Bioinoculants are beneficial microorganisms that are used in agriculture to enhance plant growth and productivity, improve soil health, and reduce the use of chemical fertilizers and pesticides. They include bacteria, fungi, protozoa, and endophytes that interact with plants in various ways to promote growth, nutrient uptake, and stress tolerance. The interactions between bioinoculants and their host plants are complex, and different strains of bacteria, fungi, and protozoa have specific interactions with different plants. Understanding these interactions is critical in selecting the appropriate bioinoculant for a particular crop and soil type. This paper reviews the interaction of different types of bioinoculants with plants, and their potential to improve the sustainability of agriculture and their applications. Techniques for applying bioinoculants include seed treatment, soil application, and foliar application. Bioinoculant application has been shown to improve crop yield, quality, and nutrient content. In addition, they help to reduce environmental pollution and protect soil biodiversity. Some of the challenges associated with the application of bioinoculants include the need for optimized formulations, storage, and transportation. To maximize the potential of bioinoculants in sustainable agriculture, it is necessary to continue research into their interactions and develop effective application techniques that can be used on a large scale.
{"title":"Bioinoculants: the agrarian avengers","authors":"Anushree Kamath, Arpit Shukla, Tayyaba Saiyed, Soham Bhatt, Hirva Rathod, Vidhi Makwana, Diya Soni, Shuvomoy Banerjee, Dhara Patel","doi":"10.1007/s13199-023-00953-5","DOIUrl":"https://doi.org/10.1007/s13199-023-00953-5","url":null,"abstract":"<p>Bioinoculants are beneficial microorganisms that are used in agriculture to enhance plant growth and productivity, improve soil health, and reduce the use of chemical fertilizers and pesticides. They include bacteria, fungi, protozoa, and endophytes that interact with plants in various ways to promote growth, nutrient uptake, and stress tolerance. The interactions between bioinoculants and their host plants are complex, and different strains of bacteria, fungi, and protozoa have specific interactions with different plants. Understanding these interactions is critical in selecting the appropriate bioinoculant for a particular crop and soil type. This paper reviews the interaction of different types of bioinoculants with plants, and their potential to improve the sustainability of agriculture and their applications. Techniques for applying bioinoculants include seed treatment, soil application, and foliar application. Bioinoculant application has been shown to improve crop yield, quality, and nutrient content. In addition, they help to reduce environmental pollution and protect soil biodiversity. Some of the challenges associated with the application of bioinoculants include the need for optimized formulations, storage, and transportation. To maximize the potential of bioinoculants in sustainable agriculture, it is necessary to continue research into their interactions and develop effective application techniques that can be used on a large scale.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"27 3","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Actinorhizal symbiosis naturally harbours beneficial categories of diverse plant growth promoting microorganisms (PGPMs), including the Frankia species. The beneficial microorganisms can be used as efficient, non-chemical and sustainable alternatives for adopting effective soil restoration programmes and revegetation schedules in chemical and industrial-contaminated sites, including treating degraded lands contaminated with toxic chemicals and pesticides. It has been proposed that the interactions between the microbial gene pool are of immense agricultural significance that would facilitate an improvement in the health, hygiene and nutrient acquisition pathway of native soil. The present review is focused on exploiting the hitherto-unexplored Frankia-actinorhizal symbiosis with due interest for their application in soil restoration programmes, including the reclamation of degraded lands. This opens up new insights for the development of sustainability in forestry and plantation research. Additionally, it would promise an improvement in plant growth and vigour, hygiene, and other parameters related to crop yield, such as plant biomass, root/shoot ratio, crop yield, and so on. Novel and putative microorganisms isolated from the actinorhizal may be used for bio-transformation of allelochemicals and toxic heavy metals into compounds with modified biological properties, opening up novel avenues for mediating microbial degradation of putative allelochemicals that would otherwise accumulate at phytotoxic levels in soil. Endophyte-host specificities, the phylogeny of Frankia, and the conservation of unique endemic plant genetic resources like actinorhizal plants, are of paramount significance in the advancement of genomics, metabolomics and phenomics.
