings on TA10 titanium alloy with different graphite additions","authors":"X W Chen, S Tang, C Wu, W L Xie, M Zhang, D F Zhang","doi":"10.1680/jsuin.23.00040","DOIUrl":"https://doi.org/10.1680/jsuin.23.00040","url":null,"abstract":"To improve the corrosion resistance of the Ti–0.3Mo–0.8Ni (TA10) titanium alloy, a micro-arc oxidation coating was prepared on its surface, and the effect of different amounts of graphite addition on the structure and corrosion resistance of the coatings was studied. Through methods such as X-ray diffraction phase analysis, microscopic morphology analysis, roughness analysis, coating thickness analysis and hardness testing, it was found that the added graphite particles can react with silicon (Si) in the electrolyte to promote the formation of the silicon carbide (SiC) phase, thereby improving the surface morphology of the coatings, increasing the thickness of the coatings and improving the microhardness of the coatings. At the same time, dynamic potential polarization curve and scanning electrochemical test results show that the formation of the silicon carbide phase can increase self-corrosion potential and reduce self-corrosion current density. When the amount of graphite added is 1.0 g/l, the self-corrosion potential and self-corrosion current density are −0.129 V and 2.9 × 10 −8 A/cm 2 , respectively. This indicates that adding graphite particles can enhance the corrosion resistance of the TA10 titanium alloy.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135547284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn(IV) oxide/Mn(IV) sulfide/poly-2-amino-1-mercaptobenzene for green hydrogen generation from sewage water through the photoelectrocatalytic process Mn(IV)氧化物/Mn(IV)硫化物/聚2-氨基-1-巯基苯在污水光电催化制氢中的应用
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-29 DOI: 10.1680/jsuin.23.00031
Mohamed Rabia, Asmaa M Elsayed, Maha Abdallah Alnuwaiser
The Mn(IV) oxide/Mn(IV) sulfide/poly-2-amino-1-mercaptobenzene (MnO 2 -MnS 2 /P2AMB) nanocomposite is prepared through a polymerization reaction (oxidation) and is utilized as a highly photo-electrocatalytic material for green hydrogen generation from sewage water. The MnO 2 -MnS 2 /P2AMB nanocomposite demonstrates remarkable optical properties, characterized by a bandgap of 1.81 eV. To promote the water splitting reaction by the synthesized MnO 2 -MnS 2 /P2AMB nanocomposite photoelectrode, sewage water is utilized as a sacrificial agent to effectively facilitate the generation of hydrogen gas through the evaluation of the current (J ph ). At −0.9 V, the J ph and J o values are determined to be −0.33 and −0.2 mA.cm -2 , correspondingly. Notably, the optimum J ph value of −0.26 mA.cm −2 is observed for incidence photons at 340 nm, indicating that light with higher frequency and energy leads to the generation of more electrons from the MnO 2 -MnS 2 /P2AMB nanocomposite and subsequent hydrogen production. Conversely, the lowest J ph value of −0.21 mA.cm −2 is obtained at 730 nm, suggesting the influence of infrared waves on the photoelectrode due to the small bandgap (1.86 eV) of the materials, as calculated in a previous analysis. This study represents an initial step towards the conversion of wastewater into hydrogen gas, which can serve as a sustainable fuel source for various industrial applications.
