Pub Date : 2025-01-01Epub Date: 2024-10-21DOI: 10.1159/000541446
Jean Filo, Martina L Mustroph, Melissa M J Chua, Philip J White, Nathan J McDannold, G Rees Cosgrove
Introduction: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy effectively treats medication-resistant essential tremor (ET). Usually, intracranial calcifications are excluded as no-pass zones because of their low penetrability which may limit the effectiveness of treatment and lead to unintended side effects. This case report illustrates the efficacy of unilateral MRgFUS for tremor control in a patient with extensive basal ganglia calcifications due to Fahr's disease.
Case presentation: A 69-year-old right-handed male with debilitating Fahn-Tolosa-Marin grade 3-4 bilateral hand tremor underwent unilateral left MRgFUS thalamotomy. The treatment involved careful preoperative planning to accommodate his extensive basal ganglia calcifications, element path consideration, and skull density ratio to ensure accurate and effective lesioning. Posttreatment, the patient exhibited complete abolition of tremor on the treated side with minor transient dysarthria and imbalance. Follow-up at 12 weeks posttreatment showed sustained tremor relief and an absence of any adverse effects, validating the procedural adjustments made to accommodate the unique challenges posed by his intracranial calcifications.
Conclusion: MRgFUS can be safely and effectively applied in certain patients with extensive basal ganglia calcifications - in this case, due to Fahr's disease. This case report suggests expanding the application of MRgFUS to patients with extensive intracranial calcifications who previously might not have been considered suitable candidates for MRgFUS.
{"title":"Magnetic Resonance-Guided Focused Ultrasound Thalamotomy for Essential Tremor in Fahr's Disease: Case Report.","authors":"Jean Filo, Martina L Mustroph, Melissa M J Chua, Philip J White, Nathan J McDannold, G Rees Cosgrove","doi":"10.1159/000541446","DOIUrl":"10.1159/000541446","url":null,"abstract":"<p><strong>Introduction: </strong>Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy effectively treats medication-resistant essential tremor (ET). Usually, intracranial calcifications are excluded as no-pass zones because of their low penetrability which may limit the effectiveness of treatment and lead to unintended side effects. This case report illustrates the efficacy of unilateral MRgFUS for tremor control in a patient with extensive basal ganglia calcifications due to Fahr's disease.</p><p><strong>Case presentation: </strong>A 69-year-old right-handed male with debilitating Fahn-Tolosa-Marin grade 3-4 bilateral hand tremor underwent unilateral left MRgFUS thalamotomy. The treatment involved careful preoperative planning to accommodate his extensive basal ganglia calcifications, element path consideration, and skull density ratio to ensure accurate and effective lesioning. Posttreatment, the patient exhibited complete abolition of tremor on the treated side with minor transient dysarthria and imbalance. Follow-up at 12 weeks posttreatment showed sustained tremor relief and an absence of any adverse effects, validating the procedural adjustments made to accommodate the unique challenges posed by his intracranial calcifications.</p><p><strong>Conclusion: </strong>MRgFUS can be safely and effectively applied in certain patients with extensive basal ganglia calcifications - in this case, due to Fahr's disease. This case report suggests expanding the application of MRgFUS to patients with extensive intracranial calcifications who previously might not have been considered suitable candidates for MRgFUS.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"63-68"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-21DOI: 10.1159/000542138
Egor D Anisimov, Oleg M Andrushkevich, Vidzhai M Dzhafarov, Evgenia V Amelina, Jamil A Rzaev, Konstantin V Slavin
Introduction: Postherpetic neuralgia (PHN) is a pain syndrome that develops within few months after the acute herpetic outbreak. The pain may be accompanied by specific cutaneous signs in the distribution of affected dermatomes and feel unbearable reaching up to 9-10/10 on visual analog scale (VAS). Despite the introduction of new medications, drug resistance develops in at least 50% of cases. Neuromodulation techniques such as spinal cord stimulation (SCS) and peripheral nerve stimulation (PNS) are considered as ones of the last resorts for PHN treatment, especially in pharmacoresistant patients. Recently, several studies with limited number of cases have shown high efficiency of neuromodulation (regression of pain syndrome in more than 82% of cases) after SCS in PHN patients, but these findings require further confirmation and have not been supported by large RCTs.
Methods: Initially, 32 patients diagnosed with chronic drug-resistant PHN underwent a trial of SCS. Based on the trial results, a decision was made whether to implant a permanent SCS system. The condition of all patients implanted with SCS system was assessed using the VAS, SF-36, Patient Global Impression of Change (PGIC), and Medicine Quantification Scale, version III (MQS) questionnaires before the surgery and in the long-term follow-up. We also conducted systematic follow-up of patients who did not pass the test stimulation stage, using them as a control group to track the levels of pain. The hypothesis of normal distribution for quantitative values was tested using Shapiro-Wilk tests.
