A method for isolating the mitotic apparatus from dividing sea urchin eggs without the use of ethyl alcohol or of detergents is described. In the present method, the eggs are dispersed directly in a medium containing 1 M (to 1.15 M) sucrose, 0.15 M dithiodiglycol, and 0.001 M Versene at pH 6, releasing the visibly intact mitotic apparatus. The method is designed for studies of enzyme activities, lipid components, and the variables affecting the stability of the apparatus.
{"title":"The direct isolation of the mitotic apparatus.","authors":"D MAZIA, J M MITCHISON, H MEDINA, P HARRIS","doi":"10.1083/jcb.10.4.467","DOIUrl":"https://doi.org/10.1083/jcb.10.4.467","url":null,"abstract":"<p><p>A method for isolating the mitotic apparatus from dividing sea urchin eggs without the use of ethyl alcohol or of detergents is described. In the present method, the eggs are dispersed directly in a medium containing 1 M (to 1.15 M) sucrose, 0.15 M dithiodiglycol, and 0.001 M Versene at pH 6, releasing the visibly intact mitotic apparatus. The method is designed for studies of enzyme activities, lipid components, and the variables affecting the stability of the apparatus.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"467-74"},"PeriodicalIF":0.0,"publicationDate":"1961-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.4.467","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23359912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The sarcoplasmic reticulum of a fast-acting fish muscle.","authors":"D W FAWCETT, J P REVEL","doi":"10.1083/jcb.10.4.89","DOIUrl":"https://doi.org/10.1083/jcb.10.4.89","url":null,"abstract":"","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10(4)Suppl ","pages":"89-109"},"PeriodicalIF":0.0,"publicationDate":"1961-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.4.89","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23291198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A study of thin sections of hyphae of Streptomyces violaceoruber in the electron microscope showed that the structure of the walls and the mode of formation of cross-walls are similar to those of Gram-positive bacteria. A beaded structure was seen in some regions of the wall, and the significance of this observation is discussed in relation to previous studies of the fine structure of bacterial cell walls. Elements of the intracytoplasmic membrane system appear to be involved in the process of cross-wall formation. The walls of the hyphae of the aerial mycelium divide into two layers before the spores are formed, and only the inner component of the wall grows inwards to form the cross-walls and so delimit the spores. The outer component remains intact for a time and acts as a sheath around the developing spores. Finally the sheath breaks and the spores are liberated. This process is contrasted with the formation of endospores in eubacteria. When the spores germinate, the walls of the germ tubes are continuous with those of the spores.
{"title":"The fine structure of Streptomyces violaceoruber (S. coelicolor). III. The walls of the mycelium and spores.","authors":"A M GLAUERT, D A HOPWOOD","doi":"10.1083/jcb.10.4.505","DOIUrl":"https://doi.org/10.1083/jcb.10.4.505","url":null,"abstract":"<p><p>A study of thin sections of hyphae of Streptomyces violaceoruber in the electron microscope showed that the structure of the walls and the mode of formation of cross-walls are similar to those of Gram-positive bacteria. A beaded structure was seen in some regions of the wall, and the significance of this observation is discussed in relation to previous studies of the fine structure of bacterial cell walls. Elements of the intracytoplasmic membrane system appear to be involved in the process of cross-wall formation. The walls of the hyphae of the aerial mycelium divide into two layers before the spores are formed, and only the inner component of the wall grows inwards to form the cross-walls and so delimit the spores. The outer component remains intact for a time and acts as a sheath around the developing spores. Finally the sheath breaks and the spores are liberated. This process is contrasted with the formation of endospores in eubacteria. When the spores germinate, the walls of the germ tubes are continuous with those of the spores.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"505-16"},"PeriodicalIF":0.0,"publicationDate":"1961-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.4.505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23298537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The structure of the longitudinal body muscles of Branchiostoma caribaeum has been studied by light and electron microscopy. These muscles are shown to be composed of fibers in the form of flat lamellae about 0.8micro in thickness, more than 100 micro wide, and reaching in length from one intermuscular septum to the next, a distance of about 0.6 mm. Each flat fiber is covered by a plasma membrane and contains a single myofibril consisting of myofilaments packed in the interdigitating hexagonal array characteristic of vertebrate striated muscle. Little or no sarcoplasmic reticulum is present. Mitochondria are found infrequently and have a tubular internal structure. These morphological observations are discussed in relation to a proposed hypothesis of excitation-contraction coupling. It is pointed out that the maximum distance from surface to myofilament in these muscles is about 0.5 micro and that diffusion of an "activating" substance over this distance would essentially be complete in less than 0.5 msec. after its release from the plasma membrane. It is concluded that the flat form of amphioxus muscle substitutes for the specialized mechanisms of excitation-contraction coupling thought possibly to involve the sarcoplasmic reticulum in higher vertebrate muscles.