通过聚合反应(氧化)制备了Mn(IV)氧化物/Mn(IV)硫化物/聚2-氨基-1-巯基苯(mno2 - mns2 /P2AMB)纳米复合材料,并将其作为污水绿色制氢的高光电催化材料。mno2 -MnS 2 /P2AMB纳米复合材料具有优异的光学性能,其带隙为1.81 eV。为了促进合成的mno2 - mns2 /P2AMB纳米复合光电极的水裂解反应,通过评价电流(J ph),利用污水作为牺牲剂,有效促进氢气的生成。在−0.9 V时,J ph和J o值分别为−0.33和−0.2 mA。相应的,Cm -2。值得注意的是,最佳J ph值为−0.26 mA。在340 nm处观察到入射光子的cm−2,表明更高频率和能量的光导致mno2 -MnS 2 /P2AMB纳米复合材料产生更多的电子和随后的氢气生成。相反,J ph值最低为−0.21 mA。在730 nm处得到cm−2,表明红外波对光电极的影响是由于材料的小带隙(1.86 eV),如前面的分析所计算的那样。这项研究代表了将废水转化为氢气的第一步,氢气可以作为各种工业应用的可持续燃料来源。
{"title":"Mn(IV) oxide/Mn(IV) sulfide/poly-2-amino-1-mercaptobenzene for green hydrogen generation from sewage water through the photoelectrocatalytic process","authors":"Mohamed Rabia, Asmaa M Elsayed, Maha Abdallah Alnuwaiser","doi":"10.1680/jsuin.23.00031","DOIUrl":"https://doi.org/10.1680/jsuin.23.00031","url":null,"abstract":"The Mn(IV) oxide/Mn(IV) sulfide/poly-2-amino-1-mercaptobenzene (MnO 2 -MnS 2 /P2AMB) nanocomposite is prepared through a polymerization reaction (oxidation) and is utilized as a highly photo-electrocatalytic material for green hydrogen generation from sewage water. The MnO 2 -MnS 2 /P2AMB nanocomposite demonstrates remarkable optical properties, characterized by a bandgap of 1.81 eV. To promote the water splitting reaction by the synthesized MnO 2 -MnS 2 /P2AMB nanocomposite photoelectrode, sewage water is utilized as a sacrificial agent to effectively facilitate the generation of hydrogen gas through the evaluation of the current (J ph ). At −0.9 V, the J ph and J o values are determined to be −0.33 and −0.2 mA.cm -2 , correspondingly. Notably, the optimum J ph value of −0.26 mA.cm −2 is observed for incidence photons at 340 nm, indicating that light with higher frequency and energy leads to the generation of more electrons from the MnO 2 -MnS 2 /P2AMB nanocomposite and subsequent hydrogen production. Conversely, the lowest J ph value of −0.21 mA.cm −2 is obtained at 730 nm, suggesting the influence of infrared waves on the photoelectrode due to the small bandgap (1.86 eV) of the materials, as calculated in a previous analysis. This study represents an initial step towards the conversion of wastewater into hydrogen gas, which can serve as a sustainable fuel source for various industrial applications.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of power on tribological and mechanical properties of diamond-like carbon film modified nitrile butadiene rubber 功率对类金刚石碳膜改性丁腈橡胶摩擦学和力学性能的影响
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-04 DOI: 10.1680/jsuin.23.00028
Changxin Han, Jiaqi Liu, Huatang Cao, T. Yang, Zhiyu Wu, Qiaoyuan Deng, Feng Wen
This study aims to improve the wear resistance of nitrile butadiene rubber (NBR) by depositing diamond-like carbon (DLC) films using Direct Current Magnetron Sputtering (DC-MS), a simple and cost-effective technique. DC-MS is a coating process that uses a direct current to generate an electric field and sputter conductive materials from a target to a substrate. A magnetic field enhances the plasma density and sputtering rate. The study examines the bonding force, surface morphology, tribological properties, and mechanical strength of DLC. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy are used to characterize the cross-sectional morphology, structural features, and chemical bonding species of DLC films and NBR substrates. Nanoindentation results show that varying the power has no significant effect on hardness and Young’s modulus. Tribological tests are conducted under ambient conditions using a ball-and-disk tribometer, with a fixed load of 0.3 N. Results indicate that the power of DLC films influences their tribological properties. Specifically, DLC films prepared at 120 W exhibit superior tribological properties, maintaining a stable coefficient of friction (CoF) below 0.2 for the test duration. These findings have promising implications for their application.
本研究旨在通过直流磁控溅射(DC-MS)沉积类金刚石(DLC)薄膜,提高丁腈橡胶(NBR)的耐磨性,这是一种简单而经济的技术。DC-MS是一种使用直流电产生电场并将导电材料从目标溅射到基板的涂层工艺。磁场可以提高等离子体密度和溅射速率。研究了DLC的结合力、表面形貌、摩擦学性能和机械强度。利用扫描电镜、拉曼光谱和x射线光电子能谱对DLC薄膜和NBR衬底的横截面形貌、结构特征和化学键种类进行了表征。纳米压痕实验结果表明,不同功率对硬度和杨氏模量没有显著影响。在环境条件下使用球盘摩擦计进行摩擦学测试,固定载荷为0.3 N。结果表明,DLC薄膜的功率影响其摩擦学性能。具体来说,在120w下制备的DLC薄膜表现出优异的摩擦学性能,在测试持续时间内保持稳定的摩擦系数(CoF)低于0.2。这些发现对其应用具有重要意义。
