A titanium metal organic framework/Titanium dioxide (Ti-MOF/TiO2) composed membrane was fabricated by light inductive growth of Ti-MOF ([Ti2-(TpA)2-NDI]n, TpA=terephthalic acid, NDI=1,8,4,5-naphthalene-tetracarboxdiimide) on a TiO2 film composite optical waveguide (COWG) substrate. Ti-MOF/TiO2 membrane conforms a mesoporous structure with 24 nm of pore size and 108 nm of thick via continuous growth for 40 min under 340 nm UV-light illumination. Under ambient condition, in terms of COWG sensors, Ti-MOF/TiO2 exhibited the greatest response to ethylenediamine (EDA), followed by NO2, methylamine, trimethylamine, when exposed to 15 types of benzenes, amines, and acidic gases. In order to improve response selectivity, Ti-MOF/TiO2 film was modified with 1,3,3-trimethylindolinonaphthospirooxazine (SP) forming SP@Ti-MOF/TiO2 COWG. This modified COWG showed improved selectivity response by showing robust response to EDA and a negligible response to others. When the EDA gas molecule was adsorbed on the surface of the membrane, charge transfer between them preferentially occurred, leading to a change in the optical parameter. The surface-modified SP@Ti-MOF/TiO2 COWG showed a fast (3 s) and reversible response with a wide detection range (0.1-1000 ppb) to EDA gas without the interference of BTXs, acidic gases, and other amines.
{"title":"Surface modified Ti-MOF/TiO2 membrane and its gas sensing characteristics","authors":"P. Nizamidin, Caiping Guo, Qin Yang, Huifang Chen","doi":"10.1680/jsuin.22.01021","DOIUrl":"https://doi.org/10.1680/jsuin.22.01021","url":null,"abstract":"A titanium metal organic framework/Titanium dioxide (Ti-MOF/TiO2) composed membrane was fabricated by light inductive growth of Ti-MOF ([Ti2-(TpA)2-NDI]n, TpA=terephthalic acid, NDI=1,8,4,5-naphthalene-tetracarboxdiimide) on a TiO2 film composite optical waveguide (COWG) substrate. Ti-MOF/TiO2 membrane conforms a mesoporous structure with 24 nm of pore size and 108 nm of thick via continuous growth for 40 min under 340 nm UV-light illumination. Under ambient condition, in terms of COWG sensors, Ti-MOF/TiO2 exhibited the greatest response to ethylenediamine (EDA), followed by NO2, methylamine, trimethylamine, when exposed to 15 types of benzenes, amines, and acidic gases. In order to improve response selectivity, Ti-MOF/TiO2 film was modified with 1,3,3-trimethylindolinonaphthospirooxazine (SP) forming SP@Ti-MOF/TiO2 COWG. This modified COWG showed improved selectivity response by showing robust response to EDA and a negligible response to others. When the EDA gas molecule was adsorbed on the surface of the membrane, charge transfer between them preferentially occurred, leading to a change in the optical parameter. The surface-modified SP@Ti-MOF/TiO2 COWG showed a fast (3 s) and reversible response with a wide detection range (0.1-1000 ppb) to EDA gas without the interference of BTXs, acidic gases, and other amines.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49284416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Electrocatalytic two-electron oxygen reduction reaction is an effective, safe and green approach to produce hydrogen peroxide, and the “catalyst-design’’ for highly efficient hydrogen peroxide production has already been reported on various of works. Specially, the modification of the existing catalysts for two-electron oxygen reduction reaction via surface/interface engineering shares huge potential on further enhancing their corresponding catalytic performance, and a detail overview on the research progress of carbon-based electrocatalysts via surface/interface engineering and their intrinsic reaction mechanism is helpful to realize a comprehensive and systematic understanding of the latest progress in this field and further achieving highly efficient hydrogen peroxide electrosynthesis. Herein, fundamental aspects about the 2e−/4e− pathways of oxygen reduction reaction are first introduced. Subsequently, a comprehensive summarization of the current strategies for carbon-based catalysts modification via surface/interface engineering for high selectivity and yield of hydrogen peroxide production is presented. Finally, the prospects and challenges for the hydrogen peroxide production with high efficiency and yield rate are presented, which should shed light on the industrial production and application of hydrogen peroxide.
