Pub Date : 2024-10-01Epub Date: 2024-08-20DOI: 10.1097/FTD.0000000000001244
Renata Shihmanter, Edward B Miller, Ekaterina Shvartsman, Haim Shmuely
Abstract: A 29-year-old Korean woman with chronic aplastic anemia presented with seizures due to cyclosporine-induced posterior reversible encephalopathy syndrome, caused by unpredictable oral cyclosporine (CS) accumulation and prolonged elimination. This case demonstrates the need to monitor CS drug levels with careful dose adjustments.
{"title":"Unpredictable Cyclosporine Clearance in a Korean Patient With Aplastic Anemia With Adverse Effects: A Case Study.","authors":"Renata Shihmanter, Edward B Miller, Ekaterina Shvartsman, Haim Shmuely","doi":"10.1097/FTD.0000000000001244","DOIUrl":"10.1097/FTD.0000000000001244","url":null,"abstract":"<p><strong>Abstract: </strong>A 29-year-old Korean woman with chronic aplastic anemia presented with seizures due to cyclosporine-induced posterior reversible encephalopathy syndrome, caused by unpredictable oral cyclosporine (CS) accumulation and prolonged elimination. This case demonstrates the need to monitor CS drug levels with careful dose adjustments.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"563-566"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-09DOI: 10.1097/FTD.0000000000001216
Sonia Luque, Luisa Sorlí, Jian Li, Xènia Fernández-Sala, Nuria Berenguer, Elena Colominas-González, Adela Benítez-Cano, María Milagro Montero, Isaac Subirana, Nuria Prim, Ramón García-Paricio, Juan Pablo Horcajada, Santiago Grau
Background: The clinical use of colistin methanesulphonate (CMS) is limited by potential nephrotoxicity. The selection of an efficient and safe CMS dose for individual patients is complicated by the narrow therapeutic window and high interpatient pharmacokinetic variability. In this study, a simple predictive equation for estimating the plasma concentration of formed colistin in patients with multidrug and extremely drug-resistant gram-negative bacterial infections was developed.
Methods: The equation was derived from the largest clinical cohort of patients undergoing therapeutic drug monitoring (TDM) of colistin for over 8 years in a tertiary Spanish hospital. All variables associated with C ss,avg were selected in a multiple linear regression model that was validated in a second cohort of 40 patients. Measured C ss,avg values were compared with those predicted by our model and a previous published algorithm for critically ill patients.
Results: In total, 276 patients were enrolled [the mean age was 67.2 (13.7) years, 203 (73.6%)] were male, and the mean (SD) C ss,avg was 1.12 (0.98) mg/L. Age, gender, estimated glomerular filtration rate, CMS dose and frequency, and concomitant drugs were included in the model. In the external validation, the previous algorithm appeared to yield more optimized colistin plasma concentrations when all types of C ss,avg values (high and low) were considered, while our equation yielded a more optimized prediction in the subgroup of patients with low colistin plasma concentrations (C ss,avg <1.5 mg/L).
Conclusions: The proposed equation may help clinicians to better use CMS among a wide variety of patients, to maximize efficacy and prevent nephrotoxicity. A further prospective PK study is warranted to externally validate this algorithm.