{"title":"Effects of power on tribological and mechanical properties of diamond-like carbon film modified nitrile butadiene rubber","authors":"Changxin Han, Jiaqi Liu, Huatang Cao, T. Yang, Zhiyu Wu, Qiaoyuan Deng, Feng Wen","doi":"10.1680/jsuin.23.00028","DOIUrl":"https://doi.org/10.1680/jsuin.23.00028","url":null,"abstract":"This study aims to improve the wear resistance of nitrile butadiene rubber (NBR) by depositing diamond-like carbon (DLC) films using Direct Current Magnetron Sputtering (DC-MS), a simple and cost-effective technique. DC-MS is a coating process that uses a direct current to generate an electric field and sputter conductive materials from a target to a substrate. A magnetic field enhances the plasma density and sputtering rate. The study examines the bonding force, surface morphology, tribological properties, and mechanical strength of DLC. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy are used to characterize the cross-sectional morphology, structural features, and chemical bonding species of DLC films and NBR substrates. Nanoindentation results show that varying the power has no significant effect on hardness and Young’s modulus. Tribological tests are conducted under ambient conditions using a ball-and-disk tribometer, with a fixed load of 0.3 N. Results indicate that the power of DLC films influences their tribological properties. Specifically, DLC films prepared at 120 W exhibit superior tribological properties, maintaining a stable coefficient of friction (CoF) below 0.2 for the test duration. These findings have promising implications for their application.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47155022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of cold plasma improved wettability and adhesive property of polytetrafluoroethylene surface 冷等离子体的稳定性提高了聚四氟乙烯表面的润湿性和粘接性能
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-09-04 DOI: 10.1680/jsuin.23.00045
Yuheng Li, Yuyang Zhou, Ziheng Wang, Zhenjing Duan, Yukai Gu, Yang Chen, Shuaishuai Wang, Faze Chen, Xin Liu, Jiyu Liu
In this paper, we investigate the wettability change of APCP-treated PTFE surfaces with time under different storage temperatures and pressures, and the results indicate that low temperature can hinder the wettability recovery. After storing for 5 days, WCA of PTFE stored under room temperature (25°C) recovered from 19 ± 2° to 54 ± 2°, while the WCA of PTFE stored under low temperature (−10°C) just increased to 42 ± 3°. Then, the mechanism contributing to the slower wettability recovery was investigated by analyzing surface chemical compositions via X-ray photoelectron spectroscopy (XPS) and observing surface morphologies using atomic force microscope (AFM). After 15 days storage, the contents of O and N decreased obviously, while F content increased. The F content of sample stored under low temperature was 20% less than that stored under room temperature. By contrast, surface micro-morphologies remained unchanged during storage, and the surface roughness Ra of each sample was around 7 nm. Finally, peel strength tests were conducted on APCP-treated PTFE surfaces stored under different temperatures, and the surfaces stored under low temperature maintained better adhesive property; after 15 days of storage, the adhesive strength could still reach 400 N/m, which was 376% higher than that of the untreated surface. The research results are expected to significantly facilitate practical applications of APCP modification and PTFE surfaces.
在本文中,我们研究了APCP处理的PTFE表面在不同储存温度和压力下的润湿性随时间的变化,结果表明低温会阻碍润湿性的恢复。储存5天后,室温(25°C)下储存的PTFE的WCA从19±2°恢复到54±2°,而低温(−10°C)储存的PTFE WCA仅增加到42±3°。然后,通过X射线光电子能谱(XPS)分析表面化学成分和原子力显微镜(AFM)观察表面形貌,研究了导致润湿性恢复较慢的机制。贮藏15d后,O、N含量明显下降,F含量增加。低温保存的样品的F含量比室温保存的样品低20%。相反,在储存过程中,表面微观形态保持不变,每个样品的表面粗糙度Ra约为7 nm。最后,对不同温度下储存的APCP处理的PTFE表面进行了剥离强度测试,低温下储存的表面保持了较好的粘合性能;储存15天后,粘合强度仍然可以达到400 N/m,比未处理表面的N/m高376%。研究结果有望显著促进APCP改性和PTFE表面的实际应用。