Results: During the trial period, tonic spinal stimulation was effective in 16 out of 32 (50%) patients with drug-resistant PHN. Among 14 patients with implanted stimulators, a significant pain reduction (more than 50% from the baseline) was observed in 10 patients (71.4%). The pain level in patients with a tonic SCS was statistically lower than in patients receiving conservative therapy. For the entire group of patients with implanted SCS, a significant improvement was also observed in results of SF-36, PGIC, and MQS.
Conclusion: Our clinical series demonstrates that tonic SCS was effective in 50% of patients with refractory PHN undergoing SCS trial. Significant improvement in pain control obtained during the long-term follow-up in patients treated with tonic SCS improves the quality of life and reduces the need for analgesic medications.
{"title":"Long-Term Effects of Spinal Cord Stimulation on Pain in Postherpetic Neuralgia.","authors":"Egor D Anisimov, Oleg M Andrushkevich, Vidzhai M Dzhafarov, Evgenia V Amelina, Jamil A Rzaev, Konstantin V Slavin","doi":"10.1159/000542138","DOIUrl":"10.1159/000542138","url":null,"abstract":"<p><strong>Introduction: </strong>Postherpetic neuralgia (PHN) is a pain syndrome that develops within few months after the acute herpetic outbreak. The pain may be accompanied by specific cutaneous signs in the distribution of affected dermatomes and feel unbearable reaching up to 9-10/10 on visual analog scale (VAS). Despite the introduction of new medications, drug resistance develops in at least 50% of cases. Neuromodulation techniques such as spinal cord stimulation (SCS) and peripheral nerve stimulation (PNS) are considered as ones of the last resorts for PHN treatment, especially in pharmacoresistant patients. Recently, several studies with limited number of cases have shown high efficiency of neuromodulation (regression of pain syndrome in more than 82% of cases) after SCS in PHN patients, but these findings require further confirmation and have not been supported by large RCTs.</p><p><strong>Methods: </strong>Initially, 32 patients diagnosed with chronic drug-resistant PHN underwent a trial of SCS. Based on the trial results, a decision was made whether to implant a permanent SCS system. The condition of all patients implanted with SCS system was assessed using the VAS, SF-36, Patient Global Impression of Change (PGIC), and Medicine Quantification Scale, version III (MQS) questionnaires before the surgery and in the long-term follow-up. We also conducted systematic follow-up of patients who did not pass the test stimulation stage, using them as a control group to track the levels of pain. The hypothesis of normal distribution for quantitative values was tested using Shapiro-Wilk tests.</p><p><strong>Results: </strong>During the trial period, tonic spinal stimulation was effective in 16 out of 32 (50%) patients with drug-resistant PHN. Among 14 patients with implanted stimulators, a significant pain reduction (more than 50% from the baseline) was observed in 10 patients (71.4%). The pain level in patients with a tonic SCS was statistically lower than in patients receiving conservative therapy. For the entire group of patients with implanted SCS, a significant improvement was also observed in results of SF-36, PGIC, and MQS.</p><p><strong>Conclusion: </strong>Our clinical series demonstrates that tonic SCS was effective in 50% of patients with refractory PHN undergoing SCS trial. Significant improvement in pain control obtained during the long-term follow-up in patients treated with tonic SCS improves the quality of life and reduces the need for analgesic medications.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"35-41"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142688468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-08DOI: 10.1159/000542015
Thomas Billoud, Peter Christoph Reinacher, Moritz Weigt, Dominik von Elverfeldt, Theo Demerath, Martin Pichotka
Introduction: One of the challenges in directional deep brain stimulation (DBS) is to determine the orientation of implanted electrodes relative to targeted regions. Post-operative images must be aligned with a model of the implanted lead, usually a computer-based model provided by the manufacturer. This paper shows that models can alternatively be obtained by capturing images of individual leads using micro-CT, a high-resolution CT technique. Contrary to computer-aided design models, lead models generated this way provide realistic X-ray contrast and finer details.
Methods: We scanned DBS leads from various vendors using a Bruker SkyScan 1276 micro-CT system. To reduce beam-hardening artefacts, samples were scanned at maximum X-ray tube voltage (100 kV) and with copper filtering. Images were made publicly available for download and 3D visualisation.
Conclusion: Detailed images of single DBS leads can be generated using standard micro-CT systems. Their use as reference models could improve lead orientation algorithms, in particular those dedicated to X-ray modalities. Furthermore, the possibility to share models online could broaden access for clinical research.
