Zhongshu Yang, Rabin Basnet, Chris Samundsett, Sieu Pheng Phang, Thien Truong, Di Kang, Wensheng Liang, Anh Dinh Bui, Wei Wang, Tien T. Le, Daniel Macdonald, AnYao Liu
Over the past decade, silicon solar cells with carrier-selective passivating contacts based on polysilicon capping an ultra-thin silicon oxide (commonly known as TOPCon or POLO) have demonstrated promising efficiency potentials and are regarded as an evolutionary upgrade to the PERC (passivated emitter and rear contact) cells in manufacturing. The polysilicon-based passivating contacts also exhibit excellent gettering effects that relax the wafer and cleanroom requirements to some extent. In this work, we experimentally explore the impact of bulk iron contamination and polysilicon gettering on the passivation quality of the polysilicon/oxide structure and the resulting solar cells performance. Results show that both n- and p-type polysilicon/oxide passivating contacts are not affected by iron gettering, demonstrating robust and stable passivation quality. However, for a very high bulk iron contamination (1 × 1013 cm−3), the accumulated iron in the p-type lightly boron-doped emitter in crystalline silicon would degrade the emitter saturation current density. This can cause a reduction in both open-circuit voltage and short-circuit current. Meanwhile, this very high iron content (1 × 1013 cm−3) can further degrade the fill factor and temperature coefficient of the cells. On the other hand, for an initial iron content of 2 × 1012 cm−3, which should be well above the iron level in the current industrial Czochralski silicon wafers, the resulting cells demonstrate similar performance as the control group with no intentional iron contamination. This work brings attention to both the benefits of polysilicon gettering effects as well as the potential degradation due to the accumulation of metal impurities in the p-type emitter region.
{"title":"Effect of Iron Contamination and Polysilicon Gettering on the Performance of Polysilicon-Based Passivating Contact Solar Cells","authors":"Zhongshu Yang, Rabin Basnet, Chris Samundsett, Sieu Pheng Phang, Thien Truong, Di Kang, Wensheng Liang, Anh Dinh Bui, Wei Wang, Tien T. Le, Daniel Macdonald, AnYao Liu","doi":"10.1002/pip.3873","DOIUrl":"https://doi.org/10.1002/pip.3873","url":null,"abstract":"<div>\u0000 \u0000 <p>Over the past decade, silicon solar cells with carrier-selective passivating contacts based on polysilicon capping an ultra-thin silicon oxide (commonly known as TOPCon or POLO) have demonstrated promising efficiency potentials and are regarded as an evolutionary upgrade to the PERC (passivated emitter and rear contact) cells in manufacturing. The polysilicon-based passivating contacts also exhibit excellent gettering effects that relax the wafer and cleanroom requirements to some extent. In this work, we experimentally explore the impact of bulk iron contamination and polysilicon gettering on the passivation quality of the polysilicon/oxide structure and the resulting solar cells performance. Results show that both <i>n-</i> and <i>p-</i>type polysilicon/oxide passivating contacts are not affected by iron gettering, demonstrating robust and stable passivation quality. However, for a very high bulk iron contamination (1 × 10<sup>13</sup> cm<sup>−3</sup>), the accumulated iron in the <i>p</i>-type lightly boron-doped emitter in crystalline silicon would degrade the emitter saturation current density. This can cause a reduction in both open-circuit voltage and short-circuit current. Meanwhile, this very high iron content (1 × 10<sup>13</sup> cm<sup>−3</sup>) can further degrade the fill factor and temperature coefficient of the cells. On the other hand, for an initial iron content of 2 × 10<sup>12</sup> cm<sup>−3</sup>, which should be well above the iron level in the current industrial Czochralski silicon wafers, the resulting cells demonstrate similar performance as the control group with no intentional iron contamination. This work brings attention to both the benefits of polysilicon gettering effects as well as the potential degradation due to the accumulation of metal impurities in the <i>p</i>-type emitter region.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"463-476"},"PeriodicalIF":8.0,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin A. Green, Ewan D. Dunlop, Masahiro Yoshita, Nikos Kopidakis, Karsten Bothe, Gerald Siefer, Xiaojing Hao, Jessica Yajie Jiang
Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2024 are reviewed.