{"title":"Stability of cold plasma improved wettability and adhesive property of polytetrafluoroethylene surface","authors":"Yuheng Li, Yuyang Zhou, Ziheng Wang, Zhenjing Duan, Yukai Gu, Yang Chen, Shuaishuai Wang, Faze Chen, Xin Liu, Jiyu Liu","doi":"10.1680/jsuin.23.00045","DOIUrl":"https://doi.org/10.1680/jsuin.23.00045","url":null,"abstract":"In this paper, we investigate the wettability change of APCP-treated PTFE surfaces with time under different storage temperatures and pressures, and the results indicate that low temperature can hinder the wettability recovery. After storing for 5 days, WCA of PTFE stored under room temperature (25°C) recovered from 19 ± 2° to 54 ± 2°, while the WCA of PTFE stored under low temperature (−10°C) just increased to 42 ± 3°. Then, the mechanism contributing to the slower wettability recovery was investigated by analyzing surface chemical compositions via X-ray photoelectron spectroscopy (XPS) and observing surface morphologies using atomic force microscope (AFM). After 15 days storage, the contents of O and N decreased obviously, while F content increased. The F content of sample stored under low temperature was 20% less than that stored under room temperature. By contrast, surface micro-morphologies remained unchanged during storage, and the surface roughness Ra of each sample was around 7 nm. Finally, peel strength tests were conducted on APCP-treated PTFE surfaces stored under different temperatures, and the surfaces stored under low temperature maintained better adhesive property; after 15 days of storage, the adhesive strength could still reach 400 N/m, which was 376% higher than that of the untreated surface. The research results are expected to significantly facilitate practical applications of APCP modification and PTFE surfaces.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44174559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication, surface characterization and electrical properties of hydrogen irradiated nanocomposite materials 氢辐照纳米复合材料的制备、表面表征及电学性能
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-08-07 DOI: 10.1680/jsuin.23.00030
N. Alsaif, A. Atta, E. Abdeltwab, M. Abdel-Hamid
Flexible PVA/PANI/Ag nanocomposite consisting of polyaniline (PANI) and silver nanoparticles (AgNPs) with Polyvinyl alcohol (PVA) were successful fabricated using casting method to applied in storage energy devices. The surface characteristics of the composite films were analyzed using XRD, DSC, and FTIR techniques. The estimated crystallite size of AgNPs is 11.7 nm increased to 15.3 nm by enhancing Ag from 2% to 4%. In addition, the morphology of the films is investigated utilizing SEM. The conductivity σdc is improved from 4.8x10−11 S.cm−1 for PVA to 1.3x10−10 S.cm−1 for PVA/PANI and to 1.2x10−9 S.cm−1 for PVA/PANI/Ag. Furthermore, by increasing the temperature value, the electrical resistance is reduced, besides, the activation energy is modified with addition of PANI and Ag in PVA matrix. The PVA/PANI/Ag are irradiated with hydrogen fluence 0.4x1018, 0.8x1018, and 1.2x1018 ions/cm2. The σac is enhanced from 2.67x10−9 S/cm for PVA/PANI/Ag to 2.02x10−8 S/cm for 0.4x1018 ions/cm2 and to 3.95x10−6 S/cm 1.2x1018 ions/cm2. Moreover, the dielectric constant increased of 0.43 for PVA/PANI/Ag to 0.56, 1.23, and 4.18 when are exposed to 0.4x1018, 0.8x1018, and 1.2x1018 ions.cm−2, respectively. The results showed modifications in electrical characteristics of the the irradiated composite, which open the way for applying these samples in wide range of dielectric applications.
采用浇铸法制备了由聚苯胺(PANI)和银纳米粒子(AgNPs)与聚乙烯醇(PVA)组成的柔性PVA/PANI/Ag纳米复合材料,并将其应用于储能器件。利用XRD、DSC和FTIR技术对复合膜的表面特性进行了分析。AgNP的估计晶粒尺寸为11.7 nm增加到15.3 通过将Ag从2%增强到4%。此外,利用扫描电镜对薄膜的形貌进行了研究。电导率σdc由4.8x10−11提高 S.cm−1(PVA)至1.3x10−10 S.cm−1适用于PVA/PANI和1.2x10−9 PVA/PANI/Ag的S.cm−1。此外,通过提高温度值,电阻降低,此外,在PVA基体中添加PANI和Ag可以改变活化能。PVA/PANI/Ag用氢通量0.4x1018、0.8x1018和1.2x1018照射 离子/cm2。σac从2.67x10−9增强 PVA/PANI/Ag的S/cm为2.02x10−8 S/cm,适用于0.4x1018 离子/cm2至3.95x10−6 S/cm 1.2x1018 此外,当暴露于0.4x1018、0.8x1018和1.2x1018时,PVA/PANI/Ag的介电常数从0.43增加到0.56、1.23和4.18 离子。cm−2。结果表明,辐照复合材料的电学特性发生了变化,这为这些样品在广泛的介电应用中开辟了道路。
{"title":"Fabrication, surface characterization and electrical properties of hydrogen irradiated nanocomposite materials","authors":"N. Alsaif, A. Atta, E. Abdeltwab, M. Abdel-Hamid","doi":"10.1680/jsuin.23.00030","DOIUrl":"https://doi.org/10.1680/jsuin.23.00030","url":null,"abstract":"Flexible PVA/PANI/Ag nanocomposite consisting of polyaniline (PANI) and silver nanoparticles (AgNPs) with Polyvinyl alcohol (PVA) were successful fabricated using casting method to applied in storage energy devices. The surface characteristics of the composite films were analyzed using XRD, DSC, and FTIR techniques. The estimated crystallite size of AgNPs is 11.7 nm increased to 15.3 nm by enhancing Ag from 2% to 4%. In