首页 > 最新文献

Progress in Photovoltaics最新文献

英文 中文
Photovoltaics literature survey (No. 190) 光伏文献调查(第 190 号)
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-11 DOI: 10.1002/pip.3795
Ziv Hameiri
<p>Hu F, Mou S, Wei S, et al <b>Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents.</b> <i>Energy Strategy Reviews</i> 2024; <b>51</b>: 101309.</p><p>De Keersmaecker M, Tirado J, Armstrong NR, et al <b>Defect quantification in metal halide perovskites anticipates photoluminescence and photovoltaic performance.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(1): 243–252.</p><p>Wang S, Wang C, Ge Y, et al <b>In-depth analysis of photovoltaic module parameter estimation.</b> <i>Energy</i> 2024; <b>291</b>: 130345.</p><p>Cao Y, Pang D, Zhao Q, et al <b>Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>131</b>: 107866.</p><p>Musiienko A, Yang FJ, Gries TW, et al <b>Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 316.</p><p>Qin Y, Yonemoto A, Gotoh K, et al <b>Potential-induced degradation phenomena in single-encapsulation crystalline Si photovoltaic modules.</b> <i>Japanese Journal of Applied Physics</i> 2024; <b>63</b>(2): 02SP11.</p><p>Chen W, Liu W, Yu Y, et al <b>Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 199–211.</p><p>Chen S, Shi J, Yao Y, et al <b>Enhancement of short-circuit current density in silicon heterojunction solar cells by hydrogenated multiple-doped In</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>thin films.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112727.</p><p>Hossain MJ, Sun M, Davis KO. <b>Photon management in silicon photovoltaic cells: A critical review.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112715.</p><p>Li Y, Shi B, Xu Q, et al <b>CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell.</b> <i>Nano Energy</i> 2024; <b>122</b>: 109285.</p><p>Ravidas BK, Das A, Agnihotri SK, et al <b>Design principles of crystalline silicon/CsGeI</b><sub><b>3</b></sub> <b>perovskite tandem solar cells using a combination of density functional theory and SCAPS-1D frameworks.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112688.</p><p>Du B, Ma MY, Zhang PP, et al <b>High-performance all-small-molecule organic solar cells fabricated via halogen-free preparation process.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(2): 2564–2,572.</p><p>Fan B, Gao H, Jen AK. <b>Biaxially conjugated materials for organic solar cells.</b> <i>Acs Nano</i> 2024; <b>18</b>(1): 136–154.</p><p>Kim JH, Park B, Song S, et al <b>Stretchable and transparent nanopillar arrays for high-performance ultra-flexible organic photovoltaics.</b> <i>Applied Physic
阳离子在二维/三维界面上的迁移如何决定包晶太阳能电池的效率Acs Energy Letters 2024; 9(1):Hu P, Zhou W, Chen J, et al Multidentate anchoring strategy for synergistically modulating crystallization and stability towards efficient perovskite solar cells.Liu H, Liu T, Ma X, et al Regulation on electron density distribution of organic molecule passivator enables efficient and stable perovskite solar cells.Tian K, Chen M, Liu H, et al Interfacial bidirectional binding for improving photovoltaic performance of perovskite solar cells.Aranda CA, Alvarez AO, Chivrony VS, et al Overcoming ionic migration in perovskite solar cells through alkali metals.Joule 2024; 8(1):Gao ZW, Wang Y, Chen X, et al Reconstructing subsurface lattice for stable perovskite photovoltaics.Joule 2024; 8(1):255-266.Huan ZH, Zheng YF, Wang KP, et al.材料化学学报 A 2024; 12(4):1910-1922.Chen N, Li QS.天然烯番茄红素对高效稳定的包晶体太阳能电池的胶状钝化:理论视角的启示。材料化学学报 C 2024; 12(4):Song ZL, Gao YP, Zou Y, et al Single-crystal-assisted In situ phase reconstruction enables efficient and stable 2D/3D perovskite solar cells.美国化学会志》,2024 年,146(2):Liu F, Ma Y, Zhang Y, et al Oxyl-terminated melem nanoparticles as crystallization modulators and passivating anchors for high-performance perovskite solar cells.Zeng LR, Ding B, Zhang G, et al Elimination of buried interfacial voids for efficient perovskite solar cells.Dong X, Wang R, Gao Y, et al Orbital interactions in 2D Dion-Jacobson perovskites using oligothiophene-based semiconductor spacers enable efficient solar cells.Nano Letters 2024; 24(1):Said AA, Aydin E, Ugur E, et al Sublimed C60 for efficient and repeatable perovskite-based solar cells.自然通讯 2024; 15(1):708.Elanzeery H, Stolzel M, Eraerds P, et al 超越 20% 世界纪录的薄膜太阳能模块效率。IEEE 光伏学报 2024; 14(1): 107-115:Chander S, Tripathi SK, Kaur I, et al Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells:高通量加工方法综述。Chauhan P, Agarwal S, Srivastava V, et al Impact on Generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer.光伏技术进展:2024;32(3):Debono A, L'Hostis H, Rebai A, et al 钼背接触和 CIGS 吸收体在太阳能电池降解过程中的协同效应。光伏技术进展:Photovoltaics: Research and Applications 2024; 32(3):Gensowski K, Freund T, Much M, et al 不同太阳能电池应用中透明导电氧化物层低电阻率触点的固化条件。光伏技术进展:研究与应用》,2024 年,第 32(2)期,第 102-114 页:Agrawal S, De Souza DO, Balasubramanian C, et al 由前驱体成分控制的次生相对 CZTS 薄膜太阳能电池效率的影响。Liu X, Abbas A, Togay M, et al The effect of remnant CdSe layers on the performance of CdSeTe/CdTe photovoltaic devices.Hao MM, Ding SS, Gaznaghi S, et al Perovskite 量子点太阳能电池:现状与未来展望。Acs Energy Letters 2024; 9(1):Maleki J, Eskandari M, Fathi D. 半串联量子点太阳能电池的新设计和优化:使用面向核壳的纳米结构,功率转换效率超过 30%。Renewable Energy 2024; 222: 119938.Ahn H. A framework for developing data-driven correction factors for solar PV systems.能源 2024; 290: 130096.Xu L, Ding P, Zhang Y, et al 太阳能光伏板不同位置障碍物遮挡效应的敏感性分析。Ahluwalia D, Anjum S, Mukherjee V. 线损综合分析及部分遮挡下优化光伏阵列的节能评估。Energy Conversion and Management 2024; 301: 118034.Amiri AF, Oudira H, Chouder A, et
