Basit Ali Chaudhry, Christopher L Robinson, Edoardo Caronna, Freda Dodd-Glover, Amrittej Singh Virk, Mario Fernando Prieto Peres, Hope L O'Brien, Marcela Romero-Reyes, Sait Ashina
Temporomandibular disorders (TMDs) are common musculoskeletal chronic orofacial pain conditions involving peripheral and central sensitization within trigeminal nociceptive pathways, manifesting as mechanical allodynia and functional impairment. Botulinum toxin type A (BoNT-A) has been explored as a treatment targeting both muscle hyperactivity and nociceptive modulation. Preclinical and clinical evidence demonstrate that BoNT-A reduces peripheral neurotransmitter release, neurogenic inflammation, and central neuronal excitability, leading to attenuation of mechanical allodynia in TMD models and patients. Clinical trials show modest and variable analgesic effects, with patients displaying sensory sensitization appearing to respond more favorably, though methodological heterogeneity limits definitive conclusions. Safety concerns related to muscle weakening, changes in bone density, and structural changes underscore the need for standardized protocols optimizing dosing and monitoring, in addition to prospective studies. These findings suggest that BoNT-A may serve as an adjunctive, mechanism-based therapy within multimodal TMD management. Future research should focus on standardized sensory phenotyping and trial design to clarify BoNT-A's role in modulating central sensitization and improving patient outcomes.
{"title":"Central and Peripheral Sensitization in Temporomandibular Disorders: Proposed Mechanisms of Botulinum Toxin Therapy.","authors":"Basit Ali Chaudhry, Christopher L Robinson, Edoardo Caronna, Freda Dodd-Glover, Amrittej Singh Virk, Mario Fernando Prieto Peres, Hope L O'Brien, Marcela Romero-Reyes, Sait Ashina","doi":"10.3390/toxins18010028","DOIUrl":"10.3390/toxins18010028","url":null,"abstract":"<p><p>Temporomandibular disorders (TMDs) are common musculoskeletal chronic orofacial pain conditions involving peripheral and central sensitization within trigeminal nociceptive pathways, manifesting as mechanical allodynia and functional impairment. Botulinum toxin type A (BoNT-A) has been explored as a treatment targeting both muscle hyperactivity and nociceptive modulation. Preclinical and clinical evidence demonstrate that BoNT-A reduces peripheral neurotransmitter release, neurogenic inflammation, and central neuronal excitability, leading to attenuation of mechanical allodynia in TMD models and patients. Clinical trials show modest and variable analgesic effects, with patients displaying sensory sensitization appearing to respond more favorably, though methodological heterogeneity limits definitive conclusions. Safety concerns related to muscle weakening, changes in bone density, and structural changes underscore the need for standardized protocols optimizing dosing and monitoring, in addition to prospective studies. These findings suggest that BoNT-A may serve as an adjunctive, mechanism-based therapy within multimodal TMD management. Future research should focus on standardized sensory phenotyping and trial design to clarify BoNT-A's role in modulating central sensitization and improving patient outcomes.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12846309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Repeat-in-toxin (RTX) toxins are calcium-dependent exoproteins secreted by diverse Gram-negative bacteria and play central roles in cytotoxicity, immune modulation, and tissue colonization. While their structure and secretion mechanisms are well-characterized, the regulation of RTX toxin expression remains complex and species-specific. This review provides a comprehensive overview of the regulatory networks governing RTX gene expression, highlighting both conserved mechanisms and niche-specific adaptations. RTX genes are controlled by multilayered regulatory systems that integrate global transcriptional control, metabolic regulation, and environmental sensing. Expression is further shaped by host-derived signals, physical contact with host cells, and population-dependent cues. Quorum sensing, post-transcriptional regulation by small RNAs, and post-translational activation mechanisms contribute additional layers of control to ensure precise regulation of toxin production. We also explore how RTX regulation varies across anatomical niches, including the gut, lung, bloodstream, and biofilms, and how it is co-regulated with broader bacterial virulence. Finally, we discuss emerging insights from omics-based approaches and the potential of anti-virulence strategies targeting RTX regulatory pathways. Together, these topics underscore RTX regulation as a model for adaptive virulence control in bacterial pathogens.
