Purpose: Thiopurine S-methyltransferase (TPMT) is an enzyme that metabolizes purine analogs, agents used in the treatment of acute lymphoblastic leukemia. Improper drug metabolism leads to toxicity in chemotherapy patients and reduces treatment effectiveness. TPMT variants associated with reduced enzymatic activity vary across populations. Therefore, studying these variants in heterogeneous populations, such as Ecuadorians, can help identify molecular causes of deficiency for this enzyme.
Methods: We sequenced the entire TPMT coding region in 550 Ecuadorian individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnicities. Moreover, we conducted an ancestry analysis using 46 informative ancestry markers.
Results: We identified 8 single nucleotide variants in the coding region of TPMT. The most prevalent alleles were TPMT*3A, TPMT*3B, and TPMT*3C, with frequencies of 0.055, 0.012, and 0.015, respectively. Additionally, we found rare alleles TPMT*4 and TPMT*8 with frequencies of 0.005 and 0.003. Correlating the ancestry proportions with TPMT-deficient genotypes, we observed that the Native American ancestry proportion influenced the distribution of the TPMT*1/TPMT*3A genotype (OR = 5.977, p = 0.002), while the contribution of African ancestral populations was associated with the TPMT*1/TPMT*3C genotype (OR = 9.769, p = 0.003). The rates of TPMT-deficient genotypes observed in Mestizo (f = 0.121) and Indigenous (f = 0.273) groups provide evidence for the influence of Native American ancestry and the prevalence of the TPMT*3A allele. In contrast, although Afro-Ecuadorian groups demonstrate similar deficiency rates (f = 0.160), the genetic factors involved are associated with contributions from African ancestral populations, specifically the prevalent TPMT*3C allele.
Conclusion: The distribution of TPMT-deficient variants offers valuable insights into the populations under study, underscoring the necessity for genetic screening strategies to prevent thiopurine toxicity events among Latin American minority groups.
Objective: This study aimed to create and validate a novel nomogram to predict the risk of symptomatic intracranial hemorrhage (sICH) in patients with acute ischemic stroke (AIS) who underwent intravenous thrombolysis (IVT).
Methods: In this retrospective study, 784 patients with AIS who received IVT were enrolled. The patients were randomly divided into two groups: a training set (n=550, 70%) and a testing set (n=234, 30%). Utilizing multivariable logistic regression analysis, relevant factors for the predictive nomogram were selected. The performance of the nomogram was evaluated using various metrics, including the area under the receiver operating characteristic curve (AUC-ROC), the Hosmer-Lemeshow goodness-of-fit test, calibration plots, and decision curve analysis (DCA).
Results: Multivariable logistic regression analysis showed that specific factors, including National Institutes of Health Stroke Scale (NIHSS) scores, Early infarct signs (EIS), and serum sodium, were identified as independent predictors of sICH. Subsequently, a nomogram was constructed using these predictors. The AUC-ROC values of the nomogram were 0.864 (95% CI: 0.810-0.919) and 0.831 (95% CI: 0.770-0.891) in the training and the validation sets, respectively. Both the calibration plots and the Hosmer-Lemeshow goodness-of-fit test showed favorable agreement in both the training and the validation sets. Additionally, the DCA indicated the practical clinical utility of the nomogram.
Conclusion: The novel nomogram, which included NIHSS, EIS and serum sodium as variables, had the potential for predicting the risk of sICH in patients with AIS after IVT.
Variant transthyretin amyloidosis (ATTRv) is an autosomal dominant inherited genetic disorder that affects 5000-10,000 people worldwide. It is caused by mutations in the transthyretin (TTR) gene and results in amyloid deposition in a variety of organs due to abnormal accumulation of TTR protein fibrils. Although this is a multisystem disorder, the heart and peripheral nerves are the preferentially affected organs. Over 150 TTR gene mutations have been associated with this disease and the clinical phenotype can vary significantly. Severe forms of the disorder can be fatal. Fortunately, the oligonucleotide-based therapy era has resulted in the development of several novel treatment options. Patisiran is a small interfering RNA (siRNA) encapsulated in a lipid nanoparticle that targets both mutant and wild-type TTR and results in significant reductions of the TTR protein in the serum and in tissue deposits. Patisiran has been approved for treatment of adults with polyneuropathy due to hereditary TTR-mediated amyloidosis in both the United States (US) and European Union (EU). In this review, we will discuss the development of patisiran, the clinical trials that lead to treatment approval, and provide guideline parameters for use in clinical practice. .