{"title":"Structure of the longitudinal body muscles of amphioxus.","authors":"L D PEACHEY","doi":"10.1083/jcb.10.4.159","DOIUrl":"https://doi.org/10.1083/jcb.10.4.159","url":null,"abstract":"<p><p>The structure of the longitudinal body muscles of Branchiostoma caribaeum has been studied by light and electron microscopy. These muscles are shown to be composed of fibers in the form of flat lamellae about 0.8micro in thickness, more than 100 micro wide, and reaching in length from one intermuscular septum to the next, a distance of about 0.6 mm. Each flat fiber is covered by a plasma membrane and contains a single myofibril consisting of myofilaments packed in the interdigitating hexagonal array characteristic of vertebrate striated muscle. Little or no sarcoplasmic reticulum is present. Mitochondria are found infrequently and have a tubular internal structure. These morphological observations are discussed in relation to a proposed hypothesis of excitation-contraction coupling. It is pointed out that the maximum distance from surface to myofilament in these muscles is about 0.5 micro and that diffusion of an \"activating\" substance over this distance would essentially be complete in less than 0.5 msec. after its release from the plasma membrane. It is concluded that the flat form of amphioxus muscle substitutes for the specialized mechanisms of excitation-contraction coupling thought possibly to involve the sarcoplasmic reticulum in higher vertebrate muscles.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10(4)Suppl ","pages":"159-76"},"PeriodicalIF":0.0,"publicationDate":"1961-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.4.159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23326511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The structure of the urinary bladder of the toad Bufo marinus was studied by light and electron microscopy. The epithelium covering the mucosal surface of the bladder is 3 to 10 microns thick and consists of squamous epithelial cells, goblet cells, and a third class of cells containing many mitochondria and possibly representing goblet cells in early stages of their secretory cycle. This epithelium is supported on a lamina propria 30 to several hundred microns thick and containing collagen fibrils, bundles of smooth muscle fibers, and blood vessels. The serosal surface of the bladder is covered by an incomplete mesothelium. The cytoplasm of the squamous epithelial cells, which greatly outnumber the other types of cells, is organized in a way characteristic of epithelial secretory cells. Mitochondria, smooth and rough surfaced endoplasmic reticulum, a Golgi apparatus, "multivesicular bodies," and isolated particles and vesicles are present. Secretion granules are found immediately under the plasma membranes of the free surfaces of the epithelial cells and are seen to fuse with these membranes and release their contents to contribute to a fibrous surface coating found only on the free mucosal surfaces of the cells. Beneath the plasma membranes on these surfaces is an additional, finely granular component. Lateral and basal plasma membranes are heavily plicated and appear ordinary in fine structure. The cells of the epithelium are tightly held together by a terminal bar apparatus and sealed together, with an intervening space of only 0.02 mmicro near the bladder lumen, in such a way as to prevent water leakage between the cells. It is demonstrated in in vitro experiments that water traversing the bladder wall passes through the cytoplasm of the epithelial cells and that a vesicle transport mechanism is not involved. In vitro experiments also show that the basal (serosal) surfaces of the epithelial cells are freely permeable to water, while the free (mucosal) surfaces are normally relatively impermeable but become permeable when the serosal surface of the bladder is treated with neurohypophyseal hormones. The permeability barrier found at the mucosal surface may be represented, structurally, either by the filamentous layer lying external to the plasma membrane, by the intracellular, granular component found just under the plasma membrane, or by both of these components of the mucosal surface complex. The polarity of the epithelial sheet is emphasized and related to the physiological role of the urinary bladder in amphibian water balance mechanisms.