{"title":"New Predictive Equation for the Estimation of Plasma Concentrations of Formed Colistin in Patients Treated With Colistimethate Sodium for Multidrug-Resistant Gram-Negative Bacterial Infections.","authors":"Sonia Luque, Luisa Sorlí, Jian Li, Xènia Fernández-Sala, Nuria Berenguer, Elena Colominas-González, Adela Benítez-Cano, María Milagro Montero, Isaac Subirana, Nuria Prim, Ramón García-Paricio, Juan Pablo Horcajada, Santiago Grau","doi":"10.1097/FTD.0000000000001216","DOIUrl":"10.1097/FTD.0000000000001216","url":null,"abstract":"<p><strong>Background: </strong>The clinical use of colistin methanesulphonate (CMS) is limited by potential nephrotoxicity. The selection of an efficient and safe CMS dose for individual patients is complicated by the narrow therapeutic window and high interpatient pharmacokinetic variability. In this study, a simple predictive equation for estimating the plasma concentration of formed colistin in patients with multidrug and extremely drug-resistant gram-negative bacterial infections was developed.</p><p><strong>Methods: </strong>The equation was derived from the largest clinical cohort of patients undergoing therapeutic drug monitoring (TDM) of colistin for over 8 years in a tertiary Spanish hospital. All variables associated with C ss,avg were selected in a multiple linear regression model that was validated in a second cohort of 40 patients. Measured C ss,avg values were compared with those predicted by our model and a previous published algorithm for critically ill patients.</p><p><strong>Results: </strong>In total, 276 patients were enrolled [the mean age was 67.2 (13.7) years, 203 (73.6%)] were male, and the mean (SD) C ss,avg was 1.12 (0.98) mg/L. Age, gender, estimated glomerular filtration rate, CMS dose and frequency, and concomitant drugs were included in the model. In the external validation, the previous algorithm appeared to yield more optimized colistin plasma concentrations when all types of C ss,avg values (high and low) were considered, while our equation yielded a more optimized prediction in the subgroup of patients with low colistin plasma concentrations (C ss,avg <1.5 mg/L).</p><p><strong>Conclusions: </strong>The proposed equation may help clinicians to better use CMS among a wide variety of patients, to maximize efficacy and prevent nephrotoxicity. A further prospective PK study is warranted to externally validate this algorithm.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"594-602"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-09DOI: 10.1097/FTD.0000000000001213
Kévin Koloskoff, Ritika Panwar, Manish Rathi, Sumith Mathew, Aman Sharma, Pierre Marquet, Sylvain Benito, Jean-Baptiste Woillard, Smita Pattanaik
Background: Mycophenolic acid is widely used to treat lupus nephritis (LN). However, it exhibits complex pharmacokinetics with large interindividual variability. This study aimed to develop a population pharmacokinetic (popPK) model and a 3-sample limited sampling strategy (LSS) to optimize therapeutic drug monitoring in Indian patients with LN.
Methods: Five blood samples from each LN patient treated with mycophenolic acid were collected at steady-state predose and 1, 2, 4, and 6 hours postdose. Demographic parameters were tested as covariates to explain interindividual variability. PopPK analysis was performed using Monolix and the stochastic approximation expectation-maximization algorithm. An LSS was derived from 500 simulated pharmacokinetic (PK) profiles using maximum a posteriori Bayesian estimation to estimate individual PK parameters and area under the curve (AUC). The LSS-calculated AUC was compared with the AUC calculated using the trapezoidal rule and all the simulated samples.
Results: A total of 51 patients were included in this study. Based on the 245 mycophenolic acid concentrations, a 1-compartmental model with double absorption using gamma distributions best fitted the data. None of the covariates improved the model significantly. The model was internally validated using diagnostic plots, prediction-corrected visual predictive checks, and bootstrapping. The best LSS included samples at 1, 2, and 4 hours postdose and exhibited good performances in an external dataset (root mean squared error, 21.9%; mean bias, -4.20%).
Conclusions: The popPK model developed in this study adequately estimated the PK of mycophenolic acid in adult Indian patients with LN. This simple LSS can optimize TDM based on the AUC in routine practice.
{"title":"Population Pharmacokinetics and Limited Sampling Strategy of Mycophenolate Mofetil for Indian Patients With Lupus Nephritis.","authors":"Kévin Koloskoff, Ritika Panwar, Manish Rathi, Sumith Mathew, Aman Sharma, Pierre Marquet, Sylvain Benito, Jean-Baptiste Woillard, Smita Pattanaik","doi":"10.1097/FTD.0000000000001213","DOIUrl":"10.1097/FTD.0000000000001213","url":null,"abstract":"<p><strong>Background: </strong>Mycophenolic acid is widely used to treat lupus nephritis (LN). However, it exhibits complex pharmacokinetics with large interindividual variability. This study aimed to develop a population pharmacokinetic (popPK) model and a 3-sample limited sampling strategy (LSS) to optimize therapeutic drug monitoring in Indian patients with LN.</p><p><strong>Methods: </strong>Five blood samples from each LN patient treated with mycophenolic acid were collected at steady-state predose and 1, 2, 4, and 6 hours postdose. Demographic parameters were tested as covariates to explain interindividual variability. PopPK analysis was performed using Monolix and the stochastic approximation expectation-maximization algorithm. An LSS was derived from 500 simulated pharmacokinetic (PK) profiles using maximum a posteriori Bayesian estimation to estimate individual PK parameters and area under the curve (AUC). The LSS-calculated AUC was compared with the AUC calculated using the trapezoidal rule and all the simulated samples.</p><p><strong>Results: </strong>A total of 51 patients were included in this study. Based on the 245 mycophenolic acid concentrations, a 1-compartmental model with double absorption using gamma distributions best fitted the data. None of the covariates improved the model significantly. The model was internally validated using diagnostic plots, prediction-corrected visual predictive checks, and bootstrapping. The best LSS included samples at 1, 2, and 4 hours postdose and exhibited good performances in an external dataset (root mean squared error, 21.9%; mean bias, -4.20%).</p><p><strong>Conclusions: </strong>The popPK model developed in this study adequately estimated the PK of mycophenolic acid in adult Indian patients with LN. This simple LSS can optimize TDM based on the AUC in routine practice.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"567-574"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The most effective dosing strategy of meropenem for patients undergoing continuous renal replacement therapy (CRRT) remains uncertain. This study aimed to analyze the population pharmacokinetics (popPKs) of unbound meropenem and establish an appropriate dosing approach.