{"title":"Photovoltaics literature survey (No. 190)","authors":"Ziv Hameiri","doi":"10.1002/pip.3795","DOIUrl":"https://doi.org/10.1002/pip.3795","url":null,"abstract":"&lt;p&gt;Hu F, Mou S, Wei S, et al &lt;b&gt;Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents.&lt;/b&gt; &lt;i&gt;Energy Strategy Reviews&lt;/i&gt; 2024; &lt;b&gt;51&lt;/b&gt;: 101309.&lt;/p&gt;&lt;p&gt;De Keersmaecker M, Tirado J, Armstrong NR, et al &lt;b&gt;Defect quantification in metal halide perovskites anticipates photoluminescence and photovoltaic performance.&lt;/b&gt; &lt;i&gt;Acs Energy Letters&lt;/i&gt; 2024; &lt;b&gt;9&lt;/b&gt;(1): 243–252.&lt;/p&gt;&lt;p&gt;Wang S, Wang C, Ge Y, et al &lt;b&gt;In-depth analysis of photovoltaic module parameter estimation.&lt;/b&gt; &lt;i&gt;Energy&lt;/i&gt; 2024; &lt;b&gt;291&lt;/b&gt;: 130345.&lt;/p&gt;&lt;p&gt;Cao Y, Pang D, Zhao Q, et al &lt;b&gt;Improved YOLOv8-GD deep learning model for defect detection in electroluminescence images of solar photovoltaic modules.&lt;/b&gt; &lt;i&gt;Engineering Applications of Artificial Intelligence&lt;/i&gt; 2024; &lt;b&gt;131&lt;/b&gt;: 107866.&lt;/p&gt;&lt;p&gt;Musiienko A, Yang FJ, Gries TW, et al &lt;b&gt;Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport.&lt;/b&gt; &lt;i&gt;Nature Communications&lt;/i&gt; 2024; &lt;b&gt;15&lt;/b&gt;(1): 316.&lt;/p&gt;&lt;p&gt;Qin Y, Yonemoto A, Gotoh K, et al &lt;b&gt;Potential-induced degradation phenomena in single-encapsulation crystalline Si photovoltaic modules.&lt;/b&gt; &lt;i&gt;Japanese Journal of Applied Physics&lt;/i&gt; 2024; &lt;b&gt;63&lt;/b&gt;(2): 02SP11.&lt;/p&gt;&lt;p&gt;Chen W, Liu W, Yu Y, et al &lt;b&gt;Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells.&lt;/b&gt; &lt;i&gt;Progress in Photovoltaics: Research and Applications&lt;/i&gt; 2024; &lt;b&gt;32&lt;/b&gt;(3): 199–211.&lt;/p&gt;&lt;p&gt;Chen S, Shi J, Yao Y, et al &lt;b&gt;Enhancement of short-circuit current density in silicon heterojunction solar cells by hydrogenated multiple-doped In&lt;/b&gt;&lt;sub&gt;&lt;b&gt;2&lt;/b&gt;&lt;/sub&gt;&lt;b&gt;O&lt;/b&gt;&lt;sub&gt;&lt;b&gt;3&lt;/b&gt;&lt;/sub&gt; &lt;b&gt;thin films.&lt;/b&gt; &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt; 2024; &lt;b&gt;267&lt;/b&gt;: 112727.&lt;/p&gt;&lt;p&gt;Hossain MJ, Sun M, Davis KO. &lt;b&gt;Photon management in silicon photovoltaic cells: A critical review.&lt;/b&gt; &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt; 2024; &lt;b&gt;267&lt;/b&gt;: 112715.&lt;/p&gt;&lt;p&gt;Li Y, Shi B, Xu Q, et al &lt;b&gt;CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell.&lt;/b&gt; &lt;i&gt;Nano Energy&lt;/i&gt; 2024; &lt;b&gt;122&lt;/b&gt;: 109285.&lt;/p&gt;&lt;p&gt;Ravidas BK, Das A, Agnihotri SK, et al &lt;b&gt;Design principles of crystalline silicon/CsGeI&lt;/b&gt;&lt;sub&gt;&lt;b&gt;3&lt;/b&gt;&lt;/sub&gt; &lt;b&gt;perovskite tandem solar cells using a combination of density functional theory and SCAPS-1D frameworks.&lt;/b&gt; &lt;i&gt;Solar Energy Materials and Solar Cells&lt;/i&gt; 2024; &lt;b&gt;267&lt;/b&gt;: 112688.&lt;/p&gt;&lt;p&gt;Du B, Ma MY, Zhang PP, et al &lt;b&gt;High-performance all-small-molecule organic solar cells fabricated via halogen-free preparation process.&lt;/b&gt; &lt;i&gt;Acs Applied Materials and Interfaces&lt;/i&gt; 2024; &lt;b&gt;16&lt;/b&gt;(2): 2564–2,572.&lt;/p&gt;&lt;p&gt;Fan B, Gao H, Jen AK. &lt;b&gt;Biaxially conjugated materials for organic solar cells.&lt;/b&gt; &lt;i&gt;Acs Nano&lt;/i&gt; 2024; &lt;b&gt;18&lt;/b&gt;(1): 136–154.&lt;/p&gt;&lt;p&gt;Kim JH, Park B, Song S, et al &lt;b&gt;Stretchable and transparent nanopillar arrays for high-performance ultra-flexible organic photovoltaics.&lt;/b&gt; &lt;i&gt;Applied Physic","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 4","pages":"276-279"},"PeriodicalIF":6.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140104467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications 采用奥杰构想因子和硅片厚度改性的先进晶体硅太阳能电池的理论极限效率评估
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-05 DOI: 10.1002/pip.3790
Qiao Su, Hao Lin, Genshun Wang, Hanbo Tang, Chaowei Xue, Zhenguo Li, Xixiang Xu, Pingqi Gao