{"title":"Solar Cell Efficiency Tables (Version 65)","authors":"Martin A. Green, Ewan D. Dunlop, Masahiro Yoshita, Nikos Kopidakis, Karsten Bothe, Gerald Siefer, Xiaojing Hao, Jessica Yajie Jiang","doi":"10.1002/pip.3867","DOIUrl":"https://doi.org/10.1002/pip.3867","url":null,"abstract":"<div>\u0000 \u0000 <p>Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since July 2024 are reviewed.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"3-15"},"PeriodicalIF":8.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Wang B, Chen Q, Wang MM, et al. <b>PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification.</b> <i>Applied Energy</i> 2024; <b>376</b>: 124187.</p><p>Ozturk E, Ogliari E, Sakwa M, et al. <b>Photovoltaic modules fault detection, power output, and parameter estimation: A deep learning approach based on electroluminescence images.</b> <i>Energy Conversion and Management</i> 2024; <b>319</b>: 118866.</p><p>Almora O, Lopez-Varo P, Escalante R, et al. <b>Instability analysis of perovskite solar cells via short-circuit impedance spectroscopy: A case study on NiO</b><sub><b>x</b></sub> <b>passivation.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(9): 094502.</p><p>El Khoury M, Moret M, Tiberj A, et al. <b>Determination of light-independent shunt resistance in CIGS photovoltaic cells using a collection function-based model.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(2): 024502.</p><p>Li JC, Ji Q, Wang R, et al. <b>Charge generation dynamics in organic photovoltaic blends under one-sun-equivalent illumination detected by highly sensitive terahertz spectroscopy.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(29): 20312-20322.</p><p>Sandner D, Sun K, Stadlbauer A, et al. <b>Hole localization in bulk and 2D lead-halide perovskites studied by time-resolved infrared spectroscopy.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(29): 19852-19862.</p><p>Li Y, Wright B, Hameiri Z. <b>Deep learning-based perspective distortion correction for outdoor photovoltaic module images.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113107.</p><p>Wang S, Wright B, Zhu Y, et al. <b>Extracting the parameters of two-energy-level defects in silicon wafers using machine learning models.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113123.</p><p>Zhou YN, Zhang HH, Li ZF, et al. <b>Heavy boron-doped silicon tunneling inter-layer enables efficient silicon heterojunction solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(35): 46889-46896.</p><p>Li WK, Zhou R, Wang YK, et al. <b
为了帮助读者了解该领域的最新进展,每期《光伏进展》都会列出一份最近发表的与其目标和范围最相关的期刊文章清单。这份清单选自极为广泛的期刊,包括《IEEE 光伏学报》、《太阳能材料和太阳能电池》、《可再生能源》、《可再生和可持续能源评论》、《应用物理学报》和《应用物理快报》。为了帮助读者,本列表分为几大类,但请注意,这些分类并不严格。同时请注意,列入列表并不代表对论文质量的认可。Wang B, Chen Q, Wang MM, et al. PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification.Ozturk E, Ogliari E, Sakwa M, et al. Photovoltaic modules fault detection, power output, and parameter estimation:基于电致发光图像的深度学习方法。Almora O, Lopez-Varo P, Escalante R, et al:镍氧化物钝化案例研究。应用物理学杂志》,2024 年,136(9):094502.El Khoury M, Moret M, Tiberj A, et al.应用物理学杂志》,2024 年,136(2):024502.Li JC, Ji Q, Wang R, et al.Sandner D, Sun K, Stadlbauer A, et al.美国化学学会学报》,2024 年;146(29):19852-19862.Li Y, Wright B, Hameiri Z.基于深度学习的室外光伏组件图像透视畸变校正太阳能材料与太阳能电池 2024; 277:Wang S, Wright B, Zhu Y, et al.太阳能材料与太阳能电池 2024; 277:Zhou YN, Zhang HH, Li ZF, et al.Acs Applied Materials and Interfaces 2024; 16(35):Li WK, Zhou R, Wang YK, et al.Su H, Dou C, Dou F, et al. Enhanced photovoltaic performance of silicon solar cells using a down-shift KCa2Mg2(VO4)3 phosphor.Dalton Transactions 2024; 53(35):14648-14655.Wöhler W, Greulich J. 硅太阳能电池中的光捕获,包括对周围的二次反射。IEEE 光伏学报 2024; 14(5):Ide K, Nishihara T, Nakamura K, et al. Evaluation of the effect of texture size and rounding process on three-dimensional flexibility of c-Si wafer.日本应用物理学杂志》,2024 年;63(8):085503.Ziar H. 针对地理市场设计硅基太阳能电池的全球统计评估。Joule 2024; 8(6):1667-1690.Li Y, Ru XN, Yang M, et al. Flexible silicon solar cells with high power-to-weight ratios.自然 2024; 626(7997):Lorenz A, Wenzel T, Pingel S, et al. Towards a cutting-edge metallization process for silicon heterojunction solar cells with very low silver laydown.光伏技术进展:研究与应用》,2024 年,第 32(10)期:655-663.Soler-Castillo Y, Sahni M, Leon-Castro E. 基于两种新方法的光伏资源动态性能预测。光伏技术进展:研究与应用》,2024 年,第 32(10)期,第 701-745 页:701-745.Xie A, Wang G, Sun Y, et al. Bifacial silicon heterojunction solar cells using transparent-conductive-oxide- and dopant-free electron-selective contacts.