首页 > 最新文献

Traffic最新文献

英文 中文
Bro1 binds the Vps20 subunit of ESCRT-III and promotes ESCRT-III regulation by Doa4. Bro1结合ESCRT-III的Vps20亚基,并通过Doa4促进ESCRT-III的调控。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2022-02-01 DOI: 10.1111/tra.12828
Dalton Buysse, Matt West, Mitchell Leih, Greg Odorizzi

The budding of intralumenal vesicles (ILVs) at endosomes requires membrane scission by the ESCRT-III complex. This step is negatively regulated in yeast by Doa4, the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. Doa4 acts non-enzymatically to inhibit ESCRT-III membrane scission activity by directly binding the Snf7 subunit of ESCRT-III. This interaction inhibits the remodeling/disassembly of Snf7 polymers required for the ILV membrane scission reaction. Thus, Doa4 is thought to have a structural role that delays ILV budding while it also functions enzymatically to deubiquitinate ILV cargoes. In this study, we show that Doa4 binding to Snf7 in vivo is antagonized by another ESCRT-III subunit, Vps20. Doa4 is restricted from interacting with Snf7 in yeast expressing a mutant Vps20 allele that constitutively binds Doa4. This inhibitory effect of Vps20 is suppressed by overexpression of another ESCRT-III-associated protein, Bro1. We show that Bro1 binds directly to Vps20, suggesting that Bro1 has a central role in relieving the antagonistic relationship that Vps20 has toward Doa4.

内体的腔内囊泡(ILVs)的出芽需要ESCRT-III复合物的膜裂解。这一步骤在酵母中受到Doa4的负调控,Doa4是一种泛素水解酶,它将跨膜蛋白去泛素化,作为货物分类到ilv中。Doa4通过直接结合ESCRT-III的Snf7亚基,非酶促作用抑制ESCRT-III的膜裂解活性。这种相互作用抑制了ILV膜断裂反应所需的Snf7聚合物的重塑/拆卸。因此,Doa4被认为具有延迟ILV出芽的结构作用,同时它也具有酶促去泛素化ILV货物的功能。在这项研究中,我们发现Doa4在体内与Snf7的结合被另一个ESCRT-III亚基Vps20拮抗。在酵母中,Doa4被限制与Snf7相互作用,表达一个突变的Vps20等位基因,该等位基因组成性地结合Doa4。Vps20的这种抑制作用被另一种escrt - iii相关蛋白Bro1的过表达所抑制。我们发现Bro1直接与Vps20结合,这表明Bro1在缓解Vps20对Doa4的拮抗关系中起着核心作用。
{"title":"Bro1 binds the Vps20 subunit of ESCRT-III and promotes ESCRT-III regulation by Doa4.","authors":"Dalton Buysse,&nbsp;Matt West,&nbsp;Mitchell Leih,&nbsp;Greg Odorizzi","doi":"10.1111/tra.12828","DOIUrl":"https://doi.org/10.1111/tra.12828","url":null,"abstract":"<p><p>The budding of intralumenal vesicles (ILVs) at endosomes requires membrane scission by the ESCRT-III complex. This step is negatively regulated in yeast by Doa4, the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. Doa4 acts non-enzymatically to inhibit ESCRT-III membrane scission activity by directly binding the Snf7 subunit of ESCRT-III. This interaction inhibits the remodeling/disassembly of Snf7 polymers required for the ILV membrane scission reaction. Thus, Doa4 is thought to have a structural role that delays ILV budding while it also functions enzymatically to deubiquitinate ILV cargoes. In this study, we show that Doa4 binding to Snf7 in vivo is antagonized by another ESCRT-III subunit, Vps20. Doa4 is restricted from interacting with Snf7 in yeast expressing a mutant Vps20 allele that constitutively binds Doa4. This inhibitory effect of Vps20 is suppressed by overexpression of another ESCRT-III-associated protein, Bro1. We show that Bro1 binds directly to Vps20, suggesting that Bro1 has a central role in relieving the antagonistic relationship that Vps20 has toward Doa4.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"23 2","pages":"109-119"},"PeriodicalIF":4.5,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792227/pdf/nihms-1764596.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10601954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Vps501, a novel vacuolar SNX-BAR protein cooperates with the SEA complex to regulate TORC1 signaling. 新型液泡 SNX-BAR 蛋白 Vps501 与 SEA 复合物合作调节 TORC1 信号。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2022-01-30 DOI: 10.1111/tra.12833
Shreya Goyal, Verónica A Segarra, Nitika, Aaron M Stetcher, Andrew W Truman, Adam M Reitzel, Richard J Chi

