B. M. Alotaibi, A. Atta, M. Atta, E. Abdeltwab, M. Abdel-Hamid
In this study, Polyvinyl alcohol (PVA) films were irradiated with hydrogen beam of fluence 8x1017, 16x1017, and 24x1017 ions/cm2 using handmade cold beam ion source. The resulting changes in the structure characteristics and functional groups of irradiated PVA films were studied using XRD and FT-IR methods respectively. In addition, the optical band gaps and Urbach energies of untreated and irradiated PVA were calculated using Tauc’s equation. The tail is 1.29 eV for PVA, improved to 1.59 eV and 4.17 eV when PVA was exposed to 8x1017 and 24x1017 ions/cm2, respectively. Furthermore, the parameters including refractive index, extinction coefficient, conductivities, and permittivity for untreated and treated samples have been calculated. Furthermore, the dispersion characteristics of un-irradiated and treated films are evaluated. With increasing hydrogen fluence of 8x1017 to 24x1017 ions/cm2, the relaxation time is reduced from 2.75x10−14 sec to 0.045x10−14 sec. On the other hand, the optical susceptibility of pure and treated PVA has been calculated. The modification which induced in the optical characteristics of the irradiation films suggests these films to apply in a different uses like optoelectronics devices.
{"title":"Modifying optical properties of hydrogen beam irradiated flexible PVA polymeric films","authors":"B. M. Alotaibi, A. Atta, M. Atta, E. Abdeltwab, M. Abdel-Hamid","doi":"10.1680/jsuin.22.01078","DOIUrl":"https://doi.org/10.1680/jsuin.22.01078","url":null,"abstract":"In this study, Polyvinyl alcohol (PVA) films were irradiated with hydrogen beam of fluence 8x1017, 16x1017, and 24x1017 ions/cm2 using handmade cold beam ion source. The resulting changes in the structure characteristics and functional groups of irradiated PVA films were studied using XRD and FT-IR methods respectively. In addition, the optical band gaps and Urbach energies of untreated and irradiated PVA were calculated using Tauc’s equation. The tail is 1.29 eV for PVA, improved to 1.59 eV and 4.17 eV when PVA was exposed to 8x1017 and 24x1017 ions/cm2, respectively. Furthermore, the parameters including refractive index, extinction coefficient, conductivities, and permittivity for untreated and treated samples have been calculated. Furthermore, the dispersion characteristics of un-irradiated and treated films are evaluated. With increasing hydrogen fluence of 8x1017 to 24x1017 ions/cm2, the relaxation time is reduced from 2.75x10−14 sec to 0.045x10−14 sec. On the other hand, the optical susceptibility of pure and treated PVA has been calculated. The modification which induced in the optical characteristics of the irradiation films suggests these films to apply in a different uses like optoelectronics devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47957513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Starostin, V. Strelnikov, L. Dombrovsky, S. Shoval, O. Gendelman, E. Bormashenko
Freezing of water droplets placed on the bare and superhydrophobic surfaces of polymer wedges is studied both experimentally and computationally. Two-dimensional numerical calculations of the transient temperature field in a chilled polymer wedge show that the direction of heat flux from the droplet through the thermal contact region with the wedge differs significantly from the normal to the wedge surface. A novel approximate computational model is proposed that takes into account the variable area of the water freezing front in the droplet. This model gives a quantitative estimate of the faster freezing of the droplet on the bare surface. The obtained numerical results agree with the laboratory measurements. The velocity of the crystallization front and the droplet deformation including the so-called freezing tip formation are monitored in the experiment. The direction of the freezing cone axis appears to be noticeably different for the cases of bare and superhydrophobic wedge surfaces. This is explained by the fact that the direction of the freezing cone axis is controlled by the local direction of the heat flux. For a hydrophobic wedge surface, the deviation of the freezing tip from the vertical is smaller, because the reduced thermal contact area reduces the influence of the heat flux direction at the wedge surface.
