Tea plant ( Camellia sinensis ) and its closely related species and varieties belong to Sect. Thea (L.) Dyer, Camellia L. There are abundant compounds in the fresh shoots of section Thea (L.) Dyer species and varieties. Their variation in different tea species and varieties is unclear. Fresh shoots from 336 accessions of C. sinensis and its closely related species and varieties were harvested and their non-volatile metabolites were detected through UPLC-MS (ultra-performance liquid chromatography - mass spectrometry). A total of 374 non-volatile metabolites were identified, which can be divided into 27 categories. Among them, 32 compounds were flavonoid polymers. The tea plants were divided into two groups, according to the Calinski criterion according to the composition of metabolites. The top 30 differential metabolites in C. sinensis var. sinensis , C. sinensis var. assamica , C. sinensis var. pubilimba , C. tachangensis , and C. taliensis , belong to amino acids and their derivatives, benzoic acid derivatives, carbohydrates, coumarins, flavonol glycosides, organic acids, quinoline acid and its derivatives. The results provide new insights for further understanding the characteristic metabolites of tea plant and its closely related species and varieties. non-volatile metabolites from plant ( )
{"title":"Characteristics of non-volatile metabolites in fresh shoots from tea plant (Camellia sinensis) and its closely related species and varieties","authors":"Chen-Kai Jiang, D. Moon, Jianqiang Ma, Liang Chen","doi":"10.48130/bpr-2022-0009","DOIUrl":"https://doi.org/10.48130/bpr-2022-0009","url":null,"abstract":"Tea plant ( Camellia sinensis ) and its closely related species and varieties belong to Sect. Thea (L.) Dyer, Camellia L. There are abundant compounds in the fresh shoots of section Thea (L.) Dyer species and varieties. Their variation in different tea species and varieties is unclear. Fresh shoots from 336 accessions of C. sinensis and its closely related species and varieties were harvested and their non-volatile metabolites were detected through UPLC-MS (ultra-performance liquid chromatography - mass spectrometry). A total of 374 non-volatile metabolites were identified, which can be divided into 27 categories. Among them, 32 compounds were flavonoid polymers. The tea plants were divided into two groups, according to the Calinski criterion according to the composition of metabolites. The top 30 differential metabolites in C. sinensis var. sinensis , C. sinensis var. assamica , C. sinensis var. pubilimba , C. tachangensis , and C. taliensis , belong to amino acids and their derivatives, benzoic acid derivatives, carbohydrates, coumarins, flavonol glycosides, organic acids, quinoline acid and its derivatives. The results provide new insights for further understanding the characteristic metabolites of tea plant and its closely related species and varieties. non-volatile metabolites from plant ( )","PeriodicalId":223765,"journal":{"name":"Beverage Plant Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129058671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaogang Lei, Ting Wang, Bin Yang, Y. Duan, Lin Zhou, Zhongwei Zou, Yuanchun Ma, Xujun Zhu, W. Fang
{"title":"Progress and perspective on intercropping pattern in tea plantations","authors":"Xiaogang Lei, Ting Wang, Bin Yang, Y. Duan, Lin Zhou, Zhongwei Zou, Yuanchun Ma, Xujun Zhu, W. Fang","doi":"10.48130/bpr-2022-0018","DOIUrl":"https://doi.org/10.48130/bpr-2022-0018","url":null,"abstract":"","PeriodicalId":223765,"journal":{"name":"Beverage Plant Research","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114393714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Lu, Wenwen Luo, Yanan Zheng, Jing Jin, Ru-Yi Liu, Yi-Qing Lv, Ying Ye, Jianhui Ye
Pruning as an important agronomic operation plays a crucial role in the regulation of tea plant growth, development and dry tea quality. The effects of different pruning operations on the plant growth, phytohormones and transcriptome profiles of the following spring tea shoots were studied. Pruning-treated samples had generally increased median of the weight of 100 buds (two leaves and one bud, 15.5−20.5 g) and longer stem diameter (1.7−1.8 mm) whereas shorter shoot length (34.6−59.2 mm) at the stage of two leaves and one bud, compared with unpruned samples (14.0 g, 1.7 mm, 87.4 mm), among which heavy pruning in mid April and early May greatly accelerated the development of the following spring tea shoots. The levels of phytohormones (auxin, gibberellin 1, gibberellin 3, and trans -zeatin) were significantly increased in the spring buds of tea plants heavily pruned in May. The KEGG result indicated that the pathways of plant–pathogen interaction, plant hormone signal transduction and circadian rhythm were regulated by different pruning treatments. Heavy pruning in April or May, without autumn pruning was suitable for producing premium green tea due to the early development and the higher weight of 100 buds. This study provides scientific guidance to regulate the growth of the following spring tea shoots using plant pruning