With the improvement of surface passivation, bulk recombination is becoming an indispensable and decisive factor to assess the theoretical limiting efficiency (ηlim) of crystalline silicon (c-Si) solar cells. In simultaneous consideration of surface and bulk recombination, a modified model of ηlim evaluation is developed. Surface recombination is directly depicted with contact selectivity while bulk recombination is revised on the aspects of ideality factor and wafer thickness. The ηlim of the double-side silicon heterojunction (SHJ) and double-side tunneling-oxide passivating contact (TOPCon) solar cells are numerically simulated using the new model as 28.99% and 29.19%, respectively. However, the ηlim of single-side TOPCon solar cells, the more practicable scenario, is only 27.79%. Besides, the ηlim of the double-side SHJ solar cells would exceed the double-side TOPCon solar cells if the recombination parameter of the non-contacted area is higher than 0.6 fA/cm2, instead of perfect passivation. Our results are instructive in accurately assessing efficiency potential and accordingly optimizing design strategies of c-Si solar cells.

随着表面钝化的改进,体重组正成为评估晶体硅(c-Si)太阳能电池理论极限效率()不可或缺的决定性因素。在同时考虑表面和体层重组的情况下,我们开发了一种改进的评估模型。表面重组直接用接触选择性来描述,而体部重组则根据意向系数和硅片厚度来修正。使用新模型对双面硅异质结(SHJ)和双面隧穿氧化物钝化接触(TOPCon)太阳能电池进行了数值模拟,结果分别为 28.99% 和 29.19%。然而,更实用的单面 TOPCon 太阳能电池的转化率仅为 27.79%。此外,如果非接触区的重组参数高于 0.6 fA/cm2,而不是完全钝化,双面 SHJ 太阳能电池的转化率将超过双面 TOPCon 太阳能电池。我们的研究结果有助于准确评估晶体硅太阳能电池的效率潜力,并据此优化设计策略。
{"title":"Theoretical limiting-efficiency assessment on advanced crystalline silicon solar cells with Auger ideality factor and wafer thickness modifications","authors":"Qiao Su,&nbsp;Hao Lin,&nbsp;Genshun Wang,&nbsp;Hanbo Tang,&nbsp;Chaowei Xue,&nbsp;Zhenguo Li,&nbsp;Xixiang Xu,&nbsp;Pingqi Gao","doi":"10.1002/pip.3790","DOIUrl":"10.1002/pip.3790","url":null,"abstract":"<p>With the improvement of surface passivation, bulk recombination is becoming an indispensable and decisive factor to assess the theoretical limiting efficiency (\u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math>) of crystalline silicon (c-Si) solar cells. In simultaneous consideration of surface and bulk recombination, a modified model of \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> evaluation is developed. Surface recombination is directly depicted with contact selectivity while bulk recombination is revised on the aspects of ideality factor and wafer thickness. The \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> of the double-side silicon heterojunction (SHJ) and double-side tunneling-oxide passivating contact (TOPCon) solar cells are numerically simulated using the new model as 28.99% and 29.19%, respectively. However, the \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> of single-side TOPCon solar cells, the more practicable scenario, is only 27.79%. Besides, the \u0000<span></span><math>\u0000 <msub>\u0000 <mi>η</mi>\u0000 <mi>lim</mi>\u0000 </msub></math> of the double-side SHJ solar cells would exceed the double-side TOPCon solar cells if the recombination parameter of the non-contacted area is higher than 0.6 fA/cm<sup>2</sup>, instead of perfect passivation. Our results are instructive in accurately assessing efficiency potential and accordingly optimizing design strategies of c-Si solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"587-598"},"PeriodicalIF":8.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-area MoOx/c-Si heterojunction solar cells with a ICO/Ag back reflector 带 ICO/Ag 背反射器的大面积 MoOx/c-Si 异质结太阳能电池
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-03-05 DOI: 10.1002/pip.3796
Xu Wang, Bowen Ding, Yurong Zhou, Dongming Zhao, Fanying Meng, Hui Yan, Rui Life, Haiwei Huang, Zhidan Hao, Yuqin Zhou, Fengzhen Liu