{"title":"Surface/interface engineering of carbon-based catalysts for efficient hydrogen peroxide electrosynthesis","authors":"Zhiyuan Sang, Feng Hou, Ziqi Sun, Ji Liang","doi":"10.1680/jsuin.22.01036","DOIUrl":"https://doi.org/10.1680/jsuin.22.01036","url":null,"abstract":"Electrocatalytic two-electron oxygen reduction reaction is an effective, safe and green approach to produce hydrogen peroxide, and the “catalyst-design’’ for highly efficient hydrogen peroxide production has already been reported on various of works. Specially, the modification of the existing catalysts for two-electron oxygen reduction reaction via surface/interface engineering shares huge potential on further enhancing their corresponding catalytic performance, and a detail overview on the research progress of carbon-based electrocatalysts via surface/interface engineering and their intrinsic reaction mechanism is helpful to realize a comprehensive and systematic understanding of the latest progress in this field and further achieving highly efficient hydrogen peroxide electrosynthesis. Herein, fundamental aspects about the 2e−/4e− pathways of oxygen reduction reaction are first introduced. Subsequently, a comprehensive summarization of the current strategies for carbon-based catalysts modification via surface/interface engineering for high selectivity and yield of hydrogen peroxide production is presented. Finally, the prospects and challenges for the hydrogen peroxide production with high efficiency and yield rate are presented, which should shed light on the industrial production and application of hydrogen peroxide.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49577252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Della Volpe, S. Siboni, R. Biasi, Umberto Saccardo
Some experiments have been performed to determine the effect on the friction coefficient of a little temperature increase caused by a small electrical resistance inserted in different ways in a ski or a ski-like device. It appears that at low speed this warming is able to reduce significantly the friction coefficient. The conditions of the experiments cover only reduced speed and temperature intervals. A possible interpretation of this phenomenon is based on the modification of the quasi-liquid-layer existing on the surface of snow at temperatures higher than −30°C. A wider set of parameter conditions should be analysed to confirm this interpretation.
{"title":"Effects of ski warming on ski-snow friction: some preliminary results","authors":"C. Della Volpe, S. Siboni, R. Biasi, Umberto Saccardo","doi":"10.1680/jsuin.22.01018","DOIUrl":"https://doi.org/10.1680/jsuin.22.01018","url":null,"abstract":"Some experiments have been performed to determine the effect on the friction coefficient of a little temperature increase caused by a small electrical resistance inserted in different ways in a ski or a ski-like device. It appears that at low speed this warming is able to reduce significantly the friction coefficient. The conditions of the experiments cover only reduced speed and temperature intervals. A possible interpretation of this phenomenon is based on the modification of the quasi-liquid-layer existing on the surface of snow at temperatures higher than −30°C. A wider set of parameter conditions should be analysed to confirm this interpretation.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48628266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Droplet depinning on superhydrophobic surfaces is pervasive in nature and critical to many applications and hence has been studied extensively over the past few decades. A consensus has been reached that the droplet depinning force mainly stems from the synergistic dynamics of the three-phase contact line and the liquid-vapor interface. Nevertheless, the above conclusions were made using simple (pure water) droplets depinning on rigid superhydrophobic surfaces, denoted as simple rigid wetting, where the main influencing factors are liquid-vapor interfacial tension, surface texture geometry, and material wettability. In recent years, an increasing amount of attention has been paid to complex soft wetting, where liquid physiochemical properties (e.g., viscoelasticity) and solid surface rigidity play an important role. To encourage the investigation of complex soft wetting, in this perspective, depinning of simple droplet on soft surfaces and depinning of viscoelastic droplets on rigid surfaces will be briefly introduced. Then, possible factors that affect viscoelastic droplet depinning on soft superhydrophobic surfaces will be discussed. Moreover, applications that are highly relevant to complex soft wetting will be introduced.