{"title":"Effects of asymmetric cooling and surface wettability on the orientation of the freezing tip","authors":"A. Starostin, V. Strelnikov, L. Dombrovsky, S. Shoval, O. Gendelman, E. Bormashenko","doi":"10.1680/jsuin.22.01081","DOIUrl":"https://doi.org/10.1680/jsuin.22.01081","url":null,"abstract":"Freezing of water droplets placed on the bare and superhydrophobic surfaces of polymer wedges is studied both experimentally and computationally. Two-dimensional numerical calculations of the transient temperature field in a chilled polymer wedge show that the direction of heat flux from the droplet through the thermal contact region with the wedge differs significantly from the normal to the wedge surface. A novel approximate computational model is proposed that takes into account the variable area of the water freezing front in the droplet. This model gives a quantitative estimate of the faster freezing of the droplet on the bare surface. The obtained numerical results agree with the laboratory measurements. The velocity of the crystallization front and the droplet deformation including the so-called freezing tip formation are monitored in the experiment. The direction of the freezing cone axis appears to be noticeably different for the cases of bare and superhydrophobic wedge surfaces. This is explained by the fact that the direction of the freezing cone axis is controlled by the local direction of the heat flux. For a hydrophobic wedge surface, the deviation of the freezing tip from the vertical is smaller, because the reduced thermal contact area reduces the influence of the heat flux direction at the wedge surface.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43168096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large Leidenfrost drops may be unstable when their diameters exceed a critical value. Via theoretical and experimental investigations, this study explored the feasibility of suppressing Leidenfrost instability in a large container, by meshing the container or its central portion into rectangular elements. Thin rods were used to construct these rectangular elements. Thin rods were used to construct these rectangular elements. Leidenfrost instability was considered in four rectangular configurations. They were also the rectangular mesh elements that might be used. There were two findings. First, the diameter of the largest inscribed cylinder in a rectangular configuration was the critical dimension to determine Leidenfrost instability. Second, the threshold value of this diameter in a rectangular configuration with rod(s) was 8.9 ± 0.7λ, where λ was the capillary length of water. It was larger than its counterparts in both a rectangular container (without the presence of a rod) and a circular container (with or without the presence of a rod), due to the strong effect of the rod in a rectangular configuration. Based on these two findings, a large rectangular container was meshed into rectangular elements using thin rods, with the diameter of the largest inscribed cylinder in each element below the threshold value. This mesh method suppressed the Leidenfrost instability in the large container.
{"title":"Suppression of Leidenfrost instability of a large drop using multiple rods and rectangular mesh elements","authors":"Xiang Wang, Manjarik Mrinal, Z. Han, C. Luo","doi":"10.1680/jsuin.22.01085","DOIUrl":"https://doi.org/10.1680/jsuin.22.01085","url":null,"abstract":"Large Leidenfrost drops may be unstable when their diameters exceed a critical value. Via theoretical and experimental investigations, this study explored the feasibility of suppressing Leidenfrost instability in a large container, by meshing the container or its central portion into rectangular elements. Thin rods were used to construct these rectangular elements. Thin rods were used to construct these rectangular elements. Leidenfrost instability was considered in four rectangular configurations. They were also the rectangular mesh elements that might be used. There were two findings. First, the diameter of the largest inscribed cylinder in a rectangular configuration was the critical dimension to determine Leidenfrost instability. Second, the threshold value of this diameter in a rectangular configuration with rod(s) was 8.9 ± 0.7λ, where λ was the capillary length of water. It was larger than its counterparts in both a rectangular container (without the presence of a rod) and a circular container (with or without the presence of a rod), due to the strong effect of the rod in a rectangular configuration. Based on these two findings, a large rectangular container was meshed into rectangular elements using thin rods, with the diameter of the largest inscribed cylinder in each element below the threshold value. This mesh method suppressed the Leidenfrost instability in the large container.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46485979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Murtaza H Syed, Syed Qutaba, Lubna Syed, M. A. K. Zahari, N. Abdullah, Z. Abro
Antimicrobial fabrics have become essential in organizing and managing infestation and reducing odor formation by microbes. Various green sources add antimicrobial properties to fabrics, particularly cotton. However, the major problem with microbial fabrics is the reduction in antimicrobial activity after each wash. Cupressaceae pods have shown natural potential as an antimicrobial agent in herbal medicine. This study utilizes Cupressaceae for incorporating antimicrobial properties in cotton fabrics. After methanolic extraction of the Cupressaceae extract, it was applied to cotton fabrics. The application of the extract to cotton fabrics was performed by optimizing concentration, temperature and pH parameters. The extract-modified cotton showed the best performance at a 15 wt.% concentration, 140°C and pH 7.5. The treated fabrics were tested in the presence and absence of a binder using the standard washing method ISO 105-C10:2006. The mordant-treated fabric retained 16.4% more activity after 20 washes. Finally, the antimicrobial activity of the greenly developed antimicrobial cotton fabrics was checked against Staphylococcus, Escherichia coli, Bacillus and Candida albicans by using the AATCC 100-2004 test method. The study indicated that the prepared cotton fabric showed better antimicrobial activity against the earlier mentioned strains, except for C. albicans. The prepared antimicrobial fabric showed a wide range of antimicrobial activities and a lower fungal activity. Thus, the prepared fabric can be used for wound dressings, hospital staff gown material and athlete’s sportswear to prevent microbial infection.