光伏学进展:Photovoltaics: Research and Applications 2024; 32(10):Ding D, Gao C, Wang X, et al.太阳能材料与太阳能电池 2024; 277:Jiang XL, Chen XY, Zhang JB, et al:掺磷氢化碳化硅:薄膜形成、性能及其在硅异质结太阳能电池上的应用。太阳能材料与太阳能电池,2024;277:Kashizadeh A, Basnet R, Black L, et al.太阳能材料和太阳能电池》,2024 年,第 277 期:Mette A, Hörnlein S, Stenzel F, et al.使用 LECO 的 Q.ANTUM NEO 电池效率超过 25.5%。 Dai ZY, Yang Y, Huang XF, et al.Han EQ, Yun JH, Maeng I, et al. Efficient bifacial semi-transparent perovskite solar cells via a dimethylformamide-free solvent and bandgap engineering strategy.He ZY, Zhang SF, Wei QL, et al.Liu QY, Ou ZP, Ma Z, et al. Perovskite solar cells with self-disintegrating seeds deliver an 83.64% fill factor.Nano Energy 2024; 127: 109751.Niu GS, Bai BW, Wang YD, et al:通过纳米石墨烯的加入解决锂离子在斯派罗-OMeTAD 层中的移动问题。Nano Energy 2024; 129:110017.Qamar MZ, Khalid Z, Shahid R, et al. 通过自供电物联网应用的柔性过氧化物光伏技术推进室内能量收集。纳米能源 2024; 129:Tsvetkov N, Koo D, Kim D, et al:从材料到性能。Wang F, Duan DW, Sun YG, et al. Uncovering chemical structure-depende
{"title":"Photovoltaics Literature Survey (No. 194)","authors":"Ziv Hameiri","doi":"10.1002/pip.3857","DOIUrl":"https://doi.org/10.1002/pip.3857","url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Wang B, Chen Q, Wang MM, et al. <b>PVF-10: A high-resolution unmanned aerial vehicle thermal infrared image dataset for fine-grained photovoltaic fault classification.</b> <i>Applied Energy</i> 2024; <b>376</b>: 124187.</p><p>Ozturk E, Ogliari E, Sakwa M, et al. <b>Photovoltaic modules fault detection, power output, and parameter estimation: A deep learning approach based on electroluminescence images.</b> <i>Energy Conversion and Management</i> 2024; <b>319</b>: 118866.</p><p>Almora O, Lopez-Varo P, Escalante R, et al. <b>Instability analysis of perovskite solar cells via short-circuit impedance spectroscopy: A case study on NiO</b><sub><b>x</b></sub> <b>passivation.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(9): 094502.</p><p>El Khoury M, Moret M, Tiberj A, et al. <b>Determination of light-independent shunt resistance in CIGS photovoltaic cells using a collection function-based model.</b> <i>Journal of Applied Physics</i> 2024; <b>136</b>(2): 024502.</p><p>Li JC, Ji Q, Wang R, et al. <b>Charge generation dynamics in organic photovoltaic blends under one-sun-equivalent illumination detected by highly sensitive terahertz spectroscopy.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(29): 20312-20322.</p><p>Sandner D, Sun K, Stadlbauer A, et al. <b>Hole localization in bulk and 2D lead-halide perovskites studied by time-resolved infrared spectroscopy.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(29): 19852-19862.</p><p>Li Y, Wright B, Hameiri Z. <b>Deep learning-based perspective distortion correction for outdoor photovoltaic module images.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113107.</p><p>Wang S, Wright B, Zhu Y, et al. <b>Extracting the parameters of two-energy-level defects in silicon wafers using machine learning models.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>277</b>: 113123.</p><p>Zhou YN, Zhang HH, Li ZF, et al. <b>Heavy boron-doped silicon tunneling inter-layer enables efficient silicon heterojunction solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(35): 46889-46896.</p><p>Li WK, Zhou R, Wang YK, et al. <b","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"950-956"},"PeriodicalIF":8.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3857","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Aghaei, M. Kolahi, A. Nedaei, N. S. Venkatesh, S. M. Esmailifar, A. M. Moradi Sizkouhi, A. Aghamohammadi, A. K. V. Oliveira, A. Eskandari, P. Parvin, J. Milimonfared, V. Sugumaran, R. Rüther
This study presents a comprehensive multidisciplinary review of autonomous monitoring and analysis of large-scale photovoltaic (PV) power plants using enabling technologies, namely artificial intelligence (AI), machine learning (ML), deep learning (DL), internet of things (IoT), unmanned aerial vehicle (UAV), and big data analytics (BDA), aiming to automate the entire condition monitoring procedures of PV systems. Autonomous monitoring and analysis is a novel concept for integrating various techniques, devices, systems, and platforms to further enhance the accuracy of PV monitoring, thereby improving the performance, reliability, and service life of PV systems. This