{"title":"Environmental and Regulatory Control of RTX Toxins in Gram-Negative Pathogens.","authors":"Hossein Jamali, Tylor Pereira, Charles M Dozois","doi":"10.3390/toxins18010027","DOIUrl":"10.3390/toxins18010027","url":null,"abstract":"<p><p>Repeat-in-toxin (RTX) toxins are calcium-dependent exoproteins secreted by diverse Gram-negative bacteria and play central roles in cytotoxicity, immune modulation, and tissue colonization. While their structure and secretion mechanisms are well-characterized, the regulation of RTX toxin expression remains complex and species-specific. This review provides a comprehensive overview of the regulatory networks governing RTX gene expression, highlighting both conserved mechanisms and niche-specific adaptations. RTX genes are controlled by multilayered regulatory systems that integrate global transcriptional control, metabolic regulation, and environmental sensing. Expression is further shaped by host-derived signals, physical contact with host cells, and population-dependent cues. Quorum sensing, post-transcriptional regulation by small RNAs, and post-translational activation mechanisms contribute additional layers of control to ensure precise regulation of toxin production. We also explore how RTX regulation varies across anatomical niches, including the gut, lung, bloodstream, and biofilms, and how it is co-regulated with broader bacterial virulence. Finally, we discuss emerging insights from omics-based approaches and the potential of anti-virulence strategies targeting RTX regulatory pathways. Together, these topics underscore RTX regulation as a model for adaptive virulence control in bacterial pathogens.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12846084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Buhari Lawan Muhammad, Han-Sol Kim, Ibrahim Aliyu, Harisu Abdullahi Shehu, Jang-Seu Ki
Saxitoxin (STX) is one of the most potent marine neurotoxins, produced by several species of freshwater cyanobacteria and marine dinoflagellates. Although omics-based approaches have advanced our understanding of STX biosynthesis in recent decades, the origin, regulation, and ecological drivers of STX in dinoflagellates remain poorly resolved. Specifically, dinoflagellate STX biosynthetic genes (sxt) are extremely fragmented, inconsistently expressed, and unevenly distributed between toxic and non-toxic taxa. Environmental studies further report inconsistent relationships between abiotic factors and STX production, suggesting regulation across multiple genomic, transcriptional, post-transcriptional, and epigenetic levels. These gaps prevent a comprehensive understanding of STX biosynthesis in dinoflagellates and limit the development of accurate predictive models for harmful algal blooms (HABs) and paralytic shellfish poisoning (PSP). Artificial intelligence (AI), including machine learning and deep learning, offers new opportunities in ecological pattern recognition, molecular annotation, and data-driven prediction. This review explores the current state of knowledge and persistent knowledge gaps in dinoflagellate STX research and proposes an AI-integrated multi-omics framework highlighting recommended models for sxt gene identification (e.g., DeepFRI, ProtTrans, ESM-2), evolutionary reconstruction (e.g., PhyloGAN, GNN, PhyloVAE, NeuralNJ), molecular regulation (e.g., MOFA+, LSTM, GRU, DeepMF), and toxin prediction (e.g., XGBoost, LightGBM, LSTM, ConvLSTM). By integrating AI with diverse biological datasets, this novel framework outlines how AI can advance fundamental understanding of STX biosynthesis and inform future applications in HAB monitoring, seafood safety, and PSP risk management in aquaculture and fisheries.