{"title":"Greenly prepared antimicrobial cotton fabrics using bioactive agents from Cupressaceae pods","authors":"Murtaza H Syed, Syed Qutaba, Lubna Syed, M. A. K. Zahari, N. Abdullah, Z. Abro","doi":"10.1680/jsuin.22.01073","DOIUrl":"https://doi.org/10.1680/jsuin.22.01073","url":null,"abstract":"Antimicrobial fabrics have become essential in organizing and managing infestation and reducing odor formation by microbes. Various green sources add antimicrobial properties to fabrics, particularly cotton. However, the major problem with microbial fabrics is the reduction in antimicrobial activity after each wash. Cupressaceae pods have shown natural potential as an antimicrobial agent in herbal medicine. This study utilizes Cupressaceae for incorporating antimicrobial properties in cotton fabrics. After methanolic extraction of the Cupressaceae extract, it was applied to cotton fabrics. The application of the extract to cotton fabrics was performed by optimizing concentration, temperature and pH parameters. The extract-modified cotton showed the best performance at a 15 wt.% concentration, 140°C and pH 7.5. The treated fabrics were tested in the presence and absence of a binder using the standard washing method ISO 105-C10:2006. The mordant-treated fabric retained 16.4% more activity after 20 washes. Finally, the antimicrobial activity of the greenly developed antimicrobial cotton fabrics was checked against Staphylococcus, Escherichia coli, Bacillus and Candida albicans by using the AATCC 100-2004 test method. The study indicated that the prepared cotton fabric showed better antimicrobial activity against the earlier mentioned strains, except for C. albicans. The prepared antimicrobial fabric showed a wide range of antimicrobial activities and a lower fungal activity. Thus, the prepared fabric can be used for wound dressings, hospital staff gown material and athlete’s sportswear to prevent microbial infection.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42956170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johansson gauge blocks (“Jo blocks”) are made of steel and used for precision length measurement. Their surface is very smooth, and two blocks can adhere to each other, however, the strong adhesion occurs only after the sliding (wringing). Various hypotheses explaining wringing and adhesion mechanisms in the blocks have been suggested in the literature, including the role of intermolecular forces, oil surface tension, and air pressure. We study the frictional sliding of two Jo blocks against each other to obtain insights into the mechanisms of wringing. The results show an increase in the friction force with the sliding distance, which is consistent with the removal of the oxide film from the steel surface by wringing. This is likely the dominant mechanism of Jo block adhesion.
{"title":"Friction and adhesion of Johansson gauge blocks","authors":"A. Breki, Michael Nosonovsky","doi":"10.1680/jsuin.22.01083","DOIUrl":"https://doi.org/10.1680/jsuin.22.01083","url":null,"abstract":"Johansson gauge blocks (“Jo blocks”) are made of steel and used for precision length measurement. Their surface is very smooth, and two blocks can adhere to each other, however, the strong adhesion occurs only after the sliding (wringing). Various hypotheses explaining wringing and adhesion mechanisms in the blocks have been suggested in the literature, including the role of intermolecular forces, oil surface tension, and air pressure. We study the frictional sliding of two Jo blocks against each other to obtain insights into the mechanisms of wringing. The results show an increase in the friction force with the sliding distance, which is consistent with the removal of the oxide film from the steel surface by wringing. This is likely the dominant mechanism of Jo block adhesion.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41587153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the advantages of beautiful appearance, the exterior wall real stone paint with properties of low-cost and good weather resistance has been widely applied in the concrete building for aesthetics and protection. However, the hydrophilicity of the exterior wall real stone paint make them susceptible to pollution by dust, acid rain, etc. Superhydrophobic coatings with the excellent self-cleaning property may effectively alleviate these problems, but the fabrication of the real stone paint coatings with superhydrophobicity has not been reported yet. Here, we developed a superhydrophobic exterior real stone paint coating (SEP-coating) with a water contact angle of 154 ± 3° and a rolling angle of 13 ± 2° by a simple and high-efficient physical blending method using emulsion, natural sand, low surface energy reagents and nano-SiO2. The SEP-coating possessed an excellent self-cleaning property for the pollutant including soil, dust and rust water, and had good anti-corrosion capability and outdoor time stability The SEP-coating also showed better solar reflectance characteristics than normal exterior real stone paint coating, which may contribute to lower temperatures in buildings during hot weather and save energy. In addition, a colorful SEP-coating for decorative requirements and large-area SEP-coating for practical application could be effectively fabricated, which is expected to have promising application prospects.