Compound/silicon heterojunction (SCH) solar cells have been widely studied because of the low parasitic absorption of the window layer, high short-circuit current, and simple preparation process. So far, most reported SCH solar cells are small-area devices. By depositing MoOx hole transport layer using hot-wire oxidation–sublimation deposition technique and employing a front-contact back-junction cell architecture, the large-area SCH solar cells are successfully fabricated on M6 (166 mm) n-type silicon wafers. Indium cerium oxide (ICO) film with the optimal thickness of about 110 nm is inserted between MoOx and Ag. The ICO/Ag stack functions well as a back reflector and is beneficial for increasing the short-circuit current density, reducing the contact resistance, and improving the device stability. A power conversion efficiency of 21.59% is achieved on the champion SCH solar cell with the device area of 274.15 cm2.

化合物/硅异质结(SCH)太阳能电池具有窗口层寄生吸收低、短路电流大、制备工艺简单等优点,因此被广泛研究。迄今为止,大多数报道的 SCH 太阳能电池都是小面积器件。通过使用热丝氧化-升华沉积技术沉积氧化铟铈空穴传输层,并采用前接触后结电池结构,在 M6(166 毫米)n 型硅晶片上成功制造出了大面积 SCH 太阳能电池。在氧化铟和氧化银之间插入了最佳厚度约为 110 nm 的氧化铟(ICO)薄膜。ICO/Ag 叠层具有良好的背反射功能,有利于提高短路电流密度、降低接触电阻和改善器件稳定性。器件面积为 274.15 平方厘米的冠军 SCH 太阳能电池的功率转换效率达到 21.59%。
{"title":"Large-area MoOx/c-Si heterojunction solar cells with a ICO/Ag back reflector","authors":"Xu Wang,&nbsp;Bowen Ding,&nbsp;Yurong Zhou,&nbsp;Dongming Zhao,&nbsp;Fanying Meng,&nbsp;Hui Yan,&nbsp;Rui Life,&nbsp;Haiwei Huang,&nbsp;Zhidan Hao,&nbsp;Yuqin Zhou,&nbsp;Fengzhen Liu","doi":"10.1002/pip.3796","DOIUrl":"10.1002/pip.3796","url":null,"abstract":"<p>Compound/silicon heterojunction (SCH) solar cells have been widely studied because of the low parasitic absorption of the window layer, high short-circuit current, and simple preparation process. So far, most reported SCH solar cells are small-area devices. By depositing MoO<sub>x</sub> hole transport layer using hot-wire oxidation–sublimation deposition technique and employing a front-contact back-junction cell architecture, the large-area SCH solar cells are successfully fabricated on M6 (166 mm) n-type silicon wafers. Indium cerium oxide (ICO) film with the optimal thickness of about 110 nm is inserted between MoO<sub>x</sub> and Ag. The ICO/Ag stack functions well as a back reflector and is beneficial for increasing the short-circuit current density, reducing the contact resistance, and improving the device stability. A power conversion efficiency of 21.59% is achieved on the champion SCH solar cell with the device area of 274.15 cm<sup>2</sup>.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 9","pages":"599-606"},"PeriodicalIF":8.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing SnF2-TMAB passivated lead-free formamidinum perovskite solar cells with doctor-bladed carbon electrode 利用刮刀状碳电极实现 SnF2-TMAB 钝化无铅甲脒包晶太阳能电池
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-26 DOI: 10.1002/pip.3794
Debesh Devadutta Mishra, Pranati Kumari Rath, Natarajan Thirugnanam, Tao Shen, Zihe Chen, Zexian Zhang, Xinghang Liu, Jinhua Li, Xianbao Wang, Cher Ming Tan

The suitable band gap with outstanding optoelectronic characteristics makes Sn-based perovskites one of the promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, preparing Sn2+-based PSCs is very difficult due to the ready oxidation of Sn2+ to Sn4+ when exposed to air. In this work, by incorporating the trimethylamine borane complex (TMAB) as an antioxidant additive into the perovskite precursor solution along with excess SnF2, we report the fabrication of air-stable FASnI3-based solar cells. The complex formed by TMAB-SNF2 (additive layer) enables in-situ encapsulation of perovskite grains. This layer considerably improves the oxidation stability of the perovskite layer by eliminating oxygen vacancies from the NiO hole transport. The resulting PSCs can maintain more than 70% of the efficiency over 45 and 75 hours respectively in air and N2 exposure without encapsulation. This can be regarded as a genuinely enhanced attribute, particularly considering the use of carbon in one of the electrodes in FASnI3 perovskites. The findings suggest an alternative approach to provide effective and sustainable Sn-based PSCs in the future.