{"title":"Artificial Intelligence (AI) in Saxitoxin Research: The Next Frontier for Understanding Marine Dinoflagellate Toxin Biosynthesis and Evolution.","authors":"Buhari Lawan Muhammad, Han-Sol Kim, Ibrahim Aliyu, Harisu Abdullahi Shehu, Jang-Seu Ki","doi":"10.3390/toxins18010026","DOIUrl":"10.3390/toxins18010026","url":null,"abstract":"<p><p>Saxitoxin (STX) is one of the most potent marine neurotoxins, produced by several species of freshwater cyanobacteria and marine dinoflagellates. Although omics-based approaches have advanced our understanding of STX biosynthesis in recent decades, the origin, regulation, and ecological drivers of STX in dinoflagellates remain poorly resolved. Specifically, dinoflagellate STX biosynthetic genes (<i>sxt</i>) are extremely fragmented, inconsistently expressed, and unevenly distributed between toxic and non-toxic taxa. Environmental studies further report inconsistent relationships between abiotic factors and STX production, suggesting regulation across multiple genomic, transcriptional, post-transcriptional, and epigenetic levels. These gaps prevent a comprehensive understanding of STX biosynthesis in dinoflagellates and limit the development of accurate predictive models for harmful algal blooms (HABs) and paralytic shellfish poisoning (PSP). Artificial intelligence (AI), including machine learning and deep learning, offers new opportunities in ecological pattern recognition, molecular annotation, and data-driven prediction. This review explores the current state of knowledge and persistent knowledge gaps in dinoflagellate STX research and proposes an AI-integrated multi-omics framework highlighting recommended models for <i>sxt</i> gene identification (e.g., DeepFRI, ProtTrans, ESM-2), evolutionary reconstruction (e.g., PhyloGAN, GNN, PhyloVAE, NeuralNJ), molecular regulation (e.g., MOFA+, LSTM, GRU, DeepMF), and toxin prediction (e.g., XGBoost, LightGBM, LSTM, ConvLSTM). By integrating AI with diverse biological datasets, this novel framework outlines how AI can advance fundamental understanding of STX biosynthesis and inform future applications in HAB monitoring, seafood safety, and PSP risk management in aquaculture and fisheries.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12846081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun Huang, Peter Muiruri Kamau, Jiamin Wang, Mingyue Gao, Bowen Li
Venom is a key evolutionary innovation of venomous organisms in the long-term process of survival adaptation. As one of the oldest arthropods, scorpions produce venom rich in bioactive peptides that also constitute a valuable pharmacological resource. Omics-driven discovery and structural biology have expanded the peptide catalog and clarified structure-function principles across disulfide-bridged (DBPs) and non-disulfide-bridged peptides (NDBPs). Within this arsenal, ion-channel targeting neurotoxins predominantly modulate Nav, Kv, Calcium, Chloride, and TRP channels to achieve predation, defense, and competition. Owing to their unique mechanisms of action and significant therapeutic potential, scorpion venom peptides have attracted sustained interest as leads and scaffolds for drug development. This review synthesizes current knowledge of scorpion venom composition, with an emphasis on the pivotal role of neurotoxins, covering their molecular diversity, structural features, and modes of ion-channel modulation, as well as emerging applications in disease treatment.