The sorting nexins (SNX), constitute a diverse family of molecules that play varied roles in membrane trafficking, cell signaling, membrane remodeling, organelle motility and autophagy. In particular, the SNX-BAR proteins, a SNX subfamily characterized by a C-terminal dimeric Bin/Amphiphysin/Rvs (BAR) lipid curvature domain and a conserved Phox-homology domain, are of great interest. In budding yeast, many SNX-BARs proteins have well-characterized endo-vacuolar trafficking roles. Phylogenetic analyses allowed us to identify an additional SNX-BAR protein, Vps501, with a novel endo-vacuolar role. We report that Vps501 uniquely localizes to the vacuolar membrane and has physical and genetic interactions with the SEA complex to regulate TORC1 inactivation. We found cells displayed a severe deficiency in starvation-induced/nonselective autophagy only when SEA complex subunits are ablated in combination with Vps501, indicating a cooperative role with the SEA complex during TORC1 signaling during autophagy induction. Additionally, we found the SEACIT complex becomes destabilized in vps501Δsea1Δ cells, which resulted in aberrant endosomal TORC1 activity and subsequent Atg13 hyperphosphorylation. We have also discovered that the vacuolar localization of Vps501 is dependent upon a direct interaction with Sea1 and a unique lipid binding specificity that is also required for its function. This article is protected by copyright. All rights reserved.

分选蛋白(SNX)是一个多样化的分子家族,在膜贩运、细胞信号传导、膜重塑、细胞器运动和自噬中发挥着不同的作用。其中,SNX-BAR 蛋白是一个 SNX 亚家族,其特征是 C 端有一个二聚 Bin/Amphiphysin/Rvs (BAR)脂质弯曲结构域和一个保守的 Phox 同源结构域。在芽殖酵母中,许多 SNX-BARs 蛋白都具有表征明确的内腔贩运作用。通过系统发育分析,我们发现了另一种 SNX-BAR 蛋白--Vps501,它具有新的内泡作用。我们报告说,Vps501 独特地定位在液泡膜上,并与 SEA 复合物发生物理和基因相互作用,以调节 TORC1 的失活。我们发现,只有当 SEA 复合物亚基与 Vps501 一起被消减时,细胞才会显示出饥饿诱导/非选择性自噬的严重缺陷,这表明在自噬诱导过程中,SEA 复合物在 TORC1 信号传导过程中起着合作作用。此外,我们还发现 SEACIT 复合物在 vps501Δsea1Δ 细胞中变得不稳定,从而导致内体 TORC1 活性失常和随后的 Atg13 过度磷酸化。我们还发现,Vps501的液泡定位依赖于与Sea1的直接相互作用以及其功能所需的独特脂质结合特异性。本文受版权保护。保留所有权利。
{"title":"Vps501, a novel vacuolar SNX-BAR protein cooperates with the SEA complex to regulate TORC1 signaling.","authors":"Shreya Goyal, Verónica A Segarra, Nitika, Aaron M Stetcher, Andrew W Truman, Adam M Reitzel, Richard J Chi","doi":"10.1111/tra.12833","DOIUrl":"10.1111/tra.12833","url":null,"abstract":"<p><p>The sorting nexins (SNX), constitute a diverse family of molecules that play varied roles in membrane trafficking, cell signaling, membrane remodeling, organelle motility and autophagy. In particular, the SNX-BAR proteins, a SNX subfamily characterized by a C-terminal dimeric Bin/Amphiphysin/Rvs (BAR) lipid curvature domain and a conserved Phox-homology domain, are of great interest. In budding yeast, many SNX-BARs proteins have well-characterized endo-vacuolar trafficking roles. Phylogenetic analyses allowed us to identify an additional SNX-BAR protein, Vps501, with a novel endo-vacuolar role. We report that Vps501 uniquely localizes to the vacuolar membrane and has physical and genetic interactions with the SEA complex to regulate TORC1 inactivation. We found cells displayed a severe deficiency in starvation-induced/nonselective autophagy only when SEA complex subunits are ablated in combination with Vps501, indicating a cooperative role with the SEA complex during TORC1 signaling during autophagy induction. Additionally, we found the SEACIT complex becomes destabilized in vps501Δsea1Δ cells, which resulted in aberrant endosomal TORC1 activity and subsequent Atg13 hyperphosphorylation. We have also discovered that the vacuolar localization of Vps501 is dependent upon a direct interaction with Sea1 and a unique lipid binding specificity that is also required for its function. This article is protected by copyright. All rights reserved.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9305297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39874342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. 胶原蛋白具有独特的SEC24偏好,可以有效地从内质网输出。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2022-01-01 DOI: 10.1111/tra.12826
Chung-Ling Lu, Steven Ortmeier, Jon Brudvig, Tamara Moretti, Jacob Cain, Simeon A Boyadjiev, Jill M Weimer, Jinoh Kim

SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A-D) in vertebrates, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans. sec24d mutant fish also recapitulate the phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. Using Sec24d KO mice and cultured cells, we show that SEC24A and SEC24B also contribute to endoplasmic reticulum (ER) export of procollagen. In contrast, fibronectin 1 requires either SEC24C or SEC24D for ER export. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.

SEC24主要参与COPII囊泡组装过程中的货物分拣。脊椎动物有4个SEC24类群(A-D),可分为两个亚群(SEC24A/B和SEC24C/D)。在人类中,SEC24D的病理突变导致骨生成不完全伴颅面发育不良。Sec24d突变鱼也重现了表型。与骨骼表型一致,突变鱼的胶原分泌严重缺陷,强调SEC24D在胶原分泌中的重要性。然而,SEC24D患者源性成纤维细胞仅显示轻度分泌表型,提示分泌过程具有组织特异性。使用Sec24d KO小鼠和培养细胞,我们发现SEC24A和SEC24B也有助于内质网(ER)前胶原的输出。相比之下,纤维连接蛋白1需要SEC24C或SEC24D才能输出ER。基于我们的研究结果,我们提出前胶原与多个SEC24旁系相互作用以有效地从内质网输出,这是SEC24旁系缺乏导致组织特异性表型的基础。
{"title":"Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum.","authors":"Chung-Ling Lu,&nbsp;Steven Ortmeier,&nbsp;Jon Brudvig,&nbsp;Tamara Moretti,&nbsp;Jacob Cain,&nbsp;Simeon A Boyadjiev,&nbsp;Jill M Weimer,&nbsp;Jinoh Kim","doi":"10.1111/tra.12826","DOIUrl":"https://doi.org/10.1111/tra.12826","url":null,"abstract":"<p><p>SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A-D) in vertebrates, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans. sec24d mutant fish also recapitulate the phenotypes. Consistent with the skeletal phenotypes, the secretion of collagen was severely defective in mutant fish, emphasizing the importance of SEC24D in collagen secretion. However, SEC24D patient-derived fibroblasts show only a mild secretion phenotype, suggesting tissue-specificity in the secretion process. Using Sec24d KO mice and cultured cells, we show that SEC24A and SEC24B also contribute to endoplasmic reticulum (ER) export of procollagen. In contrast, fibronectin 1 requires either SEC24C or SEC24D for ER export. On the basis of our results, we propose that procollagen interacts with multiple SEC24 paralogs for efficient export from the ER, and that this is the basis for tissue-specific phenotypes resulting from SEC24 paralog deficiency.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"23 1","pages":"81-93"},"PeriodicalIF":4.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692420/pdf/nihms-1755513.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10806062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
EAP45 association with budding HIV-1: Kinetics and domain requirements. EAP45与出芽HIV-1的关联:动力学和结构域要求。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-10-03 DOI: 10.1111/tra.12820
Bo Meng, Pedro P Vallejo Ramirez, Katharina M Scherer, Ezra Bruggeman, Julia C Kenyon, Clemens F Kaminski, Andrew M Lever

A number of viruses including HIV use the ESCRT system to bud from the infected cell. We have previously confirmed biochemically that ESCRT-II is involved in this process in HIV-1 and have defined the molecular domains that are important for this. Here, using SNAP-tag fluorescent labelling and both fixed and live cell imaging we show that the ESCRT-II component EAP45 colocalises with the HIV protein Gag at the plasma membrane in a temporal and quantitative manner, similar to that previously shown for ALIX and Gag. We show evidence that a proportion of EAP45 may be packaged within virions, and we confirm the importance of the N terminus of EAP45 and specifically the H0 domain in this process. By contrast, the Glue domain of EAP45 is more critical for recruitment during cytokinesis, emphasising that viruses have ways of recruiting cellular components that may be distinct from those used by some cellular processes. This raises the prospect of selective interference with the pathway to inhibit viral function while leaving cellular functions relatively unperturbed.

