The European Commission's Photovoltaic Geographic Information System (PVGIS) uses a simplified solar energy yield model to provide quick and reliable data on the potential performance of photovoltaic (PV) systems. This study looks at the recalibration of the model for modern module technologies, using power matrix datasets produced by the European Solar test Installation (ESTI) for seven crystalline silicon (cSi), two cadmium telluride (CdTe) and three copper indium diselenide (CIS) modules. The results show that the PVGIS power performance model with updated coefficients can provide a good description of the power output of the modern crystalline silicon (cSi) modules, with a mean absolute bias error (MABE) of less than 1% in almost all cases, against an MABE of over 3.5% with the current coefficients. The updated coefficients allow the model to better capture the improved temperature coefficients and low light performance. As a result, there will be a slight increase in the energy yield estimates. For the thin film technologies, the updated coefficients allow for a more accurate description of current data sets, but more data for modules from recent production series would be desirable to further increase the model's applicability.