导言:定向脑深部刺激(DBS)的挑战之一是确定植入电极相对于目标区域的方向。术后图像必须与植入导线的模型(通常是由制造商提供的基于计算机的模型)对齐。本文介绍了另一种方法,即使用微计算机断层扫描(一种高分辨率计算机断层扫描技术)捕捉单个导线的图像来获取模型。与计算机辅助设计模型相反,这种方法生成的导联模型具有逼真的 X 射线对比度和更精细的细节:我们使用布鲁克 SkyScan 1276 微型 CT 系统扫描了来自不同供应商的 DBS 导联。为减少光束硬化伪影,样品在最大 X 射线管电压(100 kV)和铜滤波条件下进行扫描。图像可公开下载并进行三维可视化:结论:使用标准微型计算机断层扫描系统可以生成单个 DBS 导联的详细图像。将其用作参考模型可以改进导联定向算法,特别是那些专门用于 X 射线模式的算法。此外,在线共享模型还能扩大临床研究的使用范围。
{"title":"Detailed Images of Deep Brain Stimulation Leads Using Micro-CT.","authors":"Thomas Billoud, Peter Christoph Reinacher, Moritz Weigt, Dominik von Elverfeldt, Theo Demerath, Martin Pichotka","doi":"10.1159/000542015","DOIUrl":"10.1159/000542015","url":null,"abstract":"<p><strong>Introduction: </strong>One of the challenges in directional deep brain stimulation (DBS) is to determine the orientation of implanted electrodes relative to targeted regions. Post-operative images must be aligned with a model of the implanted lead, usually a computer-based model provided by the manufacturer. This paper shows that models can alternatively be obtained by capturing images of individual leads using micro-CT, a high-resolution CT technique. Contrary to computer-aided design models, lead models generated this way provide realistic X-ray contrast and finer details.</p><p><strong>Methods: </strong>We scanned DBS leads from various vendors using a Bruker SkyScan 1276 micro-CT system. To reduce beam-hardening artefacts, samples were scanned at maximum X-ray tube voltage (100 kV) and with copper filtering. Images were made publicly available for download and 3D visualisation.</p><p><strong>Conclusion: </strong>Detailed images of single DBS leads can be generated using standard micro-CT systems. Their use as reference models could improve lead orientation algorithms, in particular those dedicated to X-ray modalities. Furthermore, the possibility to share models online could broaden access for clinical research.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"69-74"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142628582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-29DOI: 10.1159/000541445
Samuel H Kim, Christian G Lopez Ramos, Mihir J Palan, Elise Kronquist, Hao Tan, Mohamed Amgad Elsayed Elkholy, Ahmed Raslan
Introduction: Spinal cord stimulation (SCS) is an effective treatment for patients with refractory chronic pain. Despite its efficacy, rates of reoperation after initial implantation of SCS remain high. While revision rates after index SCS surgeries are well reported, less is known about rates and risk factors associated with repeat reoperations. We sought to evaluate patient, clinical, and surgical characteristics associated with repeat reoperation among patients who underwent an initial SCS revision procedure.
Methods: We performed a retrospective review of patients who underwent SCS revision surgery performed at a single institution between 2008 and 2022. Patients were stratified by whether they underwent a single revision (SR) or multiple revision (MR) surgeries. Multivariate logistic regression was performed to determine risk factors associated with repeat SCS revision. Kaplan-Meier survival analysis was used to compare rates of devices requiring revision across groups.
Results: A total of 54 patients underwent an initial SCS revision. Of these, 15 (28%) underwent a second revision. The most common indication for revision surgery was lead migration (65%). No significant differences were observed in age, body mass index, comorbidities, lead type, and revision indication among the SR and MR groups. On multivariate adjusted analysis, only cervical lead position was significantly associated with repeat reoperation (OR 7.10, 95% CI [1.14, 44.3], p = 0.036). Time to reoperation after a single and MR SCS surgeries did not differ.
Conclusions: Among patients who undergo SCS reoperation, a substantial portion requires additional revisions. Cervical lead placement may be associated with a higher risk of repeat revision surgery compared to thoracic lead positioning. Consideration of lead positioning in the decision to perform and undergo reoperation may therefore result in lower revision rates and improved clinical outcomes among SCS patients with MRs.