{"title":"Scorpion Venom Neurotoxins: Molecular Diversity, Mechanisms, and Drug Scaffolds.","authors":"Yun Huang, Peter Muiruri Kamau, Jiamin Wang, Mingyue Gao, Bowen Li","doi":"10.3390/toxins18010025","DOIUrl":"10.3390/toxins18010025","url":null,"abstract":"<p><p>Venom is a key evolutionary innovation of venomous organisms in the long-term process of survival adaptation. As one of the oldest arthropods, scorpions produce venom rich in bioactive peptides that also constitute a valuable pharmacological resource. Omics-driven discovery and structural biology have expanded the peptide catalog and clarified structure-function principles across disulfide-bridged (DBPs) and non-disulfide-bridged peptides (NDBPs). Within this arsenal, ion-channel targeting neurotoxins predominantly modulate Nav, Kv, Calcium, Chloride, and TRP channels to achieve predation, defense, and competition. Owing to their unique mechanisms of action and significant therapeutic potential, scorpion venom peptides have attracted sustained interest as leads and scaffolds for drug development. This review synthesizes current knowledge of scorpion venom composition, with an emphasis on the pivotal role of neurotoxins, covering their molecular diversity, structural features, and modes of ion-channel modulation, as well as emerging applications in disease treatment.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12846725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyanobacterial blooms are an escalating ecological concern driven by eutrophication and climate warming. Bloom-forming cyanobacteria can produce a broad spectrum of bioactive secondary metabolites. Among these, microcystins (MCs) are the most recognised hepatotoxins; however, natural populations of Planktothrix agardhii also synthesise numerous non-ribosomal peptides (NRPs) with poorly understood ecological roles and combined toxic effects. This review demonstrated the role of mixtures of P. agardhii cyanometabolites (oligopeptides and biogenic compounds) in cyanobacterial proliferation, emphasising the rapid evolution of chemotypes. The role of P. agardhii oligopeptides other than MCs in the cyanobacterial toxicity to duckweeds is also discussed. Laboratory experiments indicated that crude extracts containing complex peptide mixtures may inhibit Spirodela polyrhiza growth more strongly than pure MC-LR, suggesting synergistic effects within natural metabolite assemblages. Particular attention is given to variant-specific degradation pathways of MCs within duckweed-associated microbiota. By integrating biochemical, ecological, and microbiological perspectives, this synthesis outlines emerging directions in the study of mixtures of cyanobacterial peptides and other compounds, microbial degraders, and macrophyte-associated bioremediation strategies aimed at mitigating cyanotoxin risks in aquatic environments.
{"title":"Ecotoxicology of <i>Planktothrix agardhii</i> Cyanometabolites and Pure Microcystins: Selected Aspects of Interactions, Toxicity, and Biodegradation.","authors":"Magdalena Toporowska","doi":"10.3390/toxins18010024","DOIUrl":"10.3390/toxins18010024","url":null,"abstract":"<p><p>Cyanobacterial blooms are an escalating ecological concern driven by eutrophication and climate warming. Bloom-forming cyanobacteria can produce a broad spectrum of bioactive secondary metabolites. Among these, microcystins (MCs) are the most recognised hepatotoxins; however, natural populations of <i>Planktothrix agardhii</i> also synthesise numerous non-ribosomal peptides (NRPs) with poorly understood ecological roles and combined toxic effects. This review demonstrated the role of mixtures of <i>P. agardhii</i> cyanometabolites (oligopeptides and biogenic compounds) in cyanobacterial proliferation, emphasising the rapid evolution of chemotypes. The role of <i>P. agardhii</i> oligopeptides other than MCs in the cyanobacterial toxicity to duckweeds is also discussed. Laboratory experiments indicated that crude extracts containing complex peptide mixtures may inhibit <i>Spirodela polyrhiza</i> growth more strongly than pure MC-LR, suggesting synergistic effects within natural metabolite assemblages. Particular attention is given to variant-specific degradation pathways of MCs within duckweed-associated microbiota. By integrating biochemical, ecological, and microbiological perspectives, this synthesis outlines emerging directions in the study of mixtures of cyanobacterial peptides and other compounds, microbial degraders, and macrophyte-associated bioremediation strategies aimed at mitigating cyanotoxin risks in aquatic environments.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artur Drużdż, Edyta Leśniewska-Furs, Małgorzata Dudzic, Anna Sowińska, Szymon Jurga, Wolfgang H Jost
While distinguishing between collis and caput patterns in cervical dystonia (CD) has clear clinical and therapeutic relevance, the effects of botulinum toxin type A (BoNT-A) on segmental spinal excitability and inhibitory function in caput-pattern CD have not been previously investigated. This study aimed to advance understanding of the effects of BoNT-A and its broader neurophysiological impact in cervical dystonia, particularly in the caput subtype. The study utilised non-invasive neurophysiological methods to assess F-wave and cutaneous silent period (CSP or CuSP) parameters in 21 CD patients with caput motor patterns at waning and peak response phases of BoNT-A therapy. Significant prolongation of Fmin latency, increased F-M interlatency, reduced F-wave amplitude, and a marked increase in CSP duration and onset latencies were observed following BoNT-A administration, indicating that BoNT-A not only reduces spinal motoneuron excitability and strengthens spinal inhibitory processes, but also highlights its capacity to modulate central sensorimotor pathways beyond local chemodenervation. Together, the observed changes in CSP support its use as a potential biomarker for nervous system effects of BoNT-A in dystonia; however, further validation in controlled studies is warranted.