{"title":"Droplet depinning on superhydrophobic surfaces: From simple rigid wetting to complex soft wetting","authors":"Youhua Jiang","doi":"10.1680/jsuin.22.01010","DOIUrl":"https://doi.org/10.1680/jsuin.22.01010","url":null,"abstract":"Droplet depinning on superhydrophobic surfaces is pervasive in nature and critical to many applications and hence has been studied extensively over the past few decades. A consensus has been reached that the droplet depinning force mainly stems from the synergistic dynamics of the three-phase contact line and the liquid-vapor interface. Nevertheless, the above conclusions were made using simple (pure water) droplets depinning on rigid superhydrophobic surfaces, denoted as simple rigid wetting, where the main influencing factors are liquid-vapor interfacial tension, surface texture geometry, and material wettability. In recent years, an increasing amount of attention has been paid to complex soft wetting, where liquid physiochemical properties (e.g., viscoelasticity) and solid surface rigidity play an important role. To encourage the investigation of complex soft wetting, in this perspective, depinning of simple droplet on soft surfaces and depinning of viscoelastic droplets on rigid surfaces will be briefly introduced. Then, possible factors that affect viscoelastic droplet depinning on soft superhydrophobic surfaces will be discussed. Moreover, applications that are highly relevant to complex soft wetting will be introduced.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48786240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Adeel, Shafqat Abbas, N. Habib, M. Ticha, Fatima Batool, Rony Mia
Recently, there has been a surge of interest in adopting natural dyes to avoid the environmental difficulties connected with the synthetic coloring compounds. This research focuses on extracting natural dyes from Butea Monosperma plants and on developing sustainable dyeing methods for silk fabric. Natural colorants were extracted using an aqueous and acidic extraction procedure, and the silk fabric was dyed with the extracts using mordanting with a variety of metal and bio mordants. The treatment of fabric and extracts were carried out using microwave irradiation. It was found that after irradiation up to 3 min, the acidic extract shown maximum color strength onto fabric. It was also observed that the acacia and pine-nut hull at 80 °C and before dyeing pomegranate extract at 80 °C and after dyeing of silk fabric at 40 °C using bio-mordants were higher color strength than metallic mordant. For comparative analysis Al salt at 40 °C, Iron salt at 60 °C and tannic acid (T.A.) at 80 °C were provided acceptable results. The color fastness characteristics were also found good to excellent. The bio-mordants not only provide the higher color strength and fastness properties, it was also an environmental friendly approaches. Scanning electron microscopy (SEM) images and Fourier transform infrared spectroscopy (FT-IR) analyses revealed the difference between irradiated and un-irradiated silk fabric. Therefore, it is recommended that MW rays and bio-mordants be used in the natural dyeing of silk fabric because of their deformability and non-toxicity, as well as their high color fastness and color strength properties.
{"title":"Innovative isolation of colorant from Butea Monosperma for surface-modified silk dyeing","authors":"S. Adeel, Shafqat Abbas, N. Habib, M. Ticha, Fatima Batool, Rony Mia","doi":"10.1680/jsuin.22.01016","DOIUrl":"https://doi.org/10.1680/jsuin.22.01016","url":null,"abstract":"Recently, there has been a surge of interest in adopting natural dyes to avoid the environmental difficulties connected with the synthetic coloring compounds. This research focuses on extracting natural dyes from Butea Monosperma plants and on developing sustainable dyeing methods for silk fabric. Natural colorants were extracted using an aqueous and acidic extraction procedure, and the silk fabric was dyed with the extracts using mordanting with a variety of metal and bio mordants. The treatment of fabric and extracts were carried out using microwave irradiation. It was found that after irradiation up to 3 min, the acidic extract shown maximum color strength onto fabric. It was also observed that the acacia and pine-nut hull at 80 °C and before dyeing pomegranate extract at 80 °C and after dyeing of silk fabric at 40 °C using bio-mordants were higher color strength than metallic mordant. For comparative analysis Al salt at 40 °C, Iron salt at 60 °C and tannic acid (T.A.) at 80 °C were provided acceptable results. The color fastness characteristics were also found good to excellent. The bio-mordants not only provide the higher color strength and fastness properties, it was also an environmental friendly approaches. Scanning electron microscopy (SEM) images and Fourier transform infrared spectroscopy (FT-IR) analyses revealed the difference between irradiated and un-irradiated silk fabric. Therefore, it is recommended that MW rays and bio-mordants be used in the natural dyeing of silk fabric because of their deformability and non-toxicity, as well as their high color fastness and color strength properties.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47563544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Abdelhamid, A. Atta, A. M. Abdel reheem, A. Ashour