{"title":"Reoperation Rates and Risk Factors after Spinal Cord Stimulation Revision Surgery.","authors":"Samuel H Kim, Christian G Lopez Ramos, Mihir J Palan, Elise Kronquist, Hao Tan, Mohamed Amgad Elsayed Elkholy, Ahmed Raslan","doi":"10.1159/000541445","DOIUrl":"10.1159/000541445","url":null,"abstract":"<p><strong>Introduction: </strong>Spinal cord stimulation (SCS) is an effective treatment for patients with refractory chronic pain. Despite its efficacy, rates of reoperation after initial implantation of SCS remain high. While revision rates after index SCS surgeries are well reported, less is known about rates and risk factors associated with repeat reoperations. We sought to evaluate patient, clinical, and surgical characteristics associated with repeat reoperation among patients who underwent an initial SCS revision procedure.</p><p><strong>Methods: </strong>We performed a retrospective review of patients who underwent SCS revision surgery performed at a single institution between 2008 and 2022. Patients were stratified by whether they underwent a single revision (SR) or multiple revision (MR) surgeries. Multivariate logistic regression was performed to determine risk factors associated with repeat SCS revision. Kaplan-Meier survival analysis was used to compare rates of devices requiring revision across groups.</p><p><strong>Results: </strong>A total of 54 patients underwent an initial SCS revision. Of these, 15 (28%) underwent a second revision. The most common indication for revision surgery was lead migration (65%). No significant differences were observed in age, body mass index, comorbidities, lead type, and revision indication among the SR and MR groups. On multivariate adjusted analysis, only cervical lead position was significantly associated with repeat reoperation (OR 7.10, 95% CI [1.14, 44.3], p = 0.036). Time to reoperation after a single and MR SCS surgeries did not differ.</p><p><strong>Conclusions: </strong>Among patients who undergo SCS reoperation, a substantial portion requires additional revisions. Cervical lead placement may be associated with a higher risk of repeat revision surgery compared to thoracic lead positioning. Consideration of lead positioning in the decision to perform and undergo reoperation may therefore result in lower revision rates and improved clinical outcomes among SCS patients with MRs.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"24-34"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-27DOI: 10.1159/000542725
Riccardo Ludovichetti, Clement T Chow, Sriranga Kashyap, Ian Connell, Benson Yang, Simon J Graham, Gavin Elias, Brendan Santyr, Asma Naheed, Diego Martinez, Michael Colditz, Jürgen Germann, Artur Vetkas, Kâmil Uludağ, Andres M Lozano, Alexandre Boutet
<p><strong>Introduction: </strong>Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have limited such imaging. Rigorous safety testing has demonstrated that scanning outside of vendor guidelines may be both safe and feasible, unlocking unique opportunities for advanced imaging in this patient population. Currently, however, 3T MRI safety data including advanced MRI sequences in novel directional and sensing DBS devices is lacking.</p><p><strong>Methods: </strong>An anthropomorphic phantom replicating bilateral DBS system was used to assess the temperature rise at the electrode tips, implantable pulse generator, and cranial loop during acquisition of routine clinical sequences (three dimensional [3D] T1, GRE T2*, T2 FSE) and advanced imaging sequences including functional MRI (fMRI), arterial spin labelling (ASL), and diffusion weighted imaging (DWI). Measures of radiofrequency exposure (specific absorption rate [SAR] and root-mean square value of the MRI effective component of the radiofrequency transmission field [B1+rms]) were also recorded as an indirect measure of heating. Testing involved both a new directional and sensing DBS device (Medtronic: B30015 leads and Percept PC neurostimulator) and a previous-generation DBS device (Medtronic: 3,387 leads and Percept PC neurostimulator) in combination with a state-of-the-art (Siemens MAGNETOM Prisma) and a previous-generation (GE Signa HDxt) 3T MRI scanner.</p><p><strong>Results: </strong>On the state-of-the-art 3T MRI scanner, the new DBS device produced safe temperature rises with clinically used sequences and fMRI but not with other advanced sequences such as DWI and ASL, which also exceeded B1+rms vendor guidelines (i.e., ≤2 μT). When scanned on the previous MRI scanner, the recent DBS device produced overall lower and slower temperature rises compared to the previous DBS model. Among the sequences performed on this scanner, several (3D T1, DWI, T2 FSE, and ASL) exceeded the approved SAR vendor limit (<1 W/kg), but only ASL resulted in an unacceptable temperature rise during scanning of the previous DBS model.</p><p><strong>Conclusion: </strong>These phantom safety data show that both clinically used MRI sequences and research sequences such as fMRI can be successfully acquired on 3T MRI scanners with a novel directional and sensing DBS model. As several of these sequences were obtained outside regulatory-approved vendor guidelines, preemptive safety testing should be done. As directional leads become increasingly common, improving MRI safety knowledge is crucial to expand clinical and research possibilities.</p><p><strong>Introduction: </strong>Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have l