{"title":"Self-cleaning coating for exterior wall of concrete building","authors":"Guanghao Chen, Defeng Yan, Jiyu Liu, Youjiang Xu, Yuyang Zhou, Binghan Wu, Jinlong Song","doi":"10.1680/jsuin.22.01060","DOIUrl":"https://doi.org/10.1680/jsuin.22.01060","url":null,"abstract":"Due to the advantages of beautiful appearance, the exterior wall real stone paint with properties of low-cost and good weather resistance has been widely applied in the concrete building for aesthetics and protection. However, the hydrophilicity of the exterior wall real stone paint make them susceptible to pollution by dust, acid rain, etc. Superhydrophobic coatings with the excellent self-cleaning property may effectively alleviate these problems, but the fabrication of the real stone paint coatings with superhydrophobicity has not been reported yet. Here, we developed a superhydrophobic exterior real stone paint coating (SEP-coating) with a water contact angle of 154 ± 3° and a rolling angle of 13 ± 2° by a simple and high-efficient physical blending method using emulsion, natural sand, low surface energy reagents and nano-SiO2. The SEP-coating possessed an excellent self-cleaning property for the pollutant including soil, dust and rust water, and had good anti-corrosion capability and outdoor time stability The SEP-coating also showed better solar reflectance characteristics than normal exterior real stone paint coating, which may contribute to lower temperatures in buildings during hot weather and save energy. In addition, a colorful SEP-coating for decorative requirements and large-area SEP-coating for practical application could be effectively fabricated, which is expected to have promising application prospects.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45085190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this manuscript, the self-crimping process of multi-chain polystyrene into carbon nanotube was investigated by molecular dynamics simulation. The simulation displays that the multi-chain polystyrene arranged in parallel can self-crimp into carbon nanotube and form a helix configuration. The formation mechanism illustrates that both the van der Waals potential well and the π–π stacking interaction between polystyrene and carbon nanotube play a major role in the self-assemble process. Furthermore, some factors such as the chain number of polystyrene, the length of polymer, the diameter of carbon nanotube and the simulation temperature are also investigated. Moreover, different replaced polymers are exhibited, too. This theory research can provide valuable theoretical support for design and manufacture hybrid structures in the fields of advanced composite materials and functional devices.
{"title":"Self-crimping of multi-chain polymers into carbon nanotubes","authors":"Wendi Gong, Houbo Yang, Danhui Zhang, Ruquan Liang, Jianhui Shi, Anmin Liu","doi":"10.1680/jsuin.22.01072","DOIUrl":"https://doi.org/10.1680/jsuin.22.01072","url":null,"abstract":"In this manuscript, the self-crimping process of multi-chain polystyrene into carbon nanotube was investigated by molecular dynamics simulation. The simulation displays that the multi-chain polystyrene arranged in parallel can self-crimp into carbon nanotube and form a helix configuration. The formation mechanism illustrates that both the van der Waals potential well and the π–π stacking interaction between polystyrene and carbon nanotube play a major role in the self-assemble process. Furthermore, some factors such as the chain number of polystyrene, the length of polymer, the diameter of carbon nanotube and the simulation temperature are also investigated. Moreover, different replaced polymers are exhibited, too. This theory research can provide valuable theoretical support for design and manufacture hybrid structures in the fields of advanced composite materials and functional devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47873791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaru Zou, Yaojun Lu, S. Rehman, Xuehui Zhang, Sangen Luo, Chaoxiang Jin, Zhenggang Zou, Bin Yang, Munan Yang
In this paper, we studied the corrosion resistance of the composite deposition of Y2O3 and graphene on nickel coating. The corrosion resistance of the coating was significantly improved after the composite deposition, especially for the Ni-graphene coating with the addition of 0.05 g/L graphene. The Ecorr and Icorr of the coating were optimized to 404.340 mV and 0.24 × 10−8 A cm−2. The surface morphology, microstructure, passivation behavior, and corrosion products of the coating were analyzed, and the mechanism of corrosion resistance enhancement was revealed. The results show that the deposition of the Y2O3 and graphene composite can decrease the surface roughness of the coating. The graphene composite effect is the most significant and greatly reduces the contact area between the coating and the medium. In addition, the particle composite deposition can also yield grain refinement. The graphene composite deposition reduces the grain size from 75.3 to 18.9 nm, significantly improving the nucleation and formation of the passivation film. The uniform deposition of graphene at grain boundaries can also hinder the infiltration of corrosive media into the interior region. Upon the composite deposition, the improved corrosion resistance of magnets significantly increases their performance and service life, facilitating their railway applications.