{"title":"Neurophysiological Assessment of F-Wave, M-Wave, and Cutaneous Silent Period in Patients with Caput-Pattern Cervical Dystonia at Waning and Peak Response Phases of Botulinum Toxin Therapy.","authors":"Artur Drużdż, Edyta Leśniewska-Furs, Małgorzata Dudzic, Anna Sowińska, Szymon Jurga, Wolfgang H Jost","doi":"10.3390/toxins18010021","DOIUrl":"10.3390/toxins18010021","url":null,"abstract":"<p><p>While distinguishing between collis and caput patterns in cervical dystonia (CD) has clear clinical and therapeutic relevance, the effects of botulinum toxin type A (BoNT-A) on segmental spinal excitability and inhibitory function in caput-pattern CD have not been previously investigated. This study aimed to advance understanding of the effects of BoNT-A and its broader neurophysiological impact in cervical dystonia, particularly in the caput subtype. The study utilised non-invasive neurophysiological methods to assess F-wave and cutaneous silent period (CSP or CuSP) parameters in 21 CD patients with caput motor patterns at waning and peak response phases of BoNT-A therapy. Significant prolongation of Fmin latency, increased F-M interlatency, reduced F-wave amplitude, and a marked increase in CSP duration and onset latencies were observed following BoNT-A administration, indicating that BoNT-A not only reduces spinal motoneuron excitability and strengthens spinal inhibitory processes, but also highlights its capacity to modulate central sensorimotor pathways beyond local chemodenervation. Together, the observed changes in CSP support its use as a potential biomarker for nervous system effects of BoNT-A in dystonia; however, further validation in controlled studies is warranted.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12846338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farzana Ehetasum Hossain, Apoorva Dabholkar, Jessica M Lohmar, Matthew D Lebar, Brian M Mack, Ana M Calvo
Aspergillus flavus colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, osaA, in A. flavus. Our results revealed that osaA regulates conidiation and sclerotial formation. Importantly, deletion of osaA reduces aflatoxin B1 production, while, unexpectedly, transcriptome analysis indicated upregulation of aflatoxin biosynthetic genes, suggesting post-transcriptional or cofactor-mediated regulation. Cyclopiazonic acid production also decreased in the absence of osaA. In addition, the osaA mutant exhibited upregulation of genes in the imizoquin and aspirochlorine clusters. Moreover, osaA is indispensable for normal seed colonization; deletion of osaA significantly reduced fungal burden in corn kernels. Aflatoxin content in seeds also decreased in the absence of osaA. Furthermore, deletion of osaA caused a reduction in cell-wall chitin content, as well as alterations in oxidative stress sensitivity, which could in part contribute to the observed reduction in pathogenicity. Additionally, promoter analysis of osaA-dependent genes indicated potential interactions with stress-responsive regulators, indicated by an enrichment in Sko1 and Cst6 binding motifs. Understanding the osaA regulatory scope provides insight into fungal biology and identifies potential targets for controlling aflatoxin contamination and pathogenicity.