合适的带隙和出色的光电特性使锡基包晶石成为制备高效无铅包晶石太阳能电池(PSCs)的理想候选材料之一。然而,由于暴露在空气中时 Sn2+ 很容易氧化成 Sn4+,因此制备 Sn2+ 基 PSCs 非常困难。在这项工作中,我们将三甲胺硼烷复合物(TMAB)作为抗氧化添加剂与过量的 SnF2 一起加入到过氧化物前驱体溶液中,从而制备出了空气稳定的基于 FASnI3 的太阳能电池。TMAB-SNF2(添加剂层)形成的复合物能够原位封装过氧化物晶粒。该层通过消除氧化镍空穴传输中的氧空位,大大提高了透辉石层的氧化稳定性。在没有封装的情况下,所产生的 PSC 在暴露于空气和 N2 的情况下分别能在 45 小时和 75 小时内保持 70% 以上的效率。这可以说是一种真正的增强特性,特别是考虑到 FASnI3 包晶石的电极之一使用了碳。这些发现为今后提供有效和可持续的锡基 PSC 提出了另一种方法。
{"title":"Realizing SnF2-TMAB passivated lead-free formamidinum perovskite solar cells with doctor-bladed carbon electrode","authors":"Debesh Devadutta Mishra,&nbsp;Pranati Kumari Rath,&nbsp;Natarajan Thirugnanam,&nbsp;Tao Shen,&nbsp;Zihe Chen,&nbsp;Zexian Zhang,&nbsp;Xinghang Liu,&nbsp;Jinhua Li,&nbsp;Xianbao Wang,&nbsp;Cher Ming Tan","doi":"10.1002/pip.3794","DOIUrl":"10.1002/pip.3794","url":null,"abstract":"<p>The suitable band gap with outstanding optoelectronic characteristics makes Sn-based perovskites one of the promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, preparing Sn<sup>2+</sup>-based PSCs is very difficult due to the ready oxidation of Sn<sup>2+</sup> to Sn<sup>4+</sup> when exposed to air. In this work, by incorporating the trimethylamine borane complex (TMAB) as an antioxidant additive into the perovskite precursor solution along with excess SnF<sub>2</sub>, we report the fabrication of air-stable FASnI<sub>3</sub>-based solar cells. The complex formed by TMAB-SNF<sub>2</sub> (additive layer) enables in-situ encapsulation of perovskite grains. This layer considerably improves the oxidation stability of the perovskite layer by eliminating oxygen vacancies from the NiO hole transport. The resulting PSCs can maintain more than 70% of the efficiency over 45 and 75 hours respectively in air and N<sub>2</sub> exposure without encapsulation. This can be regarded as a genuinely enhanced attribute, particularly considering the use of carbon in one of the electrodes in FASnI<sub>3</sub> perovskites. The findings suggest an alternative approach to provide effective and sustainable Sn-based PSCs in the future.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"569-578"},"PeriodicalIF":8.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of hot carrier extraction in metal halide perovskite solar cells 金属卤化物过氧化物太阳能电池中热载流子萃取的证据
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-22 DOI: 10.1002/pip.3777
Shashi Sourabh, Hadi Afshari, Vincent R. Whiteside, Giles E. Eperon, Rebecca A. Scheidt, Tielyr D. Creason, Madalina Furis, Ahmad R. Kirmani, Bayram Saparov, Joseph M. Luther, Matthew C. Beard, Ian R. Sellers

The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)3 solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light J–V measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.

在环境温度和实际太阳浓度下,(FA,Cs)Pb(I, Br, Cl)3 太阳能电池的运行特性显示了热载流子的存在。尽管这种设备结构并不适合设计为功能性热载流子太阳能电池。在 100 K 时,在光致发光光谱的高能量尾部以及在光 J-V 测量的较高通量下出现的非平衡光电流中都能观察到热载流子的明显证据。然而,在室温下,由于光诱导的卤化物偏析开始在较高的晶格温度下发生,热载流子在较高激光通量下的发射中的存在与 PL 峰值能量的逐渐红移形成了竞争。热载流子的热离子发射和非平衡载流子分布的影响也与简单的晶格加热不同。由于费米分布超过了控制载流子传输和整流的异质界面的费米分布,因此在高功率下会产生较大的不饱和光电流。
{"title":"Evidence of hot carrier extraction in metal halide perovskite solar cells","authors":"Shashi Sourabh,&nbsp;Hadi Afshari,&nbsp;Vincent R. Whiteside,&nbsp;Giles E. Eperon,&nbsp;Rebecca A. Scheidt,&nbsp;Tielyr D. Creason,&nbsp;Madalina Furis,&nbsp;Ahmad R. Kirmani,&nbsp;Bayram Saparov,&nbsp;Joseph M. Luther,&nbsp;Matthew C. Beard,&nbsp;Ian R. Sellers","doi":"10.1002/pip.3777","DOIUrl":"10.1002/pip.3777","url":null,"abstract":"<p>The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)<sub>3</sub> solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light <i>J–V</i> measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"546-555"},"PeriodicalIF":8.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells 在硅太阳能电池中采用镍和铜作为具有成本效益的替代触点
IF 6.7 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-22 DOI: 10.1002/pip.3792
Veysel Unsur

Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm2 for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.