{"title":"Effect of different pruning operations on the plant growth, phytohormones and transcriptome profiles of the following spring tea shoots","authors":"Lu Lu, Wenwen Luo, Yanan Zheng, Jing Jin, Ru-Yi Liu, Yi-Qing Lv, Ying Ye, Jianhui Ye","doi":"10.48130/bpr-2022-0012","DOIUrl":"https://doi.org/10.48130/bpr-2022-0012","url":null,"abstract":"Pruning as an important agronomic operation plays a crucial role in the regulation of tea plant growth, development and dry tea quality. The effects of different pruning operations on the plant growth, phytohormones and transcriptome profiles of the following spring tea shoots were studied. Pruning-treated samples had generally increased median of the weight of 100 buds (two leaves and one bud, 15.5−20.5 g) and longer stem diameter (1.7−1.8 mm) whereas shorter shoot length (34.6−59.2 mm) at the stage of two leaves and one bud, compared with unpruned samples (14.0 g, 1.7 mm, 87.4 mm), among which heavy pruning in mid April and early May greatly accelerated the development of the following spring tea shoots. The levels of phytohormones (auxin, gibberellin 1, gibberellin 3, and trans -zeatin) were significantly increased in the spring buds of tea plants heavily pruned in May. The KEGG result indicated that the pathways of plant–pathogen interaction, plant hormone signal transduction and circadian rhythm were regulated by different pruning treatments. Heavy pruning in April or May, without autumn pruning was suitable for producing premium green tea due to the early development and the higher weight of 100 buds. This study provides scientific guidance to regulate the growth of the following spring tea shoots using plant pruning","PeriodicalId":223765,"journal":{"name":"Beverage Plant Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130554973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Isolation of mesophyll protoplasts from tea (Camellia sinensis) and localization analysis of enzymes involved in the biosynthesis of specialized metabolites","authors":"Ying Zhou, R. Deng, Xinlan Xu, Ziyin Yang","doi":"10.48130/bpr-2021-0002","DOIUrl":"https://doi.org/10.48130/bpr-2021-0002","url":null,"abstract":"","PeriodicalId":223765,"journal":{"name":"Beverage Plant Research","volume":"103 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131253746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihua Wang, Rong Huang, D. Moon, S. Ercişli, Liang Chen
Tea is one of the most significant non-alcoholic beverages globally due to its unique secondary metabolites. Therefore, it is essential to apply molecular technologies in conjunction with various phenotypes for candidate gene mining and identification, regulating the synthesis and degradation of secondary metabolites contributing to tea quality, in order to enhance effective tea breeding. To date, there are various tea genetic resources and numerous high-density genetic maps owing to the progress and development of the tea plant genome. In this review, we comprehensively reflect the mining and identification of quality-related candidate genes using quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) in tea plants in recent years. Functional verification and promotion of these candidate genes were also discussed.
{"title":"Achievements and prospects of QTL mapping and beneficial genes and alleles mining for important quality and agronomic traits in tea plant (Camellia sinensis)","authors":"Zhihua Wang, Rong Huang, D. Moon, S. Ercişli, Liang Chen","doi":"10.48130/bpr-2023-0022","DOIUrl":"https://doi.org/10.48130/bpr-2023-0022","url":null,"abstract":"Tea is one of the most significant non-alcoholic beverages globally due to its unique secondary metabolites. Therefore, it is essential to apply molecular technologies in conjunction with various phenotypes for candidate gene mining and identification, regulating the synthesis and degradation of secondary metabolites contributing to tea quality, in order to enhance effective tea breeding. To date, there are various tea genetic resources and numerous high-density genetic maps owing to the progress and development of the tea plant genome. In this review, we comprehensively reflect the mining and identification of quality-related candidate genes using quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) in tea plants in recent years. Functional verification and promotion of these candidate genes were also discussed.","PeriodicalId":223765,"journal":{"name":"Beverage Plant Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129607354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}