addition, the morphology of the films is investigated utilizing SEM. The conductivity σdc is improved from 4.8x10−11 S.cm−1 for PVA to 1.3x10−10 S.cm−1 for PVA/PANI and to 1.2x10−9 S.cm−1 for PVA/PANI/Ag. Furthermore, by increasing the temperature value, the electrical resistance is reduced, besides, the activation energy is modified with addition of PANI and Ag in PVA matrix. The PVA/PANI/Ag are irradiated with hydrogen fluence 0.4x1018, 0.8x1018, and 1.2x1018 ions/cm2. The σac is enhanced from 2.67x10−9 S/cm for PVA/PANI/Ag to 2.02x10−8 S/cm for 0.4x1018 ions/cm2 and to 3.95x10−6 S/cm 1.2x1018 ions/cm2. Moreover, the dielectric constant increased of 0.43 for PVA/PANI/Ag to 0.56, 1.23, and 4.18 when are exposed to 0.4x1018, 0.8x1018, and 1.2x1018 ions.cm−2, respectively. The results showed modifications in electrical characteristics of the the irradiated composite, which open the way for applying these samples in wide range of dielectric applications.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44704081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed plasma polymerisation of carvone: characterisations and antibacterial properties 脉冲等离子体聚合香芹酮:特性和抗菌性能
4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-08-01 DOI: 10.1680/jsuin.22.00042
Asad Masood, Naeem Ahmed, MF Mohd Razip Wee, Muhammad ASM Haniff, Ebrahim Mahmoudi, Anuttam Patra, Kim S Siow
The production of suitable coatings with excellent antibacterial performance has now become a viable technique for enhancing the functional qualities of various biomedical materials. Here, pulsed plasma polymerisation was used to produce an antibacterial coating from the carvone oil of the spearmint plant. The coating films have adjustable chemical and physical properties based on the deposition parameter – that is, duty cycle (DC). The static water contact angle (WCA) values of pulsed wave (PW) plasma-polymerised carvone (ppCar) increase with the increase in DC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the molecular structure of carvone is less fragmented, retaining moieties associated with C–O and C=O when the DC is reduced. These C–O and C=O moieties likely reduced the measured static WCA. This surface chemical composition with predominantly C–O and C=O also showed a stronger bactericidal effect, based on the biofilm assay with bacteria (Escherichia coli and Staphylococcus aureus), compared with those coatings with C–C and C–H produced at a higher DC. As shown by the atomic force microscopy images, a lower DC resulted in smoother and more homogeneous coatings than those produced with a higher DC, while field emission scanning electron microscopy images show that when E. coli and S. aureus membranes were attached to PW ppCar, they ruptured and distorted with a pore created and that these distortions and ruptures increased as the DC was reduced.
生产具有优良抗菌性能的合适涂料已成为提高各种生物医用材料功能品质的可行技术。在这里,脉冲等离子体聚合被用于从薄荷植物的香芹酮油中生产抗菌涂层。根据沉积参数,即占空比(DC),涂层具有可调节的化学和物理性能。脉冲波(PW)等离子体聚合香芹酮(ppCar)的静态水接触角(WCA)值随DC的增加而增加。傅里叶变换红外光谱和x射线光电子能谱分析表明,香芹酮的分子结构碎片化程度较低,当DC还原时保留了与C - O和C=O相关的部分。这些C - O和C=O基团可能降低了测量的静态WCA。根据细菌(大肠杆菌和金黄色葡萄球菌)的生物膜测定,与在较高DC下产生的C - C和C - h涂层相比,这种以C - O和C=O为主的表面化学成分也显示出更强的杀菌效果。原子力显微镜图像显示,较低DC产生的涂层比较高DC产生的涂层更光滑,更均匀,而场发射扫描电镜图像显示,当大肠杆菌和金黄色葡萄球菌膜附着在PW ppCar上时,它们会破裂和扭曲,并产生一个孔,并且这些扭曲和破裂随着DC的降低而增加。
{"title":"Pulsed plasma polymerisation of carvone: characterisations and antibacterial properties","authors":"Asad Masood, Naeem Ahmed, MF Mohd Razip Wee, Muhammad ASM Haniff, Ebrahim Mahmoudi, Anuttam Patra, Kim S Siow","doi":"10.1680/jsuin.22.00042","DOIUrl":"https://doi.org/10.1680/jsuin.22.00042","url":null,"abstract":"The production of suitable coatings with excellent antibacterial performance has now become a viable technique for enhancing the functional qualities of various biomedical materials. Here, pulsed plasma polymerisation was used to produce an antibacterial coating from the carvone oil of the spearmint plant. The coating films have adjustable chemical and physical properties based on the deposition parameter – that is, duty cycle (DC). The static water contact angle (WCA) values of pulsed wave (PW) plasma-polymerised carvone (ppCar) increase with the increase in DC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the molecular structure of carvone is less fragmented, retaining moieties associated with C–O and