review article covers current trends, recent research paths and developments, and future perspectives of autonomous monitoring and analysis for PV power plants. Additionally, this study identifies the main barriers and research routes for the autonomous and smart condition monitoring of PV systems, to address the current and future challenges of enabling the PV terawatt (TW) transition. The holistic review of the literature shows that the field of autonomous monitoring and analysis of PV plants is rapidly growing and is capable to significantly improve the efficiency and reliability of PV systems. It can also have significant benefits for PV plant operators and maintenance staff, such as reducing the downtime and the need for human operators in maintenance tasks, as well as increasing the generated energy.
{"title":"Autonomous Intelligent Monitoring of Photovoltaic Systems: An In-Depth Multidisciplinary Review","authors":"M. Aghaei, M. Kolahi, A. Nedaei, N. S. Venkatesh, S. M. Esmailifar, A. M. Moradi Sizkouhi, A. Aghamohammadi, A. K. V. Oliveira, A. Eskandari, P. Parvin, J. Milimonfared, V. Sugumaran, R. Rüther","doi":"10.1002/pip.3859","DOIUrl":"https://doi.org/10.1002/pip.3859","url":null,"abstract":"<p>This study presents a comprehensive multidisciplinary review of autonomous monitoring and analysis of large-scale photovoltaic (PV) power plants using enabling technologies, namely artificial intelligence (AI), machine learning (ML), deep learning (DL), internet of things (IoT), unmanned aerial vehicle (UAV), and big data analytics (BDA), aiming to automate the entire condition monitoring procedures of PV systems. Autonomous monitoring and analysis is a novel concept for integrating various techniques, devices, systems, and platforms to further enhance the accuracy of PV monitoring, thereby improving the performance, reliability, and service life of PV systems. This review article covers current trends, recent research paths and developments, and future perspectives of autonomous monitoring and analysis for PV power plants. Additionally, this study identifies the main barriers and research routes for the autonomous and smart condition monitoring of PV systems, to address the current and future challenges of enabling the PV terawatt (TW) transition. The holistic review of the literature shows that the field of autonomous monitoring and analysis of PV plants is rapidly growing and is capable to significantly improve the efficiency and reliability of PV systems. It can also have significant benefits for PV plant operators and maintenance staff, such as reducing the downtime and the need for human operators in maintenance tasks, as well as increasing the generated energy.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"381-409"},"PeriodicalIF":8.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3859","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gianluigi Bovesecchi, Marcello Petitta, Marco Pierro, Antonio Agresti, Sara Pescetelli, Enrico Leonardi, Aldo Di Carlo, Cristina Cornaro
This paper presents an outdoor performance monitoring method for degradation studies of perovskite modules, focusing on a large-area perovskite module (81.9 cm2) over a long-term monitoring campaign. The module underwent an industrial lamination process to prevent long-term degradation from environmental factors. The characterization procedure involved degradation correction and determining the temperature coefficients and electrical parameters of the module using initial days of measurements. The results demonstrated temperature coefficients for Isc, Voc, and Pm (α′, β′, and γ) of −0.071%·K−1, −0.119%·K−1, and −0.113%·K−1, respectively, indicating a minimal temperature influence on this technology compared with conventional ones. Using this coefficient, the STC electrical parameters were retrieved from 1-min power output data, resolving the uncertainty of the indoor/outdoor IV curve measurements caused by the curve scan direction (JV hysteresis effect). We also highlight the initial remarkable capacity recovery effect of almost 16% during the first 2 days of operation. Additionally, a procedure that includes the IV curves analysis taken every 10 min and their translation to standard conditions has been implemented to evaluate the degradation of the module over the long-term outdoor campaign. The results show three different trends over the period.