{"title":"Role of the <i>osaA</i> Transcription Factor Gene in Development, Secondary Metabolism and Virulence in the Mycotoxigenic Fungus <i>Aspergillus flavus</i>.","authors":"Farzana Ehetasum Hossain, Apoorva Dabholkar, Jessica M Lohmar, Matthew D Lebar, Brian M Mack, Ana M Calvo","doi":"10.3390/toxins18010023","DOIUrl":"10.3390/toxins18010023","url":null,"abstract":"<p><p><i>Aspergillus flavus</i> colonizes oil-seed crops, contaminating them with aflatoxins; highly carcinogenic mycotoxins that cause severe health and economic losses. Genetic studies may reveal new targets for effective control strategies. Here, we characterized a putative WOPR transcription factor gene, <i>osaA</i>, in <i>A. flavus</i>. Our results revealed that <i>osaA</i> regulates conidiation and sclerotial formation. Importantly, deletion of <i>osaA</i> reduces aflatoxin B<sub>1</sub> production, while, unexpectedly, transcriptome analysis indicated upregulation of aflatoxin biosynthetic genes, suggesting post-transcriptional or cofactor-mediated regulation. Cyclopiazonic acid production also decreased in the absence of <i>osaA</i>. In addition, the <i>osaA</i> mutant exhibited upregulation of genes in the imizoquin and aspirochlorine clusters. Moreover, <i>osaA</i> is indispensable for normal seed colonization; deletion of <i>osaA</i> significantly reduced fungal burden in corn kernels. Aflatoxin content in seeds also decreased in the absence of <i>osaA</i>. Furthermore, deletion of <i>osaA</i> caused a reduction in cell-wall chitin content, as well as alterations in oxidative stress sensitivity, which could in part contribute to the observed reduction in pathogenicity. Additionally, promoter analysis of <i>osaA</i>-dependent genes indicated potential interactions with stress-responsive regulators, indicated by an enrichment in Sko1 and Cst6 binding motifs. Understanding the <i>osaA</i> regulatory scope provides insight into fungal biology and identifies potential targets for controlling aflatoxin contamination and pathogenicity.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845751/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluated 65 commercially available pet feed samples, including 33 cat feeds and 32 dog feeds (dry and wet formulations), for the presence of organic contaminants. These included mycotoxins, pesticides, pharmaceutical residues/veterinary drugs, and plant-based bioactive compounds. A suspect screening strategy was employed using QuEChERS extraction followed by LC-LTQ/Orbitrap HRMS analysis. A total of 29 compounds were tentatively identified within 186 detections. In total, 76.9% of the samples were contaminated with mycotoxins. Aflatoxins (B1, B2, G1, and G2), T2 toxins, and HT2 toxins were dominant, with Aflatoxin B1 occurring in 33.8% of the samples and exhibiting a higher prevalence in dry feeds than in wet feeds. Pesticides were present in 72.0% of the dry formulations, including aclonifen and pirimiphos-methyl, but were present in only 11% of the wet formulations. Plant-based bioactive compounds, including phytoestrogens, were identified in 51% of the samples, highlighting toxicologically relevant candidates that merit prioritization for targeted confirmation, particularly in cat feeds. Pharmaceuticals were found in 23.8% of dry feeds (sparfloxacin and fumagillin). Overall, the HRMS-based, standard-free suspect screening workflow provides an early-warning overview of multi-class co-occurrence patterns in complex pet feed matrices and supports the prioritization of candidates for subsequent confirmatory analysis.