Methods: This prospective study involved 19 patients for the development of a popPK model and an additional 10 for its validation. Ethical approval was obtained.
Results: The clearance of unbound meropenem was influenced by the sequential organ failure assessment (SOFA) score [=2.22 × (SOFA score/12)^1.88] and the effluent flow rate from the CRRT device, with an interindividual variability of 44.5%. The volume of distribution was affected by the simplified acute physiology score II [=23.1 × (simplified acute physiology score II/52)^1.54]. Monte Carlo simulations suggested meropenem doses ranging from 1.0 to 3.0 g/d using continuous infusion to achieve a target time above the 4 times of minimum inhibitory concentration of the unbound form (% f T >4×MIC ) of 100% for definitive therapy. For empirical therapy, a dose of 1.0 g/d using continuous infusion was recommended to target % f T >MIC of 100%.
Conclusions: This study developed a popPK model for unbound meropenem in patients undergoing CRRT and formulated dosing guidelines.
{"title":"Population Pharmacokinetic Modeling of Unbound Meropenem in Patients Undergoing Continuous Renal Replacement Therapy: An Observational Cohort Study.","authors":"Kazutaka Oda, Hirofumi Jono, Hidenobu Kamohara, Hideyuki Saito","doi":"10.1097/FTD.0000000000001222","DOIUrl":"10.1097/FTD.0000000000001222","url":null,"abstract":"<p><strong>Background: </strong>The most effective dosing strategy of meropenem for patients undergoing continuous renal replacement therapy (CRRT) remains uncertain. This study aimed to analyze the population pharmacokinetics (popPKs) of unbound meropenem and establish an appropriate dosing approach.</p><p><strong>Methods: </strong>This prospective study involved 19 patients for the development of a popPK model and an additional 10 for its validation. Ethical approval was obtained.</p><p><strong>Results: </strong>The clearance of unbound meropenem was influenced by the sequential organ failure assessment (SOFA) score [=2.22 × (SOFA score/12)^1.88] and the effluent flow rate from the CRRT device, with an interindividual variability of 44.5%. The volume of distribution was affected by the simplified acute physiology score II [=23.1 × (simplified acute physiology score II/52)^1.54]. Monte Carlo simulations suggested meropenem doses ranging from 1.0 to 3.0 g/d using continuous infusion to achieve a target time above the 4 times of minimum inhibitory concentration of the unbound form (% f T >4×MIC ) of 100% for definitive therapy. For empirical therapy, a dose of 1.0 g/d using continuous infusion was recommended to target % f T >MIC of 100%.</p><p><strong>Conclusions: </strong>This study developed a popPK model for unbound meropenem in patients undergoing CRRT and formulated dosing guidelines.</p><p><strong>Clinical trial registration: </strong>UMIN000024321.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"584-593"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-18DOI: 10.1097/FTD.0000000000001202
Ola Ramadan, Patrick Opitz, Georg Hempel
Background: In neonatal and pediatric intensive care units, Gram -positive infections are a significant cause of morbidity and mortality. The increase in infections caused by methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci have led to the increased use of glycopeptides, which treat invasive infections caused by Gram -positive organisms, particularly those resistant to beta-lactam antibiotics. Teicoplanin has bacteriostatic activity against Gram -positive bacteria, but its pharmacokinetics in children is highly variable, with most children failing to reach target levels at the recommended dose. This study aimed to develop a cost-effective method for determining concentrations using dried blood spot (DBS).