本文研究了Y2O3和石墨烯在镍涂层上复合沉积的耐蚀性。复合沉积后,涂层的耐腐蚀性显著提高,特别是添加0.05的Ni石墨烯涂层 g/L石墨烯。涂层的Ecorr和Icorr优化为404.340 mV和0.24×10−8 A. 对涂层的表面形貌、微观结构、钝化行为和腐蚀产物进行了分析,揭示了提高涂层耐蚀性的机理。结果表明,Y2O3和石墨烯复合材料的沉积可以降低涂层的表面粗糙度。石墨烯复合材料的效果最为显著,大大减少了涂层和介质之间的接触面积。此外,颗粒复合沉积还可以产生晶粒细化。石墨烯复合材料的沉积使晶粒尺寸从75.3减小到18.9 nm,显著改善了钝化膜的成核和形成。石墨烯在晶界处的均匀沉积也会阻碍腐蚀性介质渗透到内部区域。在复合沉积后,磁体的耐腐蚀性得到改善,显著提高了其性能和使用寿命,促进了其在铁路上的应用。
{"title":"Improvement of corrosion resistance and research on corrosion mechanism after depositing Ni-Y2O3/Ni-graphene composite coatings on NdFeB magnets","authors":"Yaru Zou, Yaojun Lu, S. Rehman, Xuehui Zhang, Sangen Luo, Chaoxiang Jin, Zhenggang Zou, Bin Yang, Munan Yang","doi":"10.1680/jsuin.22.01057","DOIUrl":"https://doi.org/10.1680/jsuin.22.01057","url":null,"abstract":"In this paper, we studied the corrosion resistance of the composite deposition of Y2O3 and graphene on nickel coating. The corrosion resistance of the coating was significantly improved after the composite deposition, especially for the Ni-graphene coating with the addition of 0.05 g/L graphene. The Ecorr and Icorr of the coating were optimized to 404.340 mV and 0.24 × 10−8 A cm−2. The surface morphology, microstructure, passivation behavior, and corrosion products of the coating were analyzed, and the mechanism of corrosion resistance enhancement was revealed. The results show that the deposition of the Y2O3 and graphene composite can decrease the surface roughness of the coating. The graphene composite effect is the most significant and greatly reduces the contact area between the coating and the medium. In addition, the particle composite deposition can also yield grain refinement. The graphene composite deposition reduces the grain size from 75.3 to 18.9 nm, significantly improving the nucleation and formation of the passivation film. The uniform deposition of graphene at grain boundaries can also hinder the infiltration of corrosive media into the interior region. Upon the composite deposition, the improved corrosion resistance of magnets significantly increases their performance and service life, facilitating their railway applications.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44679132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mieyi Wen, B. Ou, Ping Zhu, B.-J. Niu, Yan Gou, Lijuan Chen
Defects and mechanical damage that leading to peeling, corrosion, and other potential hazards during practical applications were inevitable in epoxy coatings due to the high cross-link density of the epoxy network. Herein, we synthesized a self-healing polythiourethane material (SPTU) containing with dynamic disulfide bonds for the design and preparation of a self-healing SPTU/epoxy coating. FT-IR, 1H NMR and SEM showed that 2-hydroxyethyl disulfide was successfully introduced into the polythiourethane system. Due to the fracture and reattach of double sulfur bond, 3% SPTU-Epoxy coating exhibited good self-healing properties in scratch-treated, the scratch being repaired completely after 2 h at 85°C. Meanwhile, the tensile properties of the completely fractured 3% SPTU-Epoxy sample retained 75.7% after self-healing. The Tafel polarization crurve and electrochemical impedance spectroscopy (EIS) results demonstrate the 3% SPTU-Epoxy coating showed excellent corrosion resistance and still provides considerable corrosion resistance after 19 days of immersion corrosion tests. The self-healing coating exhibited good self-healing ability under heating conditions attributed to the bond breaking and reconnection of dynamic bonds provided by the self-healing component. The self-healing property and corrosion resistance of the prepared coating effectively improve the service life of the epoxy coating and provide some guidance for corrosion protection of epoxy coating.