{"title":"Phantom Safety Assessment of 3 Tesla Magnetic Resonance Imaging in Directional and Sensing Deep Brain Stimulation Devices.","authors":"Riccardo Ludovichetti, Clement T Chow, Sriranga Kashyap, Ian Connell, Benson Yang, Simon J Graham, Gavin Elias, Brendan Santyr, Asma Naheed, Diego Martinez, Michael Colditz, Jürgen Germann, Artur Vetkas, Kâmil Uludağ, Andres M Lozano, Alexandre Boutet","doi":"10.1159/000542725","DOIUrl":"10.1159/000542725","url":null,"abstract":"<p><strong>Introduction: </strong>Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have limited such imaging. Rigorous safety testing has demonstrated that scanning outside of vendor guidelines may be both safe and feasible, unlocking unique opportunities for advanced imaging in this patient population. Currently, however, 3T MRI safety data including advanced MRI sequences in novel directional and sensing DBS devices is lacking.</p><p><strong>Methods: </strong>An anthropomorphic phantom replicating bilateral DBS system was used to assess the temperature rise at the electrode tips, implantable pulse generator, and cranial loop during acquisition of routine clinical sequences (three dimensional [3D] T1, GRE T2*, T2 FSE) and advanced imaging sequences including functional MRI (fMRI), arterial spin labelling (ASL), and diffusion weighted imaging (DWI). Measures of radiofrequency exposure (specific absorption rate [SAR] and root-mean square value of the MRI effective component of the radiofrequency transmission field [B1+rms]) were also recorded as an indirect measure of heating. Testing involved both a new directional and sensing DBS device (Medtronic: B30015 leads and Percept PC neurostimulator) and a previous-generation DBS device (Medtronic: 3,387 leads and Percept PC neurostimulator) in combination with a state-of-the-art (Siemens MAGNETOM Prisma) and a previous-generation (GE Signa HDxt) 3T MRI scanner.</p><p><strong>Results: </strong>On the state-of-the-art 3T MRI scanner, the new DBS device produced safe temperature rises with clinically used sequences and fMRI but not with other advanced sequences such as DWI and ASL, which also exceeded B1+rms vendor guidelines (i.e., ≤2 μT). When scanned on the previous MRI scanner, the recent DBS device produced overall lower and slower temperature rises compared to the previous DBS model. Among the sequences performed on this scanner, several (3D T1, DWI, T2 FSE, and ASL) exceeded the approved SAR vendor limit (<1 W/kg), but only ASL resulted in an unacceptable temperature rise during scanning of the previous DBS model.</p><p><strong>Conclusion: </strong>These phantom safety data show that both clinically used MRI sequences and research sequences such as fMRI can be successfully acquired on 3T MRI scanners with a novel directional and sensing DBS model. As several of these sequences were obtained outside regulatory-approved vendor guidelines, preemptive safety testing should be done. As directional leads become increasingly common, improving MRI safety knowledge is crucial to expand clinical and research possibilities.</p><p><strong>Introduction: </strong>Magnetic resonance imaging (MRI) is both a crucial clinical and research tool for patients with deep brain stimulation (DBS) devices. However, safety concerns predominantly related to device heating have l","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"42-54"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anton Fomenko, Artur Vetkas, Benjamin Davidson, Newton Cho, Suneil K Kalia
Introduction: Cerebellar deep brain stimulation (DBS) is gaining traction as a potential treatment for movement disorders and stroke, and there is renewed interest in the cerebellum as a target for neuromodulation. Despite the safety and accuracy of frame-based approaches to the posterior fossa, unconventional stereotactic frame placement may be necessary to allow for low posterior fossa trajectories. Current literature lacks a comprehensive protocol detailing inverted frame placement and targeting.
Methods: Preoperative imaging was acquired prone. An inverted Leksell G frame was applied along with an open-topped CT fiducial box, followed by a prone CT with the scanner set to the "legs first, nose up" configuration. Target coordinates were extracted from navigation software after image fusion. Intraoperatively, the patient was positioned prone, and the stereotactic arc was mounted in the lateral-right orientation, with inverted arc supports. Confirmatory stereotaxy to a scalp staple was performed, and the DBS leads were then inserted.
Conclusion: Our standardized protocol provides a flexible platform for posterior fossa DBS, allowing for low trajectories and multiple electrodes. Unlike conventional upright frame placement, an inverted frame permits an unobstructed view of suboccipital entry sites and incision placement. A conventional frame and regular planning software are sufficient, with no additional mathematical calculations required.