In this study, the fabricated amorphous chalcogenide Ge10Se70Bi20 thin films were irradiated by nitrogen (N+), argon (Ar+), hydrogen (H+) and oxygen (O+) ion beams. The compositions of the pure and irradiated films were investigated using X-ray diffraction (XRD), which confirming the amorphous structures of the pristine and the irradiated Ge10Se70Bi20 thin films. The optical parameters such as optical bandgap, absorption edge, Urbach energy, Tauc parameter, and extinction coefficient of the un-irradiated and irradiated films were determined using UV/Vis spectroscopy. The energy gap is found to reduce from 1.355 eV for un-irradiated Ge10Se70Bi20 to 1.02 eV, 0.73 eV, 0.60 eV and 0.51 eV after irradiation by N+, Ar+, H+ and O+ beam respectively. While, the band tail is 0.12 eV of Ge10Se70Bi20, increased to 0.16 eV, 0.40 eV, 0.45 eV and 0.48 eV after irradiation by N,+ Ar+, H+and O+ respectively. In particular, the conductivity increased by two orders after the pristine film was exposed to oxygen beam. The dc electrical conductivity of the pristine film was increased from 1.5x10−7 to 1.4x10−5 Ω−1.cm−1 after irradiation by oxygen ion beam. Besides, the activation energy and Mott’s parameters for the original and irradiated Ge10Se70Bi20 films were deduced. The reported modifications on the optical and electrical parameters, propose that the irradiated Ge10Se70B20 thin films to be used in important applications, e.g., optical data storage and optoelectronic devices.
{"title":"Ion irradiation induced effects on the surface characteristics and electrical properties of Ge-Bi-Se thin films","authors":"M. Abdelhamid, A. Atta, A. M. Abdel reheem, A. Ashour","doi":"10.1680/jsuin.22.01004","DOIUrl":"https://doi.org/10.1680/jsuin.22.01004","url":null,"abstract":"In this study, the fabricated amorphous chalcogenide Ge10Se70Bi20 thin films were irradiated by nitrogen (N+), argon (Ar+), hydrogen (H+) and oxygen (O+) ion beams. The compositions of the pure and irradiated films were investigated using X-ray diffraction (XRD), which confirming the amorphous structures of the pristine and the irradiated Ge10Se70Bi20 thin films. The optical parameters such as optical bandgap, absorption edge, Urbach energy, Tauc parameter, and extinction coefficient of the un-irradiated and irradiated films were determined using UV/Vis spectroscopy. The energy gap is found to reduce from 1.355 eV for un-irradiated Ge10Se70Bi20 to 1.02 eV, 0.73 eV, 0.60 eV and 0.51 eV after irradiation by N+, Ar+, H+ and O+ beam respectively. While, the band tail is 0.12 eV of Ge10Se70Bi20, increased to 0.16 eV, 0.40 eV, 0.45 eV and 0.48 eV after irradiation by N,+ Ar+, H+and O+ respectively. In particular, the conductivity increased by two orders after the pristine film was exposed to oxygen beam. The dc electrical conductivity of the pristine film was increased from 1.5x10−7 to 1.4x10−5 Ω−1.cm−1 after irradiation by oxygen ion beam. Besides, the activation energy and Mott’s parameters for the original and irradiated Ge10Se70Bi20 films were deduced. The reported modifications on the optical and electrical parameters, propose that the irradiated Ge10Se70B20 thin films to be used in important applications, e.g., optical data storage and optoelectronic devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49484855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anfisa Ayalon, A. Rubowitz, P. Roy, S. Shoval, I. Legchenkova, E. Bormashenko
The paper is devoted to the interfacial aspects of the intraocular behavior, migration and distribution of commonly injected ophthalmic drugs in eyes filled with medical-grade 1300 cSt silicone oil used as a retinal tamponade agent. Novel in vitro and ex vivo models were created for studying the physical properties of the retinal surface and interfacial spreading of the ophthalmic drugs over retinas. In vitro model experiments showed that droplets of all tested drugs sank rapidly in the silicone oil to contact with the plasma-treated glass, and then rapidly spread over the glass surface. In the ex vivo model, the migration phase was followed by contact with, and rapid spread/absorption by the retinal interface. The wetting behavior of drugs under contact with the glass substrate and retinas was similar. Characteristic time scales of drugs spreading, controlled by the viscous dissipation, were close. All tested drugs migrated to the retinal surface and rapidly spread across the retinal surface. This suggests that intravitreal drugs might be used effectively in eyes filled with a silicone oil tamponade, as they rapidly migrate to, and spread over the retinal surface.