C=O when the DC is reduced. These C–O and C=O moieties likely reduced the measured static WCA. This surface chemical composition with predominantly C–O and C=O also showed a stronger bactericidal effect, based on the biofilm assay with bacteria (Escherichia coli and Staphylococcus aureus), compared with those coatings with C–C and C–H produced at a higher DC. As shown by the atomic force microscopy images, a lower DC resulted in smoother and more homogeneous coatings than those produced with a higher DC, while field emission scanning electron microscopy images show that when E. coli and S. aureus membranes were attached to PW ppCar, they ruptured and distorted with a pore created and that these distortions and ruptures increased as the DC was reduced.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135114544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Enhanced degradation of methylene blue dye using flexible SiO2–TiO2 nanofiber membranes 柔性SiO2-TiO2纳米纤维膜增强亚甲基蓝染料的降解
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-06-26 DOI: 10.1680/jsuin.23.00025
Yalong Liu, B. Xin, Zhuoming Chen, Yingqi Xu, Yan Liu, Lifeng Li, Qitong Jiang, Md All Amin Newton
Titanium dioxide (TiO2) is widely regarded as one of the most extensively applied photocatalytic semiconductor materials. However, conventional powdered titanium dioxide exhibits certain limitations, including relatively weak light absorption capability, a small surface area and insufficient active sites. This study successfully prepared flexible and porous silicon dioxide (SiO2)–titanium dioxide nanofiber membranes (NFMs) by implementing electrospinning technology and calcination processes. The porous membranes demonstrate remarkable performance in water treatment, featuring a high specific surface area (49 m2/g) and porosity, enabling efficient adsorption and removal of organic pollutants in water. Remarkably, the NFMs-800 variant exhibits outstanding photocatalytic performance, achieving complete removal of adsorbed organic compounds under ultraviolet irradiation. The design and fabrication methods of this porous membrane are simple and scalable, providing a potential solution for practical water-treatment applications. Consequently, the silicon dioxide–titanium dioxide porous membrane holds significant prospects in the field of water treatment, offering a promising contribution to the attainment of efficient and sustainable water resource management.
二氧化钛(TiO2)被认为是应用最广泛的光催化半导体材料之一。然而,传统的粉状二氧化钛存在一定的局限性,包括相对较弱的光吸收能力、较小的表面积和活性位点不足。本研究通过静电纺丝技术和煅烧工艺成功制备了柔性多孔二氧化硅-二氧化钛纳米纤维膜。多孔膜在水处理中表现出卓越的性能,具有高比表面积(49 m2/g)和孔隙率,能够有效吸附和去除水中的有机污染物。值得注意的是,NFMs-800变体表现出出色的光催化性能,在紫外线照射下完全去除吸附的有机化合物。这种多孔膜的设计和制造方法简单,可扩展,为实际水处理应用提供了潜在的解决方案。因此,二氧化硅-二氧化钛多孔膜在水处理领域具有重要的前景,为实现高效和可持续的水资源管理提供了有希望的贡献。
{"title":"Enhanced degradation of methylene blue dye using flexible SiO2–TiO2 nanofiber membranes","authors":"Yalong Liu, B. Xin, Zhuoming Chen, Yingqi Xu, Yan Liu, Lifeng Li, Qitong Jiang, Md All Amin Newton","doi":"10.1680/jsuin.23.00025","DOIUrl":"https://doi.org/10.1680/jsuin.23.00025","url":null,"abstract":"Titanium dioxide (TiO2) is widely regarded as one of the most extensively applied photocatalytic semiconductor materials. However, conventional powdered titanium dioxide exhibits certain limitations, including relatively weak light absorption capability, a small surface area and insufficient active sites. This study successfully prepared flexible and porous silicon dioxide (SiO2)–titanium dioxide nanofiber membranes (NFMs) by implementing electrospinning technology and calcination processes. The porous membranes demonstrate remarkable performance in water treatment, featuring a high specific surface area (49 m2/g) and porosity, enabling efficient adsorption and removal of organic pollutants in water. Remarkably, the NFMs-800 variant exhibits outstanding photocatalytic performance, achieving complete removal of adsorbed organic compounds under ultraviolet irradiation. The design and fabrication methods of this porous membrane are simple and scalable, providing a potential solution for practical water-treatment applications. Consequently, the silicon dioxide–titanium dioxide porous membrane holds significant prospects in the field of water treatment, offering a promising contribution to the attainment of efficient and sustainable water resource management.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46732905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial 编辑