{"title":"Structure of the toad's urinary bladder as related to its physiology.","authors":"L D PEACHEY, H RASMUSSEN","doi":"10.1083/jcb.10.4.529","DOIUrl":"https://doi.org/10.1083/jcb.10.4.529","url":null,"abstract":"<p><p>The structure of the urinary bladder of the toad Bufo marinus was studied by light and electron microscopy. The epithelium covering the mucosal surface of the bladder is 3 to 10 microns thick and consists of squamous epithelial cells, goblet cells, and a third class of cells containing many mitochondria and possibly representing goblet cells in early stages of their secretory cycle. This epithelium is supported on a lamina propria 30 to several hundred microns thick and containing collagen fibrils, bundles of smooth muscle fibers, and blood vessels. The serosal surface of the bladder is covered by an incomplete mesothelium. The cytoplasm of the squamous epithelial cells, which greatly outnumber the other types of cells, is organized in a way characteristic of epithelial secretory cells. Mitochondria, smooth and rough surfaced endoplasmic reticulum, a Golgi apparatus, \"multivesicular bodies,\" and isolated particles and vesicles are present. Secretion granules are found immediately under the plasma membranes of the free surfaces of the epithelial cells and are seen to fuse with these membranes and release their contents to contribute to a fibrous surface coating found only on the free mucosal surfaces of the cells. Beneath the plasma membranes on these surfaces is an additional, finely granular component. Lateral and basal plasma membranes are heavily plicated and appear ordinary in fine structure. The cells of the epithelium are tightly held together by a terminal bar apparatus and sealed together, with an intervening space of only 0.02 mmicro near the bladder lumen, in such a way as to prevent water leakage between the cells. It is demonstrated in in vitro experiments that water traversing the bladder wall passes through the cytoplasm of the epithelial cells and that a vesicle transport mechanism is not involved. In vitro experiments also show that the basal (serosal) surfaces of the epithelial cells are freely permeable to water, while the free (mucosal) surfaces are normally relatively impermeable but become permeable when the serosal surface of the bladder is treated with neurohypophyseal hormones. The permeability barrier found at the mucosal surface may be represented, structurally, either by the filamentous layer lying external to the plasma membrane, by the intracellular, granular component found just under the plasma membrane, or by both of these components of the mucosal surface complex. The polarity of the epithelial sheet is emphasized and related to the physiological role of the urinary bladder in amphibian water balance mechanisms.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"529-53"},"PeriodicalIF":0.0,"publicationDate":"1961-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.4.529","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23326510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The structure of the sarcolemma of the frog skeletal muscle fiber.","authors":"A MAURO, W R ADAMS","doi":"10.1083/jcb.10.4.177","DOIUrl":"https://doi.org/10.1083/jcb.10.4.177","url":null,"abstract":"","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10(4)Suppl ","pages":"177-85"},"PeriodicalIF":0.0,"publicationDate":"1961-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.4.177","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23361399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell-the pinealocyte-is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals.