{"title":"Stereotactic Frame-Based Targeting of the Posterior Fossa: A Systematic Workflow for the Leksell G Frame.","authors":"Anton Fomenko, Artur Vetkas, Benjamin Davidson, Newton Cho, Suneil K Kalia","doi":"10.1159/000543013","DOIUrl":"10.1159/000543013","url":null,"abstract":"<p><strong>Introduction: </strong>Cerebellar deep brain stimulation (DBS) is gaining traction as a potential treatment for movement disorders and stroke, and there is renewed interest in the cerebellum as a target for neuromodulation. Despite the safety and accuracy of frame-based approaches to the posterior fossa, unconventional stereotactic frame placement may be necessary to allow for low posterior fossa trajectories. Current literature lacks a comprehensive protocol detailing inverted frame placement and targeting.</p><p><strong>Methods: </strong>Preoperative imaging was acquired prone. An inverted Leksell G frame was applied along with an open-topped CT fiducial box, followed by a prone CT with the scanner set to the \"legs first, nose up\" configuration. Target coordinates were extracted from navigation software after image fusion. Intraoperatively, the patient was positioned prone, and the stereotactic arc was mounted in the lateral-right orientation, with inverted arc supports. Confirmatory stereotaxy to a scalp staple was performed, and the DBS leads were then inserted.</p><p><strong>Conclusion: </strong>Our standardized protocol provides a flexible platform for posterior fossa DBS, allowing for low trajectories and multiple electrodes. Unlike conventional upright frame placement, an inverted frame permits an unobstructed view of suboccipital entry sites and incision placement. A conventional frame and regular planning software are sufficient, with no additional mathematical calculations required.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-6"},"PeriodicalIF":1.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludvic Zrinzo, Harith Akram, Jonathan Hyam, Joseph Candelario-Mckeown, Ranjit Rangnekar, Ashley Nwanze, San San Xu, Thomas Foltynie, Patricia Limousin, Marie T Krüger
Introduction: Rising NHS waiting lists are a major problem following the COVID-19 pandemic. In our institution, surgical waiting time for elective functional neurosurgical procedures, such as deep brain stimulation (DBS) and radiofrequency ablation (RFA), reached >1.5 years by the end of 2022. During 2023, reduced operating room availability, intraoperative MRI (iMRI) suite closure for refurbishment, and ongoing strikes threatened to increase waiting times further.
Methods: Our previous surgical workflow for DBS and RFA procedures was examined. Several aspects were identified, and changes implemented to increase efficiency. Procedure numbers, waiting times, lead placement accuracy, and complication rates before and after these changes were compared.
Results: Prior to 2023, an average of 0.8 new procedures were performed per surgical list. Introduction of a new workflow in 2023 allowed an average of 1.6 new procedures per surgical list (100% increase in productivity). In 2023, 95 DBS and 31 RFA procedures were performed on 79 surgical lists. This represents a 52% increase over "pre-pandemic" activity in 2019 (74 DBS, 9 RFA) on 102 available surgical lists. Mean (SD) targeting accuracy (0.8 [0.4] mm) was comparable to previous years (0.9[0.3] mm). In 2023, there were no infections requiring hardware removal and only one asymptomatic haemorrhage following an RFA procedure. The surgical waiting time was reduced from >1.5 years to <4 months by the end of 2023.
Conclusion: Changes in surgical workflow, with neurosurgeons working in parallel, maximise surgical efficiency and productivity, significantly increasing the number of DBS and RFA procedures without compromising accuracy and safety.
{"title":"Disruption Driving Innovation: Optimising Efficiency in Functional Neurosurgery.","authors":"Ludvic Zrinzo, Harith Akram, Jonathan Hyam, Joseph Candelario-Mckeown, Ranjit Rangnekar, Ashley Nwanze, San San Xu, Thomas Foltynie, Patricia Limousin, Marie T Krüger","doi":"10.1159/000542110","DOIUrl":"https://doi.org/10.1159/000542110","url":null,"abstract":"<p><strong>Introduction: </strong>Rising NHS waiting lists are a major problem following the COVID-19 pandemic. In our institution, surgical waiting time for elective functional neurosurgical procedures, such as deep brain stimulation (DBS) and radiofrequency ablation (RFA), reached >1.5 years by the end of 2022. During 2023, reduced operating room availability, intraoperative MRI (iMRI) suite closure for refurbishment, and ongoing strikes threatened to increase waiting times further.</p><p><strong>Methods: </strong>Our previous surgical workflow for DBS and RFA procedures was examined. Several aspects were identified, and changes implemented to increase efficiency. Procedure numbers, waiting times, lead placement accuracy, and complication rates before and after these changes were compared.</p><p><strong>Results: </strong>Prior to 2023, an average of 0.8 new procedures were performed per surgical list. Introduction of a new workflow in 2023 allowed an average of 1.6 new procedures per surgical list (100% increase in productivity). In 2023, 95 DBS and 31 RFA procedures were performed on 79 surgical lists. This represents a 52% increase over \"pre-pandemic\" activity in 2019 (74 DBS, 9 RFA) on 102 available surgical lists. Mean (SD) targeting accuracy (0.8 [0.4] mm) was comparable to previous years (0.9[0.3] mm). In 2023, there were no infections requiring hardware removal and only one asymptomatic haemorrhage following an RFA procedure. The surgical waiting time was reduced from >1.5 years to <4 months by the end of 2023.</p><p><strong>Conclusion: </strong>Changes in surgical workflow, with neurosurgeons working in parallel, maximise surgical efficiency and productivity, significantly increasing the number of DBS and RFA procedures without compromising accuracy and safety.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-9"},"PeriodicalIF":1.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Roldán, Alejandra Mosteiro, Jordi Rumià Arboix, Daniel Asín, Almudena Sánchez-Gómez, Francesc Valldeoriola, Marta García-Orellana, Nicolás de Riva, Ricard Valero
Introduction: Direct targeting in deep brain stimulation (DBS) has remarkably impacted the patient's experience throughout the surgery and the overall logistics of the procedure. When the individualised plan is co-registered with a 3D image acquired intraoperatively, the electrodes can be safely placed under general anaesthesia. How this applies to a general practice scenery (outside clinical trials and in a moderate caseload centre) has been scarcely reported.