Methods: A method to determine the concentrations of teicoplanin in 20 µL blood or plasma using the Whatman 903 Protein Saver filter was evaluated. High-performance liquid chromatography with ultraviolet detection high-performance liquid chromatography with ultraviolet/vis was used, with internal standard ketoconazole. In addition, a method to quantify teicoplanin using 50 µL of liquid plasma was established to compare the results with the values obtained by DBS and dried plasma methods.
Results: The method was successfully developed and validated for 20 µL DBS. Furthermore, 50 µL of plasma was used to quantify teicoplanin with a lower limit of quantification of 10 mg/L. Precision and accuracy ranged from 2.3% to 10.7% and 95%-114.2%, respectively. A consistent factor (1.15) was used to calculate teicoplanin plasma concentrations from whole blood, indicating the reliability of the DBS method for therapeutic drug monitoring of teicoplanin.
Conclusions: A simple, reliable, and cost-effective method using high-performance liquid chromatography with ultraviolet/vis was established to determine pediatric teicoplanin concentrations in both small plasma sample volumes and whole blood using DBS, and an accurate correlation factor for estimating teicoplanin plasma concentrations from DBS was identified. This method is suitable for the use in pediatrics.
{"title":"Development and Validation of a High-Performance Liquid Chromatography With Ultraviolet Detection Method to Facilitate Therapeutic Monitoring of Teicoplanin Using Dried Blood Spots.","authors":"Ola Ramadan, Patrick Opitz, Georg Hempel","doi":"10.1097/FTD.0000000000001202","DOIUrl":"10.1097/FTD.0000000000001202","url":null,"abstract":"<p><strong>Background: </strong>In neonatal and pediatric intensive care units, Gram -positive infections are a significant cause of morbidity and mortality. The increase in infections caused by methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci have led to the increased use of glycopeptides, which treat invasive infections caused by Gram -positive organisms, particularly those resistant to beta-lactam antibiotics. Teicoplanin has bacteriostatic activity against Gram -positive bacteria, but its pharmacokinetics in children is highly variable, with most children failing to reach target levels at the recommended dose. This study aimed to develop a cost-effective method for determining concentrations using dried blood spot (DBS).</p><p><strong>Methods: </strong>A method to determine the concentrations of teicoplanin in 20 µL blood or plasma using the Whatman 903 Protein Saver filter was evaluated. High-performance liquid chromatography with ultraviolet detection high-performance liquid chromatography with ultraviolet/vis was used, with internal standard ketoconazole. In addition, a method to quantify teicoplanin using 50 µL of liquid plasma was established to compare the results with the values obtained by DBS and dried plasma methods.</p><p><strong>Results: </strong>The method was successfully developed and validated for 20 µL DBS. Furthermore, 50 µL of plasma was used to quantify teicoplanin with a lower limit of quantification of 10 mg/L. Precision and accuracy ranged from 2.3% to 10.7% and 95%-114.2%, respectively. A consistent factor (1.15) was used to calculate teicoplanin plasma concentrations from whole blood, indicating the reliability of the DBS method for therapeutic drug monitoring of teicoplanin.</p><p><strong>Conclusions: </strong>A simple, reliable, and cost-effective method using high-performance liquid chromatography with ultraviolet/vis was established to determine pediatric teicoplanin concentrations in both small plasma sample volumes and whole blood using DBS, and an accurate correlation factor for estimating teicoplanin plasma concentrations from DBS was identified. This method is suitable for the use in pediatrics.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"627-633"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-23DOI: 10.1097/FTD.0000000000001224
Thomas K Henthorn, George S Wang, Greg Dooley, Ashley Brooks-Russell, Julia Wrobel, Sarah Limbacher, Michael Kosnett
Background: Unusually high variability in blood Δ9-tetrahydrocannabinol (THC) concentrations have been observed in subjects inhaling similar cannabis products over similar time periods when consumption is ad libitum. This makes simple gravimetric dose estimation a poor predictor of THC exposure. Population pharmacokinetic analyses of blood THC concentration versus time data are routinely used to estimate pharmacokinetic parameters. The aim of this study was to estimate the inhaled dose of THC in occasional and daily users of high potency market cannabis.
Methods: Blood THC concentrations were measured for 135 minutes from 29 participants who either smoked high concentration flower or inhaled concentrates ad libitum during a 15-minute session. Frequent blood samples were obtained over the following 135 minutes.