{"title":"Interfacial behavior of intravitreally injected drugs simulated by models of the silicone oil filled eye","authors":"Anfisa Ayalon, A. Rubowitz, P. Roy, S. Shoval, I. Legchenkova, E. Bormashenko","doi":"10.1680/jsuin.22.01011","DOIUrl":"https://doi.org/10.1680/jsuin.22.01011","url":null,"abstract":"The paper is devoted to the interfacial aspects of the intraocular behavior, migration and distribution of commonly injected ophthalmic drugs in eyes filled with medical-grade 1300 cSt silicone oil used as a retinal tamponade agent. Novel in vitro and ex vivo models were created for studying the physical properties of the retinal surface and interfacial spreading of the ophthalmic drugs over retinas. In vitro model experiments showed that droplets of all tested drugs sank rapidly in the silicone oil to contact with the plasma-treated glass, and then rapidly spread over the glass surface. In the ex vivo model, the migration phase was followed by contact with, and rapid spread/absorption by the retinal interface. The wetting behavior of drugs under contact with the glass substrate and retinas was similar. Characteristic time scales of drugs spreading, controlled by the viscous dissipation, were close. All tested drugs migrated to the retinal surface and rapidly spread across the retinal surface. This suggests that intravitreal drugs might be used effectively in eyes filled with a silicone oil tamponade, as they rapidly migrate to, and spread over the retinal surface.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43467135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Q. Zhou, Zhi-hai Jia, Xuejiao Xiong, Jiao Wang, Xinran Dai
Straight and curved hydrophilic microfinned surfaces are prepared in this work by photolithography and sputtering coating techniques using silicon wafers as substrates. The behavior characteristics of drops on these surfaces are discussed by using image processing technology. Experimental results show that when a drop is placed on the straight microfinned surface, the front contact line of the drop can move, while the rear contact line remains fixed. On the curved microfinned surface, however, both the front and the rear contact line can move. The drop can be self-propelled directionally from the region with larger roughness to the region with smaller roughness. The characteristics of velocity and acceleration on both surfaces are analyzed. A theoretical model is proposed by analyzing the energy conversion and compared with the experimental results. This study provides a novel microstructured surface for enhancing the heat transfer performance of condensers.
{"title":"Self-propelled drops on hydrophilic microfinned surfaces","authors":"Q. Zhou, Zhi-hai Jia, Xuejiao Xiong, Jiao Wang, Xinran Dai","doi":"10.1680/jsuin.22.01012","DOIUrl":"https://doi.org/10.1680/jsuin.22.01012","url":null,"abstract":"Straight and curved hydrophilic microfinned surfaces are prepared in this work by photolithography and sputtering coating techniques using silicon wafers as substrates. The behavior characteristics of drops on these surfaces are discussed by using image processing technology. Experimental results show that when a drop is placed on the straight microfinned surface, the front contact line of the drop can move, while the rear contact line remains fixed. On the curved microfinned surface, however, both the front and the rear contact line can move. The drop can be self-propelled directionally from the region with larger roughness to the region with smaller roughness. The characteristics of velocity and acceleration on both surfaces are analyzed. A theoretical model is proposed by analyzing the energy conversion and compared with the experimental results. This study provides a novel microstructured surface for enhancing the heat transfer performance of condensers.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45007606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong Zhang, Hui-Di Wang, Mengchen Huang, T. Fan, Fuquan Deng, C. Xue, Xiaohua Guo
Radiative cooling materials can cool terrestrial objects without any energy input, but are susceptible to rain wetting and dust contamination which affects badly the cooling characteristics. Herein, this work fabricated a radiative cooling porous film with superhydrophobic self-cleaning using poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly (vinylidene fluoride) (PVDF). The PVDF-HFP/PVDF film consists of micropores with nanoparticles both inside and at the surface. The micro/nanostructures enhanced the scattering of solar light, which in combination with the infrared emissivity of both PVDF-HFP and PVDF polymers makes the film show excellent radiative cooling ability with a sub-ambient temperature drop of 16°C. The micro/nanostructures roughened the surface of the film, which in combination with the low surface energy property of both PVDF-HFP and PVDF polymers endows the film with superhydrophobic self-cleaning property. The self-cleaning function defends the film from contamination and maintain sustainable radiative cooling for lasting applications. The integration of cooling and self-cleaning into a film paves a way to multifunctional and long-life radiative cooling materials.