高效的金属触点形成是生产高性价比、高性能晶体硅(Si)太阳能电池的关键。传统上,前表面丝网印刷银(Ag)触点因其简单、高产能和显著的电气优势而在行业中占据主导地位。然而,使用超过 13-20 mg/Wp 的银所带来的高成本会阻碍真正具有成本效益的太阳能电池的开发。因此,迫切需要探索与硅衬底兼容的、经济上可行的替代金属。本研究报告介绍了在硅太阳能电池中应用由银、镍(Ni)和铜(Cu)组成的接触堆的情况。为防止形成肖特基接触,银被用作种子层,而镍和铜则构成金属体层。在单面 PERC 电池中,无选择性发射器的双层电池堆的最高效率为 21.5%,填充因子为 81.5%,平均接触电阻为 5.88 mΩ-cm2。微观结构分析表明,触点内的金属仍然是独特的,在烧结过程中没有铜扩散到硅中。因此,印刷双层触点有望替代银触点,将每个电池的银消耗量降至 2.5 mg/Wp 以下,而不会影响整体效率。
{"title":"Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells","authors":"Veysel Unsur","doi":"10.1002/pip.3792","DOIUrl":"10.1002/pip.3792","url":null,"abstract":"<p>Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm<sup>2</sup> for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 4","pages":"267-275"},"PeriodicalIF":6.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3792","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin-film solar cells 光子上转换辅助铁电光伏技术:对增强 BiFeO3 薄膜太阳能电池光伏响应具有多方面影响的器件配置
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-22 DOI: 10.1002/pip.3793
Waseem Ahmad Wani, Gaurav Gupta, Shyama Rath, Harihara Venkataraman, Kannan Ramaswamy

This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO3), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO3 improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.

这项研究提出了一种新的上转换辅助铁电光伏器件范例。该系统由铁电活性层(BiFeO3)、上转换层(掺镱;掺铒氧化锌)、ITO 涂层导电玻璃基板和玻璃基板后端的反射涂层(Al)组成。单层 BFO 的光电效率为 0.71%。在规定的设备模型下,BiFeO3 的总太阳能效率显著提高,达到了 2.21% 的太阳能转换效率。该模型的预测拓宽了未来新兴光伏技术(主要是基于包晶石的太阳能电池)的器件性能前景。
{"title":"Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin-film solar cells","authors":"Waseem Ahmad Wani,&nbsp;Gaurav Gupta,&nbsp;Shyama Rath,&nbsp;Harihara Venkataraman,&nbsp;Kannan Ramaswamy","doi":"10.1002/pip.3793","DOIUrl":"10.1002/pip.3793","url":null,"abstract":"<p>This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO<sub>3</sub>), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO<sub>3</sub> improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"556-568"},"PeriodicalIF":8.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composition dependence of electronic defects in CuGaS2 CuGaS2 中电子缺陷的成分依赖性
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-20 DOI: 10.1002/pip.3778
Damilola Adeleye, Mohit Sood, Michele Melchiorre, Alice Debot, Susanne Siebentritt

CuGaS2 films grown by physical vapor deposition were studied by photoluminescence (PL) spectroscopy, using excitation intensity and temperature-dependent analyses. We observed free and bound exciton recombinations, three donor-to-acceptor (DA) transitions, and deep-level transitions. The DA transitions at ~2.41, 2.398, and ~2.29 eV are attributed to a common donor level ~35 meV and two shallow acceptors at ~75 and ~90 meV and a deeper acceptor at 210 meV above the valence band. This electronic structure is similar to those of other chalcopyrite materials. The observed DA transitions are accompanied by several phonon replicas. The Cu-rich and near-stoichiometric CuGaS2 films are dominated by transitions involving the acceptor at 210 meV. All films show deep-level transitions at ~2.15 and 1.85 eV due to broad deep defect bands. The slightly Cu-deficient films were dominated by intense transitions at ~2.45 eV, which were attributed to excitonic transitions, and a broad defect transition at 2.15 eV.