Methods: Prospective single-centre study of patients treated with asleep subthalamic DBS for Parkinson's disease between January 2021 and December 2022. Clinical, motor, medication-dependence, and quality-of-life outcomes were evaluated after optimal programming (6 months). Wilcoxon test was used to compare pre- versus post-repeated measures. Surgical-related parameters were also analysed.
Results: Eighty-nine patients primarily operated for DBS were included in the study. Intraoperative electrode replacement was not necessary. Mean surgical duration was 217 (SD 44) minutes, including the implantation of the generator; and mean length of stay was 3 (SD 1) days. There was one surgical-related complication (delayed infection). Significant and clinically relevant improvement was seen in UPRS III (mean decrease 62%) (p < 0.001) and PDQ-8 (50% increase) (p < 0.001) after 6 months. Daily doses of medication were decreased by a mean of 68%, p < 0.001).
Conclusion: DBS can be safely performed under general anaesthesia in a pragmatic clinical environment, provided a multidisciplinary committee for patient selection and a dedicated surgical and anaesthetic team are available. The effectiveness in ameliorating motor symptoms, the ability to reduce the drug load, and the improvement in quality of life demonstrated in clinical trials could be reproduced under more generalised conditions as in our centre. The need for a team learning curve and the progressive evolution in, and adaptation to, trajectory planning software, anaesthetic management, intraoperative imaging, DBS device upgrades, and programming schemes should be contemplated in the transition process to direct targeting.
{"title":"Subthalamic Deep Brain Stimulation under General Anaesthesia for Parkinson's Disease: Institutional Experience and Outcomes.","authors":"Pedro Roldán, Alejandra Mosteiro, Jordi Rumià Arboix, Daniel Asín, Almudena Sánchez-Gómez, Francesc Valldeoriola, Marta García-Orellana, Nicolás de Riva, Ricard Valero","doi":"10.1159/000542791","DOIUrl":"10.1159/000542791","url":null,"abstract":"<p><strong>Introduction: </strong>Direct targeting in deep brain stimulation (DBS) has remarkably impacted the patient's experience throughout the surgery and the overall logistics of the procedure. When the individualised plan is co-registered with a 3D image acquired intraoperatively, the electrodes can be safely placed under general anaesthesia. How this applies to a general practice scenery (outside clinical trials and in a moderate caseload centre) has been scarcely reported.</p><p><strong>Methods: </strong>Prospective single-centre study of patients treated with asleep subthalamic DBS for Parkinson's disease between January 2021 and December 2022. Clinical, motor, medication-dependence, and quality-of-life outcomes were evaluated after optimal programming (6 months). Wilcoxon test was used to compare pre- versus post-repeated measures. Surgical-related parameters were also analysed.</p><p><strong>Results: </strong>Eighty-nine patients primarily operated for DBS were included in the study. Intraoperative electrode replacement was not necessary. Mean surgical duration was 217 (SD 44) minutes, including the implantation of the generator; and mean length of stay was 3 (SD 1) days. There was one surgical-related complication (delayed infection). Significant and clinically relevant improvement was seen in UPRS III (mean decrease 62%) (p < 0.001) and PDQ-8 (50% increase) (p < 0.001) after 6 months. Daily doses of medication were decreased by a mean of 68%, p < 0.001).</p><p><strong>Conclusion: </strong>DBS can be safely performed under general anaesthesia in a pragmatic clinical environment, provided a multidisciplinary committee for patient selection and a dedicated surgical and anaesthetic team are available. The effectiveness in ameliorating motor symptoms, the ability to reduce the drug load, and the improvement in quality of life demonstrated in clinical trials could be reproduced under more generalised conditions as in our centre. The need for a team learning curve and the progressive evolution in, and adaptation to, trajectory planning software, anaesthetic management, intraoperative imaging, DBS device upgrades, and programming schemes should be contemplated in the transition process to direct targeting.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-9"},"PeriodicalIF":1.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142740517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajmal Zemmar, David H Aguirre-Padilla, Irene E Harmsen, Julianne Baarbé, Can Sarica, Kazuaki Yamamoto, Talyta Grippe, Ghazaleh Darmani, Amitabh Bhattacharya, Zhongcan Chen, Kelly E Gartner, Nelleke van Wouwe, Paula Azevedo, Artur Vetkas, Darcia Paul, Nardin Samuel, Gianluca Sorrento, Brendan Santyr, Nathan Rowland, Suneil Kalia, Robert Chen, Alfonso Fasano, Andres M Lozano
Introduction: Freezing of gait (FOG) is a clinical phenomenon with major life impairments and significant reduction in quality of life for affected patients. FOG is a feature of Parkinson's disease and a hallmark of primary progressive FOG, currently reclassified as Progressive Supranuclear Palsy-progressive gait freezing (PSP-PGF). The pathophysiology of FOG and particularly PGF, which is a rare degenerative disorder with a progressive natural history of gait decline, is poorly understood. Mechanistically, changes in oscillatory activity and synchronization in frontal cortical regions, the basal ganglia, and the midbrain locomotor region have been reported, indicating that dysrhythmic oscillations and coherence could play a causal role in the pathophysiology of FOG. Deep brain stimulation and spinal cord stimulation (SCS) have been tested as therapeutic neuromodulation avenues for FOG with mixed outcomes.