{"title":"Plurivesicular secretory processes and nerve endings in the pineal gland of the rat.","authors":"E DE ROBERTIS, PELLEGRINO DE IRALDIA","doi":"10.1083/jcb.10.3.361","DOIUrl":"https://doi.org/10.1083/jcb.10.3.361","url":null,"abstract":"<p><p>The pineal body of white normal rats, 1.5 to 3 months old, was studied under the electron microscope. A single type of parenchymal cell-the pinealocyte-is recognized as the main component of the tissue, and some of the structural characteristics of the nucleus and cytoplasm are described. The main morphological characteristic of the pinealocytes is represented by club-shaped perivascular expansions connected to the cell by thin pedicles. They are found lying in a large, clear space surrounding the blood capillaries. The name plurivesicular secretory processes is proposed, to emphasize the main structural feature and the probable function of these cellular expansions. A tubulofibrillar component is mainly found in the pedicle, and within the expansion there are numerous small mitochondria and densily packed vesicles of about 425 A. Two types of vesicles, one with a homogeneous content and another with a very dense osmium deposit, are described. Between the two types there are intermediary forms. In these processes, mitochondria show profound changes which may lead to complete vacuolization. The significance of this plurivesicular secretory component is discussed in the light of recent work on the biogenic amines of the pineal body and preliminary experiments showing the release of the vesicles containing dense granules after treatment with reserpine. These vesicles are interpreted as the site of storage of some of the biogenic amines. Bundles of unmyelinated nerve fibers and endings on large blood vessels which also contain a plurivesicular content are described and tentatively interpreted as adrenergic nerve terminals.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"361-72"},"PeriodicalIF":0.0,"publicationDate":"1961-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.3.361","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23314074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G W SALISBURY, W J BIRGE, L DE LA TORRE, J R LODGE
The Feulgen-DNA content of sperm cells from 5 bulls was studied by means of microspectrophotometry after storage at 5 degrees C for 2, 3, 5, and 10 days in a yolk-citrate diluent permitting slow aerobic metabolism. A subsample of sperm cells from each bull was subjected to the Feulgen technique on each of the storage days selected. The cells sampled on each of these days received a standard 12 minute, 60 degrees C hydrolysis. Absorption measurements at 546 mmicroof the individual cells indicated a marked progressive decrease in the Feulgen-DNA content of the stored spermatozoa. The loss of 30 per cent of the initial DNA at the end of 5 days' storage was highly significant statistically. This decrease approximately parallels the known decrease in fertility of stored sperm cells, as well as the increase in apparent embryonic mortality resulting from the use of similarly aged spermatozoa for artificial insemination.
{"title":"Decrease in nuclear Feulgen-positive material (DNA) upon aging in in vitro storage of bovine spermatozoa.","authors":"G W SALISBURY, W J BIRGE, L DE LA TORRE, J R LODGE","doi":"10.1083/jcb.10.3.353","DOIUrl":"https://doi.org/10.1083/jcb.10.3.353","url":null,"abstract":"<p><p>The Feulgen-DNA content of sperm cells from 5 bulls was studied by means of microspectrophotometry after storage at 5 degrees C for 2, 3, 5, and 10 days in a yolk-citrate diluent permitting slow aerobic metabolism. A subsample of sperm cells from each bull was subjected to the Feulgen technique on each of the storage days selected. The cells sampled on each of these days received a standard 12 minute, 60 degrees C hydrolysis. Absorption measurements at 546 mmicroof the individual cells indicated a marked progressive decrease in the Feulgen-DNA content of the stored spermatozoa. The loss of 30 per cent of the initial DNA at the end of 5 days' storage was highly significant statistically. This decrease approximately parallels the known decrease in fertility of stored sperm cells, as well as the increase in apparent embryonic mortality resulting from the use of similarly aged spermatozoa for artificial insemination.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"353-9"},"PeriodicalIF":0.0,"publicationDate":"1961-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.3.353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23336292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of tricyano-amino-propene, a dimer of malononitrile, on the base composition of the RNA in isolated Deiters' nerve cells and their oligodendroglial cells has been studied using a microelectrophoretic method. Tri-a-p in a dose of 20 mg/kg has the effect of increasing the RNA and protein content per nerve cell by 25 per cent and decreasing the glia RNA by 45 per cent. The RNA base composition of the nerve cells from the control animals differs from that of their glial cells. The guanine of the nerve cell is significantly higher than that of the glia, but the content of cytosine is higher in the glia than in the RNA of nerve cell. The cytosine of nerve cells decreased significantly after tri-a-p administration. In the glial cells the cytosine showed a 20 per cent increase, and the guanine a 25 per cent decrease. Tri-a-p sharpened the difference in RNA composition already existing between the control nerve cells and their glial cells by almost 300 per cent for the guanine and by 400 per cent for the cytosine. The chemical and functional relationship between the nerve cell and its oligodendroglial cells is discussed.