{"title":"Mycotoxins and Beyond: Unveiling Multiple Organic Contaminants in Pet Feeds Through HRMS Suspect Screening.","authors":"Dafni Dematati, Dimitrios Gkountouras, Vasiliki Boti, Triantafyllos Albanis","doi":"10.3390/toxins18010022","DOIUrl":"10.3390/toxins18010022","url":null,"abstract":"<p><p>This study evaluated 65 commercially available pet feed samples, including 33 cat feeds and 32 dog feeds (dry and wet formulations), for the presence of organic contaminants. These included mycotoxins, pesticides, pharmaceutical residues/veterinary drugs, and plant-based bioactive compounds. A suspect screening strategy was employed using QuEChERS extraction followed by LC-LTQ/Orbitrap HRMS analysis. A total of 29 compounds were tentatively identified within 186 detections. In total, 76.9% of the samples were contaminated with mycotoxins. Aflatoxins (B1, B2, G1, and G2), T2 toxins, and HT2 toxins were dominant, with Aflatoxin B1 occurring in 33.8% of the samples and exhibiting a higher prevalence in dry feeds than in wet feeds. Pesticides were present in 72.0% of the dry formulations, including aclonifen and pirimiphos-methyl, but were present in only 11% of the wet formulations. Plant-based bioactive compounds, including phytoestrogens, were identified in 51% of the samples, highlighting toxicologically relevant candidates that merit prioritization for targeted confirmation, particularly in cat feeds. Pharmaceuticals were found in 23.8% of dry feeds (sparfloxacin and fumagillin). Overall, the HRMS-based, standard-free suspect screening workflow provides an early-warning overview of multi-class co-occurrence patterns in complex pet feed matrices and supports the prioritization of candidates for subsequent confirmatory analysis.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joanna Kanabus, Marcin Bryła, Krystyna Leśnowolska-Wnuczek, Agnieszka Waśkiewicz, Magdalena Twarużek
Mycotoxins are toxic secondary metabolites produced mainly by filamentous fungi of the genera Aspergillus, Penicillium, and Fusarium and pose a significant food safety concern. This review summarizes current literature on the occurrence of major regulated and emerging mycotoxins, including aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and selected Fusarium and Alternaria metabolites, in herbs, spices, and plant-based dietary supplements. Available data indicate that spices-particularly chilli, paprika, ginger, and various types of pepper-represent high-risk commodities and are often more heavily contaminated than dried herbs. Although reported concentrations of individual mycotoxins are frequently low to moderate, numerous studies highlight the common co-occurrence of multiple toxins within a single product, raising concerns regarding cumulative and combined toxic effects. Dietary supplements, especially those containing concentrated plant extracts such as green tea or green coffee, are also identified as potential sources of multi-mycotoxin exposure. The review outlines key analytical approaches for mycotoxin determination, emphasizing the critical role of sample preparation for chromatographic analysis in complex plant matrices. Despite increasing evidence of contamination, important knowledge gaps persist regarding emerging mycotoxins, underrepresented botanical matrices, and long-term exposure assessment, while regulatory limits remain incomplete or inconsistent. Continued monitoring and harmonized analytical and risk assessment strategies are, therefore, essential to ensure consumer safety.
{"title":"Mycotoxins Occurrence in Herbs, Spices, Dietary Supplements, and Their Exposure Assessment.","authors":"Joanna Kanabus, Marcin Bryła, Krystyna Leśnowolska-Wnuczek, Agnieszka Waśkiewicz, Magdalena Twarużek","doi":"10.3390/toxins18010020","DOIUrl":"10.3390/toxins18010020","url":null,"abstract":"<p><p>Mycotoxins are toxic secondary metabolites produced mainly by filamentous fungi of the genera <i>Aspergillus</i>, <i>Penicillium</i>, and <i>Fusarium</i> and pose a significant food safety concern. This review summarizes current literature on the occurrence of major regulated and emerging mycotoxins, including aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and selected <i>Fusarium</i> and <i>Alternaria</i> metabolites, in herbs, spices, and plant-based dietary supplements. Available data indicate that spices-particularly chilli, paprika, ginger, and various types of pepper-represent high-risk commodities and are often more heavily contaminated than dried herbs. Although reported concentrations of individual mycotoxins are frequently low to moderate, numerous studies highlight the common co-occurrence of multiple toxins within a single product, raising concerns regarding cumulative and combined toxic effects. Dietary supplements, especially those containing concentrated plant extracts such as green tea or green coffee, are also identified as potential sources of multi-mycotoxin exposure. The review outlines key analytical approaches for mycotoxin determination, emphasizing the critical role of sample preparation for chromatographic analysis in complex plant matrices. Despite increasing evidence of contamination, important knowledge gaps persist regarding emerging mycotoxins, underrepresented botanical matrices, and long-term exposure assessment, while regulatory limits remain incomplete or inconsistent. Continued monitoring and harmonized analytical and risk assessment strategies are, therefore, essential to ensure consumer safety.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12845980/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
(1) Background: As an innovative drug derived from botulinum neurotoxin serotype E, TrenibotulinumtoxinE® demonstrates a rapid onset and shorter effect. Due to concerns regarding specificity, test throughput, and animal welfare, a new cell-based potency assay (CBPA) method was developed for BoNT/E drug substance and drug product; independent evaluation of this new CBPA was required. (2) Methods: The CBPA for BoNT/E is a quantitative assay that measures the accumulated cleaved SNAP25180 in human neuroblastoma cells. It involves sequential culturing, differentiation of cells, and then treatment with drug products. Data were analyzed using a quadratic parallel model via statistical software. Linearity was determined using five effective concentration levels. Key assay parameters including accuracy, linearity, repeatability, intermediate precision and range were evaluated. (3) Results: The overall assay's accuracy was 98%, and the intermediate precision was 6.3%. The coefficient of determination (R2) and slope were determined as 0.963 and 0.942, respectively. The root mean squared error (RMSE) was 0.057, and the intercept was 0.032 for the combined data. The repeatability was 2.4%, which is well within the acceptance criterion of ≤8%. (4) Conclusions: The evaluation was carried out within a single laboratory under controlled conditions; the new CBPA meets all acceptance criteria and can be used for BoNT/E potency determination.