Methods: We analyzed gait and balance in 3 patients with PSP-PGF who received percutaneous thoracic SCS and utilized magnetoencephalography (MEG), electroencephalography, and electromyography to evaluate functional connectivity between the brain and spine.
Results: Gait and balance did not worsen over a 13-month period. This observation was accompanied by decreased beta-band spectral power in the whole brain and particularly in the basal ganglia. This was accompanied by increased functional connectivity in and between the sensorimotor cortices, basal ganglia, temporal cortex, and cerebellum, and a surge in corticomuscular coherence when SCS was paired with visual cues.
Conclusion: Our results suggest synergistic activity between brain and spinal circuits upon SCS for FOG in PGF, which may have implications for future brain-spine interfaces and closed-loop neuromodulation for patients with FOG.
{"title":"Dorsal Column Spinal Cord Stimulation Attenuates Brain-Spine Connectivity through Locomotion- and Visuospatial-Specific Area Activation in Progressive Freezing of Gait.","authors":"Ajmal Zemmar, David H Aguirre-Padilla, Irene E Harmsen, Julianne Baarbé, Can Sarica, Kazuaki Yamamoto, Talyta Grippe, Ghazaleh Darmani, Amitabh Bhattacharya, Zhongcan Chen, Kelly E Gartner, Nelleke van Wouwe, Paula Azevedo, Artur Vetkas, Darcia Paul, Nardin Samuel, Gianluca Sorrento, Brendan Santyr, Nathan Rowland, Suneil Kalia, Robert Chen, Alfonso Fasano, Andres M Lozano","doi":"10.1159/000541986","DOIUrl":"10.1159/000541986","url":null,"abstract":"<p><strong>Introduction: </strong>Freezing of gait (FOG) is a clinical phenomenon with major life impairments and significant reduction in quality of life for affected patients. FOG is a feature of Parkinson's disease and a hallmark of primary progressive FOG, currently reclassified as Progressive Supranuclear Palsy-progressive gait freezing (PSP-PGF). The pathophysiology of FOG and particularly PGF, which is a rare degenerative disorder with a progressive natural history of gait decline, is poorly understood. Mechanistically, changes in oscillatory activity and synchronization in frontal cortical regions, the basal ganglia, and the midbrain locomotor region have been reported, indicating that dysrhythmic oscillations and coherence could play a causal role in the pathophysiology of FOG. Deep brain stimulation and spinal cord stimulation (SCS) have been tested as therapeutic neuromodulation avenues for FOG with mixed outcomes.</p><p><strong>Methods: </strong>We analyzed gait and balance in 3 patients with PSP-PGF who received percutaneous thoracic SCS and utilized magnetoencephalography (MEG), electroencephalography, and electromyography to evaluate functional connectivity between the brain and spine.</p><p><strong>Results: </strong>Gait and balance did not worsen over a 13-month period. This observation was accompanied by decreased beta-band spectral power in the whole brain and particularly in the basal ganglia. This was accompanied by increased functional connectivity in and between the sensorimotor cortices, basal ganglia, temporal cortex, and cerebellum, and a surge in corticomuscular coherence when SCS was paired with visual cues.</p><p><strong>Conclusion: </strong>Our results suggest synergistic activity between brain and spinal circuits upon SCS for FOG in PGF, which may have implications for future brain-spine interfaces and closed-loop neuromodulation for patients with FOG.</p>","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":" ","pages":"1-12"},"PeriodicalIF":1.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Biennial Meeting of the American Society for Stereotactic and Functional Neurosurgery. Nashville, TN, June 1-4, 2024.","authors":"Kim Santos","doi":"10.1159/000541197","DOIUrl":"https://doi.org/10.1159/000541197","url":null,"abstract":"None.","PeriodicalId":22078,"journal":{"name":"Stereotactic and Functional Neurosurgery","volume":"18 1","pages":"3-287"},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}