{"title":"Experimentally induced changes in the base composition of the ribonucleic acids of isolated nerve cells and their oligodendroglial cells.","authors":"E EGYHAZI, H HYDEN","doi":"10.1083/jcb.10.3.403","DOIUrl":"https://doi.org/10.1083/jcb.10.3.403","url":null,"abstract":"<p><p>The effect of tricyano-amino-propene, a dimer of malononitrile, on the base composition of the RNA in isolated Deiters' nerve cells and their oligodendroglial cells has been studied using a microelectrophoretic method. Tri-a-p in a dose of 20 mg/kg has the effect of increasing the RNA and protein content per nerve cell by 25 per cent and decreasing the glia RNA by 45 per cent. The RNA base composition of the nerve cells from the control animals differs from that of their glial cells. The guanine of the nerve cell is significantly higher than that of the glia, but the content of cytosine is higher in the glia than in the RNA of nerve cell. The cytosine of nerve cells decreased significantly after tri-a-p administration. In the glial cells the cytosine showed a 20 per cent increase, and the guanine a 25 per cent decrease. Tri-a-p sharpened the difference in RNA composition already existing between the control nerve cells and their glial cells by almost 300 per cent for the guanine and by 400 per cent for the cytosine. The chemical and functional relationship between the nerve cell and its oligodendroglial cells is discussed.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"403-10"},"PeriodicalIF":0.0,"publicationDate":"1961-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.3.403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23319806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pneumococcus DNA, of weight-average molecular weight 1.6 million by light scattering, had a weight-average length of 4300 A by electron microscopy. Thus, the average mass per unit length was 370 molecular-weight units per A, or approximately two times that expected (208) for a Watson-Crick double helix. This corresponds to an average of 3.6 strands per molecule, which is close to that obtained by other methods. Morphologically, all the particles in the micrographs were relatively stiff, and had a cross-sectional height of 20 to 30 A. Some divided into two stiff branches of the same height, apparently double helical. Where the branches combined into one (minimally four-stranded) structure they apparently lay side by side in close association.
{"title":"Four-stranded DNA as determined by electron microscopy.","authors":"C E HALL, L F CAVALIERI","doi":"10.1083/jcb.10.3.347","DOIUrl":"https://doi.org/10.1083/jcb.10.3.347","url":null,"abstract":"<p><p>Pneumococcus DNA, of weight-average molecular weight 1.6 million by light scattering, had a weight-average length of 4300 A by electron microscopy. Thus, the average mass per unit length was 370 molecular-weight units per A, or approximately two times that expected (208) for a Watson-Crick double helix. This corresponds to an average of 3.6 strands per molecule, which is close to that obtained by other methods. Morphologically, all the particles in the micrographs were relatively stiff, and had a cross-sectional height of 20 to 30 A. Some divided into two stiff branches of the same height, apparently double helical. Where the branches combined into one (minimally four-stranded) structure they apparently lay side by side in close association.</p>","PeriodicalId":22618,"journal":{"name":"The Journal of Biophysical and Biochemical Cytology","volume":"10 ","pages":"347-51"},"PeriodicalIF":0.0,"publicationDate":"1961-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1083/jcb.10.3.347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"23305111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}