通过光致发光(PL)光谱,利用激发强度和温度相关分析,对物理气相沉积法生长的 CuGaS2 薄膜进行了研究。我们观察到自由和束缚激子重组、三个供体到受体(DA)跃迁以及深层跃迁。在 ~2.41, 2.398 和 ~2.29 eV 的 DA 转变归因于一个 ~35 meV 的共同供体水平和两个分别位于 ~75 和 ~90 meV 的浅层受体以及一个位于价带上方 210 meV 的深层受体。这种电子结构与其他黄铜矿材料类似。观察到的 DA 转变伴随着几个声子复制品。富铜和接近全度的 CuGaS2 薄膜主要是在 210 meV 处发生涉及受体的转变。由于深层缺陷带较宽,所有薄膜都在 ~2.15 和 1.85 eV 处出现了深层跃迁。略微缺铜的薄膜主要在 ~2.45 eV 处发生激子跃迁,以及在 2.15 eV 处发生宽缺陷跃迁。
{"title":"Composition dependence of electronic defects in CuGaS2","authors":"Damilola Adeleye,&nbsp;Mohit Sood,&nbsp;Michele Melchiorre,&nbsp;Alice Debot,&nbsp;Susanne Siebentritt","doi":"10.1002/pip.3778","DOIUrl":"10.1002/pip.3778","url":null,"abstract":"<p>CuGaS<sub>2</sub> films grown by physical vapor deposition were studied by photoluminescence (PL) spectroscopy, using excitation intensity and temperature-dependent analyses. We observed free and bound exciton recombinations, three donor-to-acceptor (DA) transitions, and deep-level transitions. The DA transitions at ~2.41, 2.398, and ~2.29 eV are attributed to a common donor level ~35 meV and two shallow acceptors at ~75 and ~90 meV and a deeper acceptor at 210 meV above the valence band. This electronic structure is similar to those of other chalcopyrite materials. The observed DA transitions are accompanied by several phonon replicas. The Cu-rich and near-stoichiometric CuGaS<sub>2</sub> films are dominated by transitions involving the acceptor at 210 meV. All films show deep-level transitions at ~2.15 and 1.85 eV due to broad deep defect bands. The slightly Cu-deficient films were dominated by intense transitions at ~2.45 eV, which were attributed to excitonic transitions, and a broad defect transition at 2.15 eV.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"528-545"},"PeriodicalIF":8.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3778","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term outdoor study of an organic photovoltaic module for building integration 用于建筑一体化的有机光伏组件的长期户外研究
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-18 DOI: 10.1002/pip.3791
Wei Luo, Aung Myint Khaing, Carlos David Rodriguez-Gallegos, Shin Woei Leow, Thomas Reindl, Mauro Pravettoni

Organic photovoltaics (OPV) has attracted tremendous attention as a promising alternative to silicon wafer-based technologies for building integration. While significant progress has been achieved on the power conversion efficiency of OPV technologies, their field stability is rarely studied. This work investigates the field performance and reliability of a large-area OPV module designed for building integration in tropical Singapore for 4.5 years. The device suffered more than 14% degradation in power at the standard testing conditions from the initial performance, largely due to losses in fill factor (−12% relative). During the monitoring period, it exhibited comparable performance to more conventional silicon PV technologies, with an average specific energy yield of about 4 kWh/kWp/day and an average performance ratio of 0.96. Excellent performance at low light conditions was also observed. However, its field performance was heavily impacted by soiling, which typically led to a 5 to 10% loss in the current output after several months. Further, the device's outdoor performance also showed a three-stage degradation process, including (1) an initial slow degradation in the first 2 years (about −1%/year), (2) a stable period with negligible performance loss from Years 2 to 3.5, and (3) a rapid degradation in the last year (about −5%/year).

有机光伏技术(OPV)作为硅晶圆技术的替代品,在建筑一体化领域大有可为,因而备受关注。虽然有机光电技术在功率转换效率方面取得了重大进展,但对其现场稳定性的研究却很少。这项研究调查了为新加坡热带地区建筑一体化设计的大面积 OPV 模块的现场性能和可靠性,历时 4.5 年。在标准测试条件下,该装置的功率比初始性能下降了 14%,这主要是由于填充因子的损失(相对-12%)。在监测期间,它的性能与更传统的硅光伏技术相当,平均比能量产量约为 4 千瓦时/千瓦时/天,平均性能比为 0.96。在弱光条件下,它的性能也非常出色。不过,其现场性能受到污垢的严重影响,通常几个月后电流输出会下降 5%至 10%。此外,该设备的室外性能还显示出三个阶段的衰减过程,包括:(1)最初两年的缓慢衰减(约-1%/年);(2)第 2 至 3.5 年的稳定期,性能损失可忽略不计;(3)最后一年的快速衰减(约-5%/年)。
{"title":"Long-term outdoor study of an organic photovoltaic module for building integration","authors":"Wei Luo,&nbsp;Aung Myint Khaing,&nbsp;Carlos David Rodriguez-Gallegos,&nbsp;Shin Woei Leow,&nbsp;Thomas Reindl,&nbsp;Mauro Pravettoni","doi":"10.1002/pip.3791","DOIUrl":"10.1002/pip.3791","url":null,"abstract":"<p>Organic photovoltaics (OPV) has attracted tremendous attention as a promising alternative to silicon wafer-based technologies for building integration. While significant progress has been achieved on the power conversion efficiency of OPV technologies, their field stability is rarely studied. This work investigates the field performance and reliability of a large-area OPV module designed for building integration in tropical Singapore for 4.5 years. The device suffered more than 14% degradation in power at the standard testing conditions from the initial performance, largely due to losses in fill factor (−12% relative). During the monitoring period, it exhibited comparable performance to more conventional silicon PV technologies, with an average specific energy yield of about 4 kWh/kWp/day and an average performance ratio of 0.96. Excellent performance at low light conditions was also observed. However, its field performance was heavily impacted by soiling, which typically led to a 5 to 10% loss in the current output after several months. Further, the device's outdoor performance also showed a three-stage degradation process, including (1) an initial slow degradation in the first 2 years (about −1%/year), (2) a stable period with negligible performance loss from Years 2 to 3.5, and (3) a rapid degradation in the last year (about −5%/year).</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 7","pages":"481-491"},"PeriodicalIF":8.0,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying spectral albedo effects on bifacial photovoltaic module measurements and system model predictions 量化光谱反照率对双面光伏组件测量和系统模型预测的影响
IF 8 2区 材料科学 Q1 ENERGY & FUELS Pub Date : 2024-02-15 DOI: 10.1002/pip.3789
Erin M. Tonita, Christopher E. Valdivia, Annie C. J. Russell, Michael Martinez-Szewczyk, Mariana I. Bertoni, Karin Hinzer