{"title":"Outdoor Performance Monitoring Method for Degradation Studies of Perovskite Modules","authors":"Gianluigi Bovesecchi, Marcello Petitta, Marco Pierro, Antonio Agresti, Sara Pescetelli, Enrico Leonardi, Aldo Di Carlo, Cristina Cornaro","doi":"10.1002/pip.3860","DOIUrl":"https://doi.org/10.1002/pip.3860","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents an outdoor performance monitoring method for degradation studies of perovskite modules, focusing on a large-area perovskite module (81.9 cm<sup>2</sup>) over a long-term monitoring campaign. The module underwent an industrial lamination process to prevent long-term degradation from environmental factors. The characterization procedure involved degradation correction and determining the temperature coefficients and electrical parameters of the module using initial days of measurements. The results demonstrated temperature coefficients for <i>I</i><sub>sc</sub>, <i>V</i><sub>oc</sub>, and <i>P</i><sub>m</sub> (<i>α</i>′, <i>β</i>′, and <i>γ</i>) of −0.071%·K<sup>−1</sup>, −0.119%·K<sup>−1</sup>, and −0.113%·K<sup>−1</sup>, respectively, indicating a minimal temperature influence on this technology compared with conventional ones. Using this coefficient, the STC electrical parameters were retrieved from 1-min power output data, resolving the uncertainty of the indoor/outdoor IV curve measurements caused by the curve scan direction (JV hysteresis effect). We also highlight the initial remarkable capacity recovery effect of almost 16% during the first 2 days of operation. Additionally, a procedure that includes the IV curves analysis taken every 10 min and their translation to standard conditions has been implemented to evaluate the degradation of the module over the long-term outdoor campaign. The results show three different trends over the period.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"445-461"},"PeriodicalIF":8.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large-scale daylight photoluminescence imaging of crystalline silicon solar panels in utility-scale solar farms, whereby luminescence images of several hundred to thousands of panels are acquired simultaneously, was demonstrated by our group recently. Here, we demonstrate that photoluminescence images of large solar farm sections that are connected to the same central inverter uniquely contain quantitative information about voltage mismatch between series-connected strings of modules resulting from voltage variations between groups of modules. These voltage variations cause significant balancing currents between module strings when no or only low power is extracted from the solar farm. The impact of these balancing currents on the luminescence intensity is discussed. An analytical model to correct daylight photoluminescence images for these balancing currents is proposed and validated using experimental data.