{"title":"Fabrication of sustainable radiative cooling film with superhydrophobic self-cleaning property","authors":"Dong Zhang, Hui-Di Wang, Mengchen Huang, T. Fan, Fuquan Deng, C. Xue, Xiaohua Guo","doi":"10.1680/jsuin.22.00015","DOIUrl":"https://doi.org/10.1680/jsuin.22.00015","url":null,"abstract":"Radiative cooling materials can cool terrestrial objects without any energy input, but are susceptible to rain wetting and dust contamination which affects badly the cooling characteristics. Herein, this work fabricated a radiative cooling porous film with superhydrophobic self-cleaning using poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly (vinylidene fluoride) (PVDF). The PVDF-HFP/PVDF film consists of micropores with nanoparticles both inside and at the surface. The micro/nanostructures enhanced the scattering of solar light, which in combination with the infrared emissivity of both PVDF-HFP and PVDF polymers makes the film show excellent radiative cooling ability with a sub-ambient temperature drop of 16°C. The micro/nanostructures roughened the surface of the film, which in combination with the low surface energy property of both PVDF-HFP and PVDF polymers endows the film with superhydrophobic self-cleaning property. The self-cleaning function defends the film from contamination and maintain sustainable radiative cooling for lasting applications. The integration of cooling and self-cleaning into a film paves a way to multifunctional and long-life radiative cooling materials.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47529345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongfu Zhang, Yan Xiang, Yunjie Yang, Xiaolin Wei, B. Ma, Weiwei Chen, Huanwu Cheng, Lu Wang, Lin Lu, Maoyuan Li, Haifeng Fu
Quartz fiber fabric has been widely used in national defense, military, aerospace industries due to its good high temperature resistance, chemical stability, and excellent thermal shock resistance. However, tendency of thermal degradation due to crystallization at high temperature may destroy the high temperature performance of the quartz fiber fabric, especially its high temperature mechanical property. In this study, Al2O3 ceramic coating was synthesized on the surface of 2D quartz fiber fabric in aqueous solution near room temperature. Surface morphology and chemical composition were studied to evaluate the quality of the coating by SEM, AFM, XPS and FT-IR. The annealing behavior at high temperature was evaluated by electronic universal testing machine after high temperature processing. Al2O3 coating could improve its annealing behavior effectively. The maximum load that the coated fabric can bear was 2.5 times as higher as that of the original fabric, proving the superior high temperature mechanical property of the coated fabric. The coating on the surface of the fiber could block the damage of the high temperature to the quartz fiber, improving the crystallization phenomenon of the quartz fiber at high temperature, followed by the improve in the high temperature mechanical property of the fabric.
{"title":"Preparation, characterization and annealing behavior of Al2O3 coating on quartz fiber fabric in aqueous solution near room temperature","authors":"Yongfu Zhang, Yan Xiang, Yunjie Yang, Xiaolin Wei, B. Ma, Weiwei Chen, Huanwu Cheng, Lu Wang, Lin Lu, Maoyuan Li, Haifeng Fu","doi":"10.1680/jsuin.22.00035","DOIUrl":"https://doi.org/10.1680/jsuin.22.00035","url":null,"abstract":"Quartz fiber fabric has been widely used in national defense, military, aerospace industries due to its good high temperature resistance, chemical stability, and excellent thermal shock resistance. However, tendency of thermal degradation due to crystallization at high temperature may destroy the high temperature performance of the quartz fiber fabric, especially its high temperature mechanical property. In this study, Al2O3 ceramic coating was synthesized on the surface of 2D quartz fiber fabric in aqueous solution near room temperature. Surface morphology and chemical composition were studied to evaluate the quality of the coating by SEM, AFM, XPS and FT-IR. The annealing behavior at high temperature was evaluated by electronic universal testing machine after high temperature processing. Al2O3 coating could improve its annealing behavior effectively. The maximum load that the coated fabric can bear was 2.5 times as higher as that of the original fabric, proving the superior high temperature mechanical property of the coated fabric. The coating on the surface of the fiber could block the damage of the high temperature to the quartz fiber, improving the crystallization phenomenon of the quartz fiber at high temperature, followed by the improve in the high temperature mechanical property of the fabric.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43173377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}