(1)背景:TrenibotulinumtoxinE®是一种源自E型肉毒杆菌神经毒素的创新药物,起效快,效期短。由于对特异性、测试吞吐量和动物福利的考虑,开发了一种新的基于细胞的效价测定(CBPA)方法用于BoNT/E原料药和制剂;需要对这个新的CBPA进行独立评估。(2)方法:CBPA for BoNT/E是一种定量测定人神经母细胞瘤细胞中积累的裂解SNAP25180的方法。它包括顺序培养,细胞分化,然后用药物治疗。数据通过统计软件采用二次并行模型进行分析。用5个有效浓度水平确定线性关系。主要测定参数包括准确度、线性度、重复性、中间精密度和范围。(3)结果:总准确度为98%,中间精密度为6.3%。测定其决定系数(R2)为0.963,斜率为0.942。综合数据的均方根误差(RMSE)为0.057,截距为0.032。重复性为2.4%,完全符合≤8%的验收标准。(4)结论:评价是在单一实验室可控条件下进行的;新的CBPA符合所有验收标准,可用于BoNT/E效价测定。
{"title":"Evaluation of a Cell-Based Potency Assay for Detection of the Potency of TrenibotulinumtoxinE<sup>®</sup> (TrenibotE).","authors":"Yingchao Yang, Huajie Zhang, Shuo Wang, Yanhua Xue, Liyong Yuan","doi":"10.3390/toxins18010019","DOIUrl":"10.3390/toxins18010019","url":null,"abstract":"<p><p>(1) Background: As an innovative drug derived from botulinum neurotoxin serotype E, TrenibotulinumtoxinE<sup>®</sup> demonstrates a rapid onset and shorter effect. Due to concerns regarding specificity, test throughput, and animal welfare, a new cell-based potency assay (CBPA) method was developed for BoNT/E drug substance and drug product; independent evaluation of this new CBPA was required. (2) Methods: The CBPA for BoNT/E is a quantitative assay that measures the accumulated cleaved SNAP25<sub>180</sub> in human neuroblastoma cells. It involves sequential culturing, differentiation of cells, and then treatment with drug products. Data were analyzed using a quadratic parallel model via statistical software. Linearity was determined using five effective concentration levels. Key assay parameters including accuracy, linearity, repeatability, intermediate precision and range were evaluated. (3) Results: The overall assay's accuracy was 98%, and the intermediate precision was 6.3%. The coefficient of determination (R<sup>2</sup>) and slope were determined as 0.963 and 0.942, respectively. The root mean squared error (RMSE) was 0.057, and the intercept was 0.032 for the combined data. The repeatability was 2.4%, which is well within the acceptance criterion of ≤8%. (4) Conclusions: The evaluation was carried out within a single laboratory under controlled conditions; the new CBPA meets all acceptance criteria and can be used for BoNT/E potency determination.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12846514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}