{"title":"Daylight Photoluminescence Imaging: Quantitative Analysis of String Voltage Mismatch and Balancing Currents","authors":"Thorsten Trupke, Oliver Kunz, Juergen W. Weber","doi":"10.1002/pip.3866","DOIUrl":"https://doi.org/10.1002/pip.3866","url":null,"abstract":"<div>\u0000 \u0000 <p>Large-scale daylight photoluminescence imaging of crystalline silicon solar panels in utility-scale solar farms, whereby luminescence images of several hundred to thousands of panels are acquired simultaneously, was demonstrated by our group recently. Here, we demonstrate that photoluminescence images of large solar farm sections that are connected to the same central inverter uniquely contain quantitative information about voltage mismatch between series-connected strings of modules resulting from voltage variations between groups of modules. These voltage variations cause significant balancing currents between module strings when no or only low power is extracted from the solar farm. The impact of these balancing currents on the luminescence intensity is discussed. An analytical model to correct daylight photoluminescence images for these balancing currents is proposed and validated using experimental data.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"435-444"},"PeriodicalIF":8.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143379892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advantage of employing an n-type hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) layer as the front surface field (FSF) in silicon heterojunction (SHJ) solar cells is due to its low optical absorption coefficient and tunable refractive index. However, carbon dioxide (CO2) gas, one of the major precursor gases in the nc-SiOx:H layer, deteriorates the crystallinity, which is one of the key factors affecting cell performance. Here, we successfully deposited a nc-SiOx:H FSF layer with high crystallinity for SHJ solar cells by using nitrous oxide (N2O) as an alternative oxygen source instead of existing CO2. Compared with the use of CO2, the use of N2O as an oxygen source can achieve a 10% ~ 15% increase in the deposition rate of the nc-SiOx:H layer, which can shorten the total processing tact-time, thus having the potential to reduce production costs in large-scale industrial applications. The influence of N2O as an oxygen source on the film properties was also investigated. By optimizing the proportion of N2O in the precursor gases, we finally fabricated 274.5 cm2-area SHJ solar cells with an in-house average efficiency of 25.76%, which is approximately 0.1%abs higher than that of their reference counterparts (using CO2 as an oxygen source), and obtained a certified efficiency of 25.79% for the champion cell independently confirmed by the ISFH CalTeC in Germany.
{"title":"Industrial-Scale Preparation of Nanocrystalline n-Type Silicon Oxide Front Contacts Using N2O as an Oxygen Source for High-Efficiency Silicon Heterojunction Solar Cells","authors":"Chen-Wei Peng, Shuai Zou, Chenran He, Dramon Zhang, Hongfan Wu, Gangqiang Dong, Haihong Wu, Cao Yu, Yulian Zeng, Zipeng Wang, Longfei Dai, Xiaodong Su","doi":"10.1002/pip.3858","DOIUrl":"https://doi.org/10.1002/pip.3858","url":null,"abstract":"<div>\u0000 \u0000 <p>The advantage of employing an n-type hydrogenated nanocrystalline silicon oxide (nc-SiO<sub><i>x</i></sub>:H) layer as the front surface field (FSF) in silicon heterojunction (SHJ) solar cells is due to its low optical absorption coefficient and tunable refractive index. However, carbon dioxide (CO<sub>2</sub>) gas, one of the major precursor gases in the nc-SiO<sub><i>x</i></sub>:H layer, deteriorates the crystallinity, which is one of the key factors affecting cell performance. Here, we successfully deposited a nc-SiO<sub><i>x</i></sub>:H FSF layer with high crystallinity for SHJ solar cells by using nitrous oxide (N<sub>2</sub>O) as an alternative oxygen source instead of existing CO<sub>2</sub>. Compared with the use of CO<sub>2</sub>, the use of N<sub>2</sub>O as an oxygen source can achieve a 10% ~ 15% increase in the deposition rate of the nc-SiO<sub><i>x</i></sub>:H layer, which can shorten the total processing tact-time, thus having the potential to reduce production costs in large-scale industrial applications. The influence of N<sub>2</sub>O as an oxygen source on the film properties was also investigated. By optimizing the proportion of N<sub>2</sub>O in the precursor gases, we finally fabricated 274.5 cm<sup>2</sup>-area SHJ solar cells with an in-house average efficiency of 25.76%, which is approximately 0.1%<sub>abs</sub> higher than that of their reference counterparts (using CO<sub>2</sub> as an oxygen source), and obtained a certified efficiency of 25.79% for the champion cell independently confirmed by the ISFH CalTeC in Germany.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"425-434"},"PeriodicalIF":8.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hugo Quest, Christophe Ballif, Alessandro Virtuani
The performance loss rate (PLR) is a key parameter in the assessment of photovoltaic (PV) systems' long-term performance and reliability. Despite the lack of industry-wide consensus and standardised methods for extracting PLR values from field data, the year-on-year (YoY) method is often considered the most robust regression analysis. However, achieving reproducible results with minimal uncertainty remains a challenge. This work proposes the multi-annual YoY (multi-YoY) approach, which reduces the statistical uncertainty of the metric through increased usage of available data. The concept is straightforward: Instead of comparing data points only to the following year, the multi-YoY method compares them to all subsequent years, increasing the number of available comparisons. The methodology is validated using synthetic data and tested on high-quality datasets made available by IEA PVPS Task 13. The multi-YoY method improves both accuracy and precision, with only 1% deviation from the set PLR value in a synthetic dataset and a tenfold decrease in confidence interval (CI) compared to the standard YoY. Moreover, comparisons with the IEA benchmark PLR values show good agreement with their ensemble method, with minimised uncertainty. The impact of noise, dataset length missing data and non-linear trends are tested, showing improved accuracy and robustness for the multi-YoY approach. For non-linearity, automatic segmentation is recommended to capture the evolving PLR.