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-06-01 DOI: 10.1680/jsuin.2023.11.5.270
J. Drelich, L. Boinovich, Ziqi Sun
{"title":"Editorial","authors":"J. Drelich, L. Boinovich, Ziqi Sun","doi":"10.1680/jsuin.2023.11.5.270","DOIUrl":"https://doi.org/10.1680/jsuin.2023.11.5.270","url":null,"abstract":"<jats:p />","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46481346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coalescence characteristics of vibrated drops on a wettability gradient surface 润湿性梯度表面振动液滴的聚结特性
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-05-22 DOI: 10.1680/jsuin.23.00012
Feng Chen, Zhi-hai Jia, Yong Deng
The coalescence characteristics of two vibrated droplets at a certain distance on a microstructured surface with gradient wettability are investigated by a high-speed camera in this work. The results show that the volume ratio of the two droplets has a significant effect on the vibration modes. With the change of the volume ratio, the droplet exhibits different vibration modes, such as the pumping mode (PM), the rocking mode (RM), or the pumping-rocking mixed mode (PRM). In addition, the coalescence time of the two droplets varies with the volume ratio. When the volume ratio is close to 1, the two vibrated droplets are in synchronous pumping mode (SPM) and the coalescence time is the shortest. When the volume ratio is far away from 1, the two droplets may show the rocking mode (RM), the asynchronous pumping mode (APM), or the pumping-rocking mixed mode (PRM). At this point, the coalescence time gets increased, especially for the small volume ratios. Finally, the movement characteristics of the three-phase contact lines are discussed, and a theoretical model is proposed to analyze the coalescence process. This work provides a new method to remove droplets rapidly, which is essential to enhance the heat transfer performance of dropwise condensation.
本文用高速相机研究了在具有梯度润湿性的微结构表面上,两个振动液滴在一定距离处的聚结特性。结果表明,两液滴的体积比对振动模式有显著影响。随着体积比的变化,液滴表现出不同的振动模式,例如泵送模式(PM)、摇摆模式(RM)或泵送-摇摆混合模式(PRM)。此外,两个液滴的聚结时间随体积比而变化。当体积比接近1时,两个振动液滴处于同步泵送模式(SPM),聚结时间最短。当体积比远离1时,两个液滴可能呈现摇摆模式(RM)、异步泵送模式(APM)或泵送-摇摆混合模式(PRM)。在这一点上,聚结时间增加,特别是对于小体积比。最后,讨论了三相接触线的运动特性,并提出了分析其聚结过程的理论模型。这项工作提供了一种快速去除液滴的新方法,这对提高逐滴冷凝的传热性能至关重要。
{"title":"Coalescence characteristics of vibrated drops on a wettability gradient surface","authors":"Feng Chen, Zhi-hai Jia, Yong Deng","doi":"10.1680/jsuin.23.00012","DOIUrl":"https://doi.org/10.1680/jsuin.23.00012","url":null,"abstract":"The coalescence characteristics of two vibrated droplets at a certain distance on a microstructured surface with gradient wettability are investigated by a high-speed camera in this work. The results show that the volume ratio of the two droplets has a significant effect on the vibration modes. With the change of the volume ratio, the droplet exhibits different vibration modes, such as the pumping mode (PM), the rocking mode (RM), or the pumping-rocking mixed mode (PRM). In addition, the coalescence time of the two droplets varies with the volume ratio. When the volume ratio is close to 1, the two vibrated droplets are in synchronous pumping mode (SPM) and the coalescence time is the shortest. When the volume ratio is far away from 1, the two droplets may show the rocking mode (RM), the asynchronous pumping mode (APM), or the pumping-rocking mixed mode (PRM). At this point, the coalescence time gets increased, especially for the small volume ratios. Finally, the movement characteristics of the three-phase contact lines are discussed, and a theoretical model is proposed to analyze the coalescence process. This work provides a new method to remove droplets rapidly, which is essential to enhance the heat transfer performance of dropwise condensation.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46529075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave-assisted sustainable coloration of wool fabric using Rheum Emodi based natural dye 以大黄为基础的天然染料对羊毛织物的微波辅助可持续着色
IF 3.5 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2023-05-22 DOI: 10.1680/jsuin.23.00021
S. Adeel, Adnan Mumtaz, Rony Mia, Muhammad Aftab, Muhammad Hussaan, N. Amin, S. Khan, S. Khattak