{"title":"Frankia-actinorhizal symbiosis: a non-chemical biological assemblage for enhanced plant growth, nodulation and reclamation of degraded soils","authors":"Pranaba Nanda Bhattacharyya, Nazim Forid Islam, Bhaskar Sarma, Bharat Chandra Nath, Laith Khalil Tawfeeq Al-Ani, Didier Lesueur","doi":"10.1007/s13199-023-00956-2","DOIUrl":"https://doi.org/10.1007/s13199-023-00956-2","url":null,"abstract":"<p>Actinorhizal symbiosis naturally harbours beneficial categories of diverse plant growth promoting microorganisms (PGPMs), including the <i>Frankia</i> species. The beneficial microorganisms can be used as efficient, non-chemical and sustainable alternatives for adopting effective soil restoration programmes and revegetation schedules in chemical and industrial-contaminated sites, including treating degraded lands contaminated with toxic chemicals and pesticides. It has been proposed that the interactions between the microbial gene pool are of immense agricultural significance that would facilitate an improvement in the health, hygiene and nutrient acquisition pathway of native soil. The present review is focused on exploiting the hitherto-unexplored <i>Frankia</i>-actinorhizal symbiosis with due interest for their application in soil restoration programmes, including the reclamation of degraded lands. This opens up new insights for the development of sustainability in forestry and plantation research. Additionally, it would promise an improvement in plant growth and vigour, hygiene, and other parameters related to crop yield, such as plant biomass, root/shoot ratio, crop yield, and so on. Novel and putative microorganisms isolated from the actinorhizal may be used for bio-transformation of allelochemicals and toxic heavy metals into compounds with modified biological properties, opening up novel avenues for mediating microbial degradation of putative allelochemicals that would otherwise accumulate at phytotoxic levels in soil. Endophyte-host specificities, the phylogeny of <i>Frankia</i>, and the conservation of unique endemic plant genetic resources like actinorhizal plants, are of paramount significance in the advancement of genomics, metabolomics and phenomics.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"3 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1007/s13199-023-00951-7
Thomas Newton Martin, Rosana Taschetto Vey, Frederico Costa Beber Vieira, Rodrigo Josemar Seminoti Jacques, Matheus Martins Ferreira
{"title":"How did the coinoculation of Bradyrhizobium and Azospirillum become indispensable for soybean production in Brazil?","authors":"Thomas Newton Martin, Rosana Taschetto Vey, Frederico Costa Beber Vieira, Rodrigo Josemar Seminoti Jacques, Matheus Martins Ferreira","doi":"10.1007/s13199-023-00951-7","DOIUrl":"https://doi.org/10.1007/s13199-023-00951-7","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"92 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135390374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1007/s13199-023-00949-1
H. N. Anjana, K. N. Anith, K. K. Sabu
{"title":"Growth promoting effects of endophytic fungus Piriformospora indica in small cardamom (Elettaria cardamomum Maton)","authors":"H. N. Anjana, K. N. Anith, K. K. Sabu","doi":"10.1007/s13199-023-00949-1","DOIUrl":"https://doi.org/10.1007/s13199-023-00949-1","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"21 S6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135432801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.1007/s13199-023-00947-3
Meenu Thampi, N. D. Dhanraj, Aswathi Prasad, G. Ganga, M. S. Jisha
{"title":"Phosphorus Solubilizing Microbes (PSM): Biological tool to combat salinity stress in crops","authors":"Meenu Thampi, N. D. Dhanraj, Aswathi Prasad, G. Ganga, M. S. Jisha","doi":"10.1007/s13199-023-00947-3","DOIUrl":"https://doi.org/10.1007/s13199-023-00947-3","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"150 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1007/s13199-023-00945-5
Madhulika Singh, Jai Gopal Sharma, Bhoopander Giri
{"title":"Microbial inoculants improve growth in Zea mays L. under drought stress by up-regulating antioxidant, mineral acquisition, and ultrastructure modulations","authors":"Madhulika Singh, Jai Gopal Sharma, Bhoopander Giri","doi":"10.1007/s13199-023-00945-5","DOIUrl":"https://doi.org/10.1007/s13199-023-00945-5","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"12367 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1007/s13199-023-00950-8
Ines Harzli, Yasemin Özdener Kömpe
{"title":"Assessing the effectiveness of in vitro and in situ symbiotic seed germination: case of Anacamptis papilionacea (L.) R.M.Bateman, Pridgeon & M.W. Chase","authors":"Ines Harzli, Yasemin Özdener Kömpe","doi":"10.1007/s13199-023-00950-8","DOIUrl":"https://doi.org/10.1007/s13199-023-00950-8","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"268 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136261845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-25DOI: 10.1007/s13199-023-00952-6
Mani Kannan, Itai Opatovsky
{"title":"A review on nutritional and non-nutritional interactions of symbiotic and associated fungi with insect","authors":"Mani Kannan, Itai Opatovsky","doi":"10.1007/s13199-023-00952-6","DOIUrl":"https://doi.org/10.1007/s13199-023-00952-6","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134971811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-14DOI: 10.1007/s13199-023-00948-2
Ou-zine Mohamed, El Kinany Said, Sabri Miloud, Haggoud Abdellatif, Achbani El Hassan, Bouamri Rachid
{"title":"Effect of agricultural management practices on diversity, abundance, and infectivity of arbuscular mycorrhizal fungi: a review","authors":"Ou-zine Mohamed, El Kinany Said, Sabri Miloud, Haggoud Abdellatif, Achbani El Hassan, Bouamri Rachid","doi":"10.1007/s13199-023-00948-2","DOIUrl":"https://doi.org/10.1007/s13199-023-00948-2","url":null,"abstract":"","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135803384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}