{"title":"Multi-Annual Year-on-Year: Minimising the Uncertainty in Photovoltaic System Performance Loss Rates","authors":"Hugo Quest, Christophe Ballif, Alessandro Virtuani","doi":"10.1002/pip.3855","DOIUrl":"https://doi.org/10.1002/pip.3855","url":null,"abstract":"<p>The performance loss rate (PLR) is a key parameter in the assessment of photovoltaic (PV) systems' long-term performance and reliability. Despite the lack of industry-wide consensus and standardised methods for extracting PLR values from field data, the year-on-year (YoY) method is often considered the most robust regression analysis. However, achieving reproducible results with minimal uncertainty remains a challenge. This work proposes the multi-annual YoY (multi-YoY) approach, which reduces the statistical uncertainty of the metric through increased usage of available data. The concept is straightforward: Instead of comparing data points only to the following year, the multi-YoY method compares them to all subsequent years, increasing the number of available comparisons. The methodology is validated using synthetic data and tested on high-quality datasets made available by IEA PVPS Task 13. The multi-YoY method improves both accuracy and precision, with only 1% deviation from the set PLR value in a synthetic dataset and a tenfold decrease in confidence interval (CI) compared to the standard YoY. Moreover, comparisons with the IEA benchmark PLR values show good agreement with their ensemble method, with minimised uncertainty. The impact of noise, dataset length missing data and non-linear trends are tested, showing improved accuracy and robustness for the multi-YoY approach. For non-linearity, automatic segmentation is recommended to capture the evolving PLR.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 3","pages":"411-424"},"PeriodicalIF":8.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A simple binary antimony selenide (Sb2Se3) absorber is evolving as an alternative photovoltaic material in thin film solar cells because of its unique properties and easy processing. Sb2Se3 thin films having good crystalline quality are grown via versatile thermal evaporation from pre-synthesized near stoichiometric compound material on molybdenum-coated soda lime glass (SLG) and borosilicate glass (BG) substrates. Following the systematic characterizations on the absorber films, substrate configured Sb2Se3/CdS heterojunction devices were fabricated and their photovoltaic characteristics have been studied using current density vs. voltage (J-V), dark J-V modeling, external quantum efficiency and capacitance vs. voltage measurements. The power conservation efficiency values of 4.88% and 5.04% were achieved for the devices fabricated on SLG and BG substrates, respectively with deficit in open circuit voltage. The obtained values are higher in comparison to the reported device efficiencies in substrate configured Sb2Se3 solar cells, in which the absorber is prepared through thermal evaporation. To understand the loss in open circuit voltage, a compact equivalent circuit model was considered and identified the contribution of different shunt leakage paths in the devices. In addition to that, the device fabricated on the SLG was stable with minimal changes in its photovoltaic performance for a period spanning over 200 days. The results obtained are encouraging with scope for improving the device performance through interface engineering and back surface passivation strategies.