The use of natural colorants in modern dye factories is a potential green chemistry idea that should be widely promoted in order to minimize the wool dyeing’s dependency on some hazardous and non-biodegradable synthetic colors. In this study, an effort was undertaken to see if Rheum Emodi (Rhubarb) extract might be used as a natural dye for wool dyeing for the replacement of synthetic dyes. The dyeing of wool fabric was carried out using microwave (MW) rays’ treatment. By combining several mordants, a stunning color pallet of shades of varying hue and tone was created. Comparative evaluation of the effects of various chemical mordants (aluminum salt, iron salt, tannic acid, and cream of tartar) and bio mordants (pomegranate extract, and pine nut hull extract) on the characteristics of dyed wool samples was carried out to choose the best mordant for each application. It was found that MW treated wool fabric using bio mordant shown higher color fastness value of 4/5 to 5 and color strength value of approximately 10 to 20 rather than using metallic mordant. Scanning electron microscopy (SEM) photographs and Fourier transform infrared spectroscopy (FT-IR) analyses revealed the difference between irradiated and un-irradiated wool fabric. The employment of MW rays and bio-mordants in the natural coloring of wool fabric is encouraged due to their biocompatibility and non-toxicity when combined with MW treatment of wool fabric, as well as their high color fastness and color strength performances. As a result, the naturally extracted dyes from rhubarb can be the replacement of synthetic dyes for the coloration of wool fabric in the textile industry due to their environmental issues.
在现代染厂中使用天然着色剂是一种潜在的绿色化学理念,应得到广泛推广,以尽量减少羊毛染色对某些有害和不可生物降解的合成着色剂的依赖。本研究旨在探讨大黄提取物是否可作为天然染料替代合成染料用于羊毛染色。采用微波处理技术对羊毛织物进行染色。通过结合几种媒染剂,创造了不同色调和色调的令人惊叹的色调。对比评价了各种化学媒染剂(铝盐、铁盐、单宁酸、酒石膏)和生物媒染剂(石榴提取物、松子壳提取物)对染色羊毛样品特性的影响,为每种应用选择最佳媒染剂。结果表明,与金属媒染剂相比,生物媒染剂处理后的羊毛织物色牢度值为4/5 ~ 5,色强值约为10 ~ 20。扫描电子显微镜(SEM)照片和傅里叶变换红外光谱(FT-IR)分析揭示了辐照和未辐照羊毛织物之间的差异。由于毫瓦射线和生物媒染剂与毫瓦处理羊毛织物时具有生物相容性和无毒性,并且具有较高的色牢度和色强性能,因此鼓励在羊毛织物的自然着色中使用毫瓦射线和生物媒染剂。因此,天然提取的大黄染料可以替代合成染料用于纺织工业中羊毛织物的染色,因为它们具有环境问题。
{"title":"Microwave-assisted sustainable coloration of wool fabric using Rheum Emodi based natural dye","authors":"S. Adeel, Adnan Mumtaz, Rony Mia, Muhammad Aftab, Muhammad Hussaan, N. Amin, S. Khan, S. Khattak","doi":"10.1680/jsuin.23.00021","DOIUrl":"https://doi.org/10.1680/jsuin.23.00021","url":null,"abstract":"The use of natural colorants in modern dye factories is a potential green chemistry idea that should be widely promoted in order to minimize the wool dyeing’s dependency on some hazardous and non-biodegradable synthetic colors. In this study, an effort was undertaken to see if Rheum Emodi (Rhubarb) extract might be used as a natural dye for wool dyeing for the replacement of synthetic dyes. The dyeing of wool fabric was carried out using microwave (MW) rays’ treatment. By combining several mordants, a stunning color pallet of shades of varying hue and tone was created. Comparative evaluation of the effects of various chemical mordants (aluminum salt, iron salt, tannic acid, and cream of tartar) and bio mordants (pomegranate extract, and pine nut hull extract) on the characteristics of dyed wool samples was carried out to choose the best mordant for each application. It was found that MW treated wool fabric using bio mordant shown higher color fastness value of 4/5 to 5 and color strength value of approximately 10 to 20 rather than using metallic mordant. Scanning electron microscopy (SEM) photographs and Fourier transform infrared spectroscopy (FT-IR) analyses revealed the difference between irradiated and un-irradiated wool fabric. The employment of MW rays and bio-mordants in the natural coloring of wool fabric is encouraged due to their biocompatibility and non-toxicity when combined with MW treatment of wool fabric, as well as their high color fastness and color strength performances. As a result, the naturally extracted dyes from rhubarb can be the replacement of synthetic dyes for the coloration of wool fabric in the textile industry due to their environmental issues.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48378512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Surface Innovations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1