Results: The estimated central and rapidly equilibrating volumes of distribution of a 3-compartment model were 19.9 ± 1.2 and 51.6 ± 4.7 L whereas the intercompartmental clearances were 1.65 ± 0.14 and 1.75 ± 0.10 L/min, respectively. Covariate-adjusted analysis revealed that the estimated inhaled THC dose was considerably less among occasional users compared with daily users.
Conclusions: Three-compartment pharmacokinetics of THC did not differ among the 3 user groups, and the early phase (first 135 minutes postinception of inhalation) kinetics were similar to those previously described after smoking low potency cannabis products. Therefore, inhaled THC dose can be estimated from pharmacokinetic data and covariate-driven adjustments can be used to estimate THC doses, based on the participant cannabis usage pattern (occasional versus daily), improving the accuracy of THC exposure estimates compared with those derived from weighed THC content alone.
{"title":"Dose Estimation Utility in a Population Pharmacokinetic Analysis of Inhaled Δ9-Tetrahydrocannabinol Cannabis Market Products in Occasional and Daily Users.","authors":"Thomas K Henthorn, George S Wang, Greg Dooley, Ashley Brooks-Russell, Julia Wrobel, Sarah Limbacher, Michael Kosnett","doi":"10.1097/FTD.0000000000001224","DOIUrl":"10.1097/FTD.0000000000001224","url":null,"abstract":"<p><strong>Background: </strong>Unusually high variability in blood Δ9-tetrahydrocannabinol (THC) concentrations have been observed in subjects inhaling similar cannabis products over similar time periods when consumption is ad libitum. This makes simple gravimetric dose estimation a poor predictor of THC exposure. Population pharmacokinetic analyses of blood THC concentration versus time data are routinely used to estimate pharmacokinetic parameters. The aim of this study was to estimate the inhaled dose of THC in occasional and daily users of high potency market cannabis.</p><p><strong>Methods: </strong>Blood THC concentrations were measured for 135 minutes from 29 participants who either smoked high concentration flower or inhaled concentrates ad libitum during a 15-minute session. Frequent blood samples were obtained over the following 135 minutes.</p><p><strong>Results: </strong>The estimated central and rapidly equilibrating volumes of distribution of a 3-compartment model were 19.9 ± 1.2 and 51.6 ± 4.7 L whereas the intercompartmental clearances were 1.65 ± 0.14 and 1.75 ± 0.10 L/min, respectively. Covariate-adjusted analysis revealed that the estimated inhaled THC dose was considerably less among occasional users compared with daily users.</p><p><strong>Conclusions: </strong>Three-compartment pharmacokinetics of THC did not differ among the 3 user groups, and the early phase (first 135 minutes postinception of inhalation) kinetics were similar to those previously described after smoking low potency cannabis products. Therefore, inhaled THC dose can be estimated from pharmacokinetic data and covariate-driven adjustments can be used to estimate THC doses, based on the participant cannabis usage pattern (occasional versus daily), improving the accuracy of THC exposure estimates compared with those derived from weighed THC content alone.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"672-680"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-28DOI: 10.1097/FTD.0000000000001181
Manon Launay, Sophie Perinel-Ragey, Guillaume Thiery
{"title":"Continuous Versus Intermittent Administration of Meropenem in Critically Ill Patients.","authors":"Manon Launay, Sophie Perinel-Ragey, Guillaume Thiery","doi":"10.1097/FTD.0000000000001181","DOIUrl":"10.1097/FTD.0000000000001181","url":null,"abstract":"","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":"692-693"},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1097/FTD.0000000000001262
Guillaume Drevin, Marie Briet, Chadi Abbara
{"title":"Implementing Pharmacogenetic Testing as a Risk Reduction Strategy for Drug Users: A Letter to the Editor.","authors":"Guillaume Drevin, Marie Briet, Chadi Abbara","doi":"10.1097/FTD.0000000000001262","DOIUrl":"https://doi.org/10.1097/FTD.0000000000001262","url":null,"abstract":"","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1097/FTD.0000000000001250
Satohiro Masuda, Florian Lemaitre, Markus J Barten, Stein Bergan, Maria Shipkova, Teun van Gelder, Sander Vinks, Eberhard Wieland, Kirsten Bornemann-Kolatzki, Mercè Brunet, Brenda de Winter, Maja-Theresa Dieterlen, Laure Elens, Taihei Ito, Kamisha Johnson-Davis, Pawel K Kunicki, Roland Lawson, Nuria Lloberas, Pierre Marquet, Olga Millan, Tomoyuki Mizuno, Dirk Jan A R Moes, Ofelia Noceti, Michael Oellerich, Smita Pattanaik, Tomasz Pawinski, Christoph Seger, Ron van Schaik, Raman Venkataramanan, Phil Walson, Jean-Baptiste Woillard, Loralie J Langman