{"title":"Influence of Substrate on Sb2Se3/CdS Heterojunction Thin Film Solar Cells and Evaluation of Their Performance by Dark J-V Analysis","authors":"Srinivasan Moosi Govindharajulu, Rohini Anandan, Ramakrishna Madaka, Jatindra Kumar Rath, Malar Piraviperumal","doi":"10.1002/pip.3853","DOIUrl":"https://doi.org/10.1002/pip.3853","url":null,"abstract":"<div>\u0000 \u0000 <p>A simple binary antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) absorber is evolving as an alternative photovoltaic material in thin film solar cells because of its unique properties and easy processing. Sb<sub>2</sub>Se<sub>3</sub> thin films having good crystalline quality are grown via versatile thermal evaporation from pre-synthesized near stoichiometric compound material on molybdenum-coated soda lime glass (SLG) and borosilicate glass (BG) substrates. Following the systematic characterizations on the absorber films, substrate configured Sb<sub>2</sub>Se<sub>3</sub>/CdS heterojunction devices were fabricated and their photovoltaic characteristics have been studied using current density vs. voltage (J-V), dark J-V modeling, external quantum efficiency and capacitance vs. voltage measurements. The power conservation efficiency values of 4.88% and 5.04% were achieved for the devices fabricated on SLG and BG substrates, respectively with deficit in open circuit voltage. The obtained values are higher in comparison to the reported device efficiencies in substrate configured Sb<sub>2</sub>Se<sub>3</sub> solar cells, in which the absorber is prepared through thermal evaporation. To understand the loss in open circuit voltage<sub>,</sub> a compact equivalent circuit model was considered and identified the contribution of different shunt leakage paths in the devices. In addition to that, the device fabricated on the SLG was stable with minimal changes in its photovoltaic performance for a period spanning over 200 days. The results obtained are encouraging with scope for improving the device performance through interface engineering and back surface passivation strategies.</p>\u0000 </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 2","pages":"357-371"},"PeriodicalIF":8.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kamila Kollbek, Łukasz Jarosiński, Paweł Dąbczyński, Piotr Jabłoński, Marta Gajewska, Piotr Jeleń, Jakub Rysz, Konrad Szaciłowski, Marek Przybylski
In the era of global energy crisis, more attention is paid to efficient energy harvesting from renewable sources. Solar power is one of those widely utilized, yet the efficiency of devices converting energy needs to be constantly improved. One of the ideas is to create solar cells that benefit from 2D van der Waals structures combined with other materials such as TiO2 and conductive polymers. Such hybrid solar cells show higher power conversion compared to non-composite photovoltaic devices. In this work, a TiO2/MoS2 heterojunction created in the magnetron sputtering process was covered with a P3HT polymer coating. Composite multilayer systems were investigated (TEM, XRD, Raman spectroscopy and TOF-SIMS) to define the composition, optical properties and solar energy conversion potential. The photovoltaic response of the multilayer system was successfully improved by MoS2 band gap engineering based on the quantum size effect. Furthermore, TiO2/MoS2/P3HT revealed enhanced optical properties and improved charge transport performance with reasonable energy band alignment. The photovoltaic efficiency of hybrid cells doubled compared to previously published work and reached 2.7%. Furthermore, the photovoltaic performance of the solar cells based on TiO2/MoS2/P3HT exhibited an improvement compared to that of the solar cell based on TiO2/P3HT or MoS2/P3HT.
{"title":"The Influence of MoS2 Thickness on the Efficiency of Solar Energy Conversion in TiO2/MoS2/P3HT Cells","authors":"Kamila Kollbek, Łukasz Jarosiński, Paweł Dąbczyński, Piotr Jabłoński, Marta Gajewska, Piotr Jeleń, Jakub Rysz, Konrad Szaciłowski, Marek Przybylski","doi":"10.1002/pip.3856","DOIUrl":"https://doi.org/10.1002/pip.3856","url":null,"abstract":"<p>In the era of global energy crisis, more attention is paid to efficient energy harvesting from renewable sources. Solar power is one of those widely utilized, yet the efficiency of devices converting energy needs to be constantly improved. One of the ideas is to create solar cells that benefit from 2D van der Waals structures combined with other materials such as TiO<sub>2</sub> and conductive polymers. Such hybrid solar cells show higher power conversion compared to non-composite photovoltaic devices. In this work, a TiO<sub>2</sub>/MoS<sub>2</sub> heterojunction created in the magnetron sputtering process was covered with a P3HT polymer coating. Composite multilayer systems were investigated (TEM, XRD, Raman spectroscopy and TOF-SIMS) to define the composition, optical properties and solar energy conversion potential. The photovoltaic response of the multilayer system was successfully improved by MoS<sub>2</sub> band gap engineering based on the quantum size effect. Furthermore, TiO<sub>2</sub>/MoS<sub>2</sub>/P3HT revealed enhanced optical properties and improved charge transport performance with reasonable energy band alignment. The photovoltaic efficiency of hybrid cells doubled compared to previously published work and reached 2.7%. Furthermore, the photovoltaic performance of the solar cells based on TiO<sub>2</sub>/MoS<sub>2</sub>/P3HT exhibited an improvement compared to that of the solar cell based on TiO<sub>2</sub>/P3HT or MoS<sub>2</sub>/P3HT.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 2","pages":"344-356"},"PeriodicalIF":8.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3856","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143116171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}