{"title":"Preparation of self-healing polythiourethane/epoxy anticorrosive coatings based on dynamic disulfide bonds","authors":"Mieyi Wen, B. Ou, Ping Zhu, B.-J. Niu, Yan Gou, Lijuan Chen","doi":"10.1680/jsuin.22.01065","DOIUrl":"https://doi.org/10.1680/jsuin.22.01065","url":null,"abstract":"Defects and mechanical damage that leading to peeling, corrosion, and other potential hazards during practical applications were inevitable in epoxy coatings due to the high cross-link density of the epoxy network. Herein, we synthesized a self-healing polythiourethane material (SPTU) containing with dynamic disulfide bonds for the design and preparation of a self-healing SPTU/epoxy coating. FT-IR, 1H NMR and SEM showed that 2-hydroxyethyl disulfide was successfully introduced into the polythiourethane system. Due to the fracture and reattach of double sulfur bond, 3% SPTU-Epoxy coating exhibited good self-healing properties in scratch-treated, the scratch being repaired completely after 2 h at 85°C. Meanwhile, the tensile properties of the completely fractured 3% SPTU-Epoxy sample retained 75.7% after self-healing. The Tafel polarization crurve and electrochemical impedance spectroscopy (EIS) results demonstrate the 3% SPTU-Epoxy coating showed excellent corrosion resistance and still provides considerable corrosion resistance after 19 days of immersion corrosion tests. The self-healing coating exhibited good self-healing ability under heating conditions attributed to the bond breaking and reconnection of dynamic bonds provided by the self-healing component. The self-healing property and corrosion resistance of the prepared coating effectively improve the service life of the epoxy coating and provide some guidance for corrosion protection of epoxy coating.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45141896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A contact angle observed for a liquid-solid system is not necessarily a unique value and a few contact angles need to be carefully considered in relation to liquid spreading, adhesion and phase separation. Understanding of the significance of different contact angles has improved in the last few years through direct measurements of interactive forces between droplets/bubbles and solids together with the simultaneous visualization of the changes in their shapes. A microelectronic balance system is employed to measure the force of spreading after either liquid droplet or gas bubble attachment to a substrate surface, and the droplet/bubble-substrate adhesion forces after droplet/bubble compression, retraction, and detachment. Equipped with a camera in flank and data acquisition software, the instrument measures directly the forces, monitors droplet/bubble-surface separation with respect to distances over which the droplet/bubble stretches and collects optical images simultaneously. The images are used to analyze capillary pressure and surface tension forces based on the measured droplet/bubble dimensions, shapes of surfaces and values of contact angles. These measurements allow researchers to correlate the advancing, receding and most-stable contact angles with liquid-solid interactive forces and analyze their scientific meaning. This review summarizes the very recent literature reports on measurements and interpretation of liquid droplet/gas bubble interactive forces and associated contact angles.
{"title":"Fluid droplet spreading and adhesion studied by a microbalance: a review","authors":"Youhua Jiang, J. Drelich","doi":"10.1680/jsuin.22.01050","DOIUrl":"https://doi.org/10.1680/jsuin.22.01050","url":null,"abstract":"A contact angle observed for a liquid-solid system is not necessarily a unique value and a few contact angles need to be carefully considered in relation to liquid spreading, adhesion and phase separation. Understanding of the significance of different contact angles has improved in the last few years through direct measurements of interactive forces between droplets/bubbles and solids together with the simultaneous visualization of the changes in their shapes. A microelectronic balance system is employed to measure the force of spreading after either liquid droplet or gas bubble attachment to a substrate surface, and the droplet/bubble-substrate adhesion forces after droplet/bubble compression, retraction, and detachment. Equipped with a camera in flank and data acquisition software, the instrument measures directly the forces, monitors droplet/bubble-surface separation with respect to distances over which the droplet/bubble stretches and collects optical images simultaneously. The images are used to analyze capillary pressure and surface tension forces based on the measured droplet/bubble dimensions, shapes of surfaces and values of contact angles. These measurements allow researchers to correlate the advancing, receding and most-stable contact angles with liquid-solid interactive forces and analyze their scientific meaning. This review summarizes the very recent literature reports on measurements and interpretation of liquid droplet/gas bubble interactive forces and associated contact angles.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49519673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}