Abstract: The Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology established the second consensus report to guide Therapeutic Drug Monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice 7 years after the first version was published in 2016. This version provides information focused on new developments that have arisen in the last 7 years. For the general aspects of the pharmacology and TDM of EVR that have retained their relevance, readers can refer to the 2016 document. This edition includes new evidence from the literature, focusing on the topics updated during the last 7 years, including indirect pharmacological effects of EVR on the mammalian target of rapamycin complex 2 with the major mechanism of direct inhibition of the mammalian target of rapamycin complex 1. In addition, various concepts and technical options to monitor EVR concentrations, improve analytical performance, and increase the number of options available for immunochemical analytical methods have been included. Only limited new pharmacogenetic information regarding EVR has emerged; however, pharmacometrics and model-informed precision dosing have been constructed using physiological parameters as covariates, including pharmacogenetic information. In clinical settings, EVR is combined with a decreased dose of calcineurin inhibitors, such as tacrolimus and cyclosporine, instead of mycophenolic acid. The literature and recommendations for specific organ transplantations, such as that of the kidneys, liver, heart, and lungs, as well as for oncology and pediatrics have been updated. EVR TDM for pancreatic and islet transplantation has been added to this edition. The pharmacodynamic monitoring of EVR in organ transplantation has also been updated. These updates and additions, along with the previous version of this consensus document, will be helpful to clinicians and researchers treating patients receiving EVR.
{"title":"Everolimus Personalized Therapy: Second Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology.","authors":"Satohiro Masuda, Florian Lemaitre, Markus J Barten, Stein Bergan, Maria Shipkova, Teun van Gelder, Sander Vinks, Eberhard Wieland, Kirsten Bornemann-Kolatzki, Mercè Brunet, Brenda de Winter, Maja-Theresa Dieterlen, Laure Elens, Taihei Ito, Kamisha Johnson-Davis, Pawel K Kunicki, Roland Lawson, Nuria Lloberas, Pierre Marquet, Olga Millan, Tomoyuki Mizuno, Dirk Jan A R Moes, Ofelia Noceti, Michael Oellerich, Smita Pattanaik, Tomasz Pawinski, Christoph Seger, Ron van Schaik, Raman Venkataramanan, Phil Walson, Jean-Baptiste Woillard, Loralie J Langman","doi":"10.1097/FTD.0000000000001250","DOIUrl":"https://doi.org/10.1097/FTD.0000000000001250","url":null,"abstract":"<p><strong>Abstract: </strong>The Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology established the second consensus report to guide Therapeutic Drug Monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice 7 years after the first version was published in 2016. This version provides information focused on new developments that have arisen in the last 7 years. For the general aspects of the pharmacology and TDM of EVR that have retained their relevance, readers can refer to the 2016 document. This edition includes new evidence from the literature, focusing on the topics updated during the last 7 years, including indirect pharmacological effects of EVR on the mammalian target of rapamycin complex 2 with the major mechanism of direct inhibition of the mammalian target of rapamycin complex 1. In addition, various concepts and technical options to monitor EVR concentrations, improve analytical performance, and increase the number of options available for immunochemical analytical methods have been included. Only limited new pharmacogenetic information regarding EVR has emerged; however, pharmacometrics and model-informed precision dosing have been constructed using physiological parameters as covariates, including pharmacogenetic information. In clinical settings, EVR is combined with a decreased dose of calcineurin inhibitors, such as tacrolimus and cyclosporine, instead of mycophenolic acid. The literature and recommendations for specific organ transplantations, such as that of the kidneys, liver, heart, and lungs, as well as for oncology and pediatrics have been updated. EVR TDM for pancreatic and islet transplantation has been added to this edition. The pharmacodynamic monitoring of EVR in organ transplantation has also been updated. These updates and additions, along with the previous version of this consensus document, will be helpful to clinicians and researchers treating patients receiving EVR.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1097/FTD.0000000000001253
Benedict Morath, Linda Schultes, Otto Roman Frey, Anka Christa Röhr, Hannes Christow, Torsten Hoppe-Tichy, Alexander Brinkmann, Ute Chiriac
Background: Ampicillin/sulbactam, a combination of a β-lactam and β-lactamase inhibitor, is widely used in clinical settings. However, therapeutic drug monitoring (TDM) of ampicillin is not commonly performed, particularly in intensive care units (ICUs). The purpose of this study was to develop and validate a rapid and cost-effective high-performance liquid chromatography (HPLC)-ultraviolet spectrometry method to quantify ampicillin in human serum and evaluate its clinical application in ICU patients.