We provide a comprehensive analysis of the effect of spectral albedo on photovoltaic (PV) module measurements and system model predictions. We demonstrate how to account for albedo in indoor bifacial device measurements by adjusting the applied irradiance using the scaled rear irradiance method, exemplified on fabricated silicon heterojunction (SHJ) modules. System model performance is studied using a detailed 3D finite-element model, DUET, for fixed-tilt and horizontal single-axis tracked (SAT) arrays between 15 and 75°N. Spectral effects cause variations in measured SHJ module short-circuit current up to 2% and efficiency variation up to 0.3% abs. We further demonstrate that rear-side spectral mismatch factors (SMMs) resulting from including or omitting spectral albedo in PV system modeling vary between ±13%, while total (front+rear) SMMs vary up to 3%, depending on the deployment configuration and latitude. SAT array SMMs are weakly correlated with latitude, while fixed-tilt array SMMs increase with latitude, driven by an increasing proportion of ground-reflected light on the front-side of modules. Ground-reflections can constitute between 2% and 32% of total incident module irradiance, with notably high (>10%) contributions for fixed-tilt arrays at high latitude. Effects of spectral albedo are most significant for: (1) fixed-tilt deployments at high latitudes, (2) wide bandgap technologies such as perovskite and cadmium telluride cells, (3) albedos which vary steeply over the technology's absorption range, and (4) high albedo ground covers. Overall, we demonstrate that omitting spectral albedo effects can result in PV measurement and system-level modeling uncertainties on the order of several percent in these cases.

我们全面分析了光谱反照率对光伏(PV)模块测量和系统模型预测的影响。我们以硅异质结 (SHJ) 组件为例,演示了如何在室内双面设备测量中通过使用缩放后部辐照度方法调整应用辐照度来考虑反照率。使用详细的三维有限元模型 DUET 对固定倾斜和水平单轴跟踪 (SAT) 阵列(北纬 15 至 75°)的系统模型性能进行了研究。光谱效应导致测得的 SHJ 模块短路电流变化达 2%,效率变化达 0.3%。我们进一步证明,根据部署配置和纬度的不同,在光伏系统建模中加入或省略光谱反照率所导致的后侧光谱失配系数(SMMs)在 ±13% 之间变化,而总的 SMMs(前侧+后侧)变化高达 3%。SAT 阵列的 SMM 与纬度的相关性较弱,而固定倾斜阵列的 SMM 则随着纬度的增加而增加,这是因为组件前侧的地面反射光比例不断增加。地面反射光占组件总入射辐照度的 2% 到 32%,在高纬度地区,固定倾斜阵列的比例明显更高(10%)。光谱反照率对以下情况的影响最大(1)高纬度地区的固定倾斜部署,(2)宽带隙技术,如包晶石和碲化镉电池,(3)在技术吸收范围内陡峭变化的反照率,以及(4)高反照率地面覆盖物。总之,我们证明,在这些情况下,忽略光谱反照率效应会导致光伏测量和系统级建模的不确定性达到百分之几的数量级。
{"title":"Quantifying spectral albedo effects on bifacial photovoltaic module measurements and system model predictions","authors":"Erin M. Tonita,&nbsp;Christopher E. Valdivia,&nbsp;Annie C. J. Russell,&nbsp;Michael Martinez-Szewczyk,&nbsp;Mariana I. Bertoni,&nbsp;Karin Hinzer","doi":"10.1002/pip.3789","DOIUrl":"10.1002/pip.3789","url":null,"abstract":"<p>We provide a comprehensive analysis of the effect of spectral albedo on photovoltaic (PV) module measurements and system model predictions. We demonstrate how to account for albedo in indoor bifacial device measurements by adjusting the applied irradiance using the scaled rear irradiance method, exemplified on fabricated silicon heterojunction (SHJ) modules. System model performance is studied using a detailed 3D finite-element model, DUET, for fixed-tilt and horizontal single-axis tracked (SAT) arrays between 15 and 75°N. Spectral effects cause variations in measured SHJ module short-circuit current up to 2% and efficiency variation up to 0.3% abs. We further demonstrate that rear-side spectral mismatch factors (SMMs) resulting from including or omitting spectral albedo in PV system modeling vary between ±13%, while total (front+rear) SMMs vary up to 3%, depending on the deployment configuration and latitude. SAT array SMMs are weakly correlated with latitude, while fixed-tilt array SMMs increase with latitude, driven by an increasing proportion of ground-reflected light on the front-side of modules. Ground-reflections can constitute between 2% and 32% of total incident module irradiance, with notably high (&gt;10%) contributions for fixed-tilt arrays at high latitude. Effects of spectral albedo are most significant for: (1) fixed-tilt deployments at high latitudes, (2) wide bandgap technologies such as perovskite and cadmium telluride cells, (3) albedos which vary steeply over the technology's absorption range, and (4) high albedo ground covers. Overall, we demonstrate that omitting spectral albedo effects can result in PV measurement and system-level modeling uncertainties on the order of several percent in these cases.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 7","pages":"468-480"},"PeriodicalIF":8.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Photovoltaics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1