Methods: Sample cleanup included a protein precipitation protocol, followed by chromatographic separation on a C18 reverse-phase HPLC column within 12.5 minutes using gradient elution of the mobile phase. The assay was validated according to the German Society of Toxicology and Forensic Chemistry criteria. Clinical applications involved the retrospective analysis of TDM data from ICU patients receiving continuous infusion of ampicillin/sulbactam, including the attainment of target ranges and individual predicted and observed pharmacokinetics.
Results: The method was robust, with linear relations between the peak area responses and drug concentrations in the range of 2-128 mg/L. The coefficient of variation for precision and the bias for accuracy (both interday and intraday) were less than 10%. Clinical application revealed variable pharmacokinetics of ampicillin in ICU patients (clearance of 0.5-31.2 L/h). TDM-guided dose adjustments achieved good therapeutic drug exposure, with 92.9% of the samples being within the optimal (16-32 mg/L) or quasioptimal (8-48 mg/L) range.
Conclusions: This method provides a practical solution for the routine TDM of ampicillin, facilitating individualized dosing strategies to ensure adequate therapeutic drug exposure. Given its simplicity, cost-effectiveness, and clinical relevance, HPLC-ultraviolet spectrometry holds promise for broad implementation in hospital pharmacies and clinical laboratories.
{"title":"Development and Validation of a High-Performance Liquid Chromatography-Ultraviolet Spectrometry Method for Ampicillin and its Application in Routine Therapeutic Drug Monitoring of Intensive Care Patients.","authors":"Benedict Morath, Linda Schultes, Otto Roman Frey, Anka Christa Röhr, Hannes Christow, Torsten Hoppe-Tichy, Alexander Brinkmann, Ute Chiriac","doi":"10.1097/FTD.0000000000001253","DOIUrl":"https://doi.org/10.1097/FTD.0000000000001253","url":null,"abstract":"<p><strong>Background: </strong>Ampicillin/sulbactam, a combination of a β-lactam and β-lactamase inhibitor, is widely used in clinical settings. However, therapeutic drug monitoring (TDM) of ampicillin is not commonly performed, particularly in intensive care units (ICUs). The purpose of this study was to develop and validate a rapid and cost-effective high-performance liquid chromatography (HPLC)-ultraviolet spectrometry method to quantify ampicillin in human serum and evaluate its clinical application in ICU patients.</p><p><strong>Methods: </strong>Sample cleanup included a protein precipitation protocol, followed by chromatographic separation on a C18 reverse-phase HPLC column within 12.5 minutes using gradient elution of the mobile phase. The assay was validated according to the German Society of Toxicology and Forensic Chemistry criteria. Clinical applications involved the retrospective analysis of TDM data from ICU patients receiving continuous infusion of ampicillin/sulbactam, including the attainment of target ranges and individual predicted and observed pharmacokinetics.</p><p><strong>Results: </strong>The method was robust, with linear relations between the peak area responses and drug concentrations in the range of 2-128 mg/L. The coefficient of variation for precision and the bias for accuracy (both interday and intraday) were less than 10%. Clinical application revealed variable pharmacokinetics of ampicillin in ICU patients (clearance of 0.5-31.2 L/h). TDM-guided dose adjustments achieved good therapeutic drug exposure, with 92.9% of the samples being within the optimal (16-32 mg/L) or quasioptimal (8-48 mg/L) range.</p><p><strong>Conclusions: </strong>This method provides a practical solution for the routine TDM of ampicillin, facilitating individualized dosing strategies to ensure adequate therapeutic drug exposure. Given its simplicity, cost-effectiveness, and clinical relevance, HPLC-ultraviolet spectrometry holds promise for broad implementation in hospital pharmacies and clinical laboratories.</p>","PeriodicalId":23052,"journal":{"name":"Therapeutic Drug Monitoring","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}