包括HIV在内的许多病毒使用ESCRT系统从受感染的细胞中发芽。我们之前已经从生物化学角度证实了ESCRT-II参与了HIV-1的这一过程,并确定了对此重要的分子结构域。在这里,使用snap标签荧光标记和固定细胞和活细胞成像,我们显示ESCRT-II组分EAP45与HIV蛋白Gag在质膜上以时间和定量的方式共定位,类似于先前对ALIX和Gag的显示。我们证明了一部分EAP45可能被包装在病毒粒子内,我们证实了EAP45的N端,特别是H0结构域在这一过程中的重要性。相比之下,EAP45的Glue结构域在细胞质分裂过程中对募集更为关键,这强调了病毒募集细胞成分的方式可能与某些细胞过程中使用的方式不同。这提出了选择性干扰途径抑制病毒功能的前景,同时使细胞功能相对不受干扰。
{"title":"EAP45 association with budding HIV-1: Kinetics and domain requirements.","authors":"Bo Meng,&nbsp;Pedro P Vallejo Ramirez,&nbsp;Katharina M Scherer,&nbsp;Ezra Bruggeman,&nbsp;Julia C Kenyon,&nbsp;Clemens F Kaminski,&nbsp;Andrew M Lever","doi":"10.1111/tra.12820","DOIUrl":"https://doi.org/10.1111/tra.12820","url":null,"abstract":"<p><p>A number of viruses including HIV use the ESCRT system to bud from the infected cell. We have previously confirmed biochemically that ESCRT-II is involved in this process in HIV-1 and have defined the molecular domains that are important for this. Here, using SNAP-tag fluorescent labelling and both fixed and live cell imaging we show that the ESCRT-II component EAP45 colocalises with the HIV protein Gag at the plasma membrane in a temporal and quantitative manner, similar to that previously shown for ALIX and Gag. We show evidence that a proportion of EAP45 may be packaged within virions, and we confirm the importance of the N terminus of EAP45 and specifically the H0 domain in this process. By contrast, the Glue domain of EAP45 is more critical for recruitment during cytokinesis, emphasising that viruses have ways of recruiting cellular components that may be distinct from those used by some cellular processes. This raises the prospect of selective interference with the pathway to inhibit viral function while leaving cellular functions relatively unperturbed.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 12","pages":"439-453"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39487518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Secretion of a low-molecular-weight species of endogenous GRP94 devoid of the KDEL motif during endoplasmic reticulum stress in Chinese hamster ovary cells. 中国仓鼠卵巢细胞内质网应激过程中缺乏KDEL基序的低分子量内源性GRP94的分泌
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-09-27 DOI: 10.1111/tra.12818
Andrew Samy, Noriko Yamano-Adachi, Yuichi Koga, Takeshi Omasa

GRP94 (glucose-regulated protein 94) is a well-studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C-terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER-associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.

GRP94(葡萄糖调节蛋白94)是一种被广泛研究的伴侣蛋白,其c端具有赖氨酸、天冬氨酸、谷氨酸和亮氨酸(KDEL)基序,负责GRP94在内质网(ER)中的定位。GRP94在内质网应激期间上调,帮助折叠未折叠的蛋白或指导蛋白进行内质网相关降解。在之前的一项研究中,不含KDEL基序的工程GRP94在疫苗细胞中刺激了强大的免疫反应。在本报告中,我们发现内源性GRP94在中国仓鼠卵巢细胞中以缺乏KDEL基序的截断形式自然分泌到培养基中。内质网应激诱导了GRP94截断型的分泌。这些截断阻止了KDEL受体识别GRP94并在细胞内保留。这项研究揭示了未折叠蛋白反应过程中潜在的转运现象,可能有助于理解GRP94作为转运分子的功能作用。
{"title":"Secretion of a low-molecular-weight species of endogenous GRP94 devoid of the KDEL motif during endoplasmic reticulum stress in Chinese hamster ovary cells.","authors":"Andrew Samy,&nbsp;Noriko Yamano-Adachi,&nbsp;Yuichi Koga,&nbsp;Takeshi Omasa","doi":"10.1111/tra.12818","DOIUrl":"https://doi.org/10.1111/tra.12818","url":null,"abstract":"<p><p>GRP94 (glucose-regulated protein 94) is a well-studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C-terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER-associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 12","pages":"425-438"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/10/TRA-22-425.PMC9293085.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39428718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A basic model for cell cholesterol homeostasis. 细胞胆固醇稳态的基本模型。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-10-19 DOI: 10.1111/tra.12816
Theodore L Steck, S M Ali Tabei, Yvonne Lange

Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.

细胞利用一组对胆固醇有反应的蛋白质,通过负反馈来控制胆固醇。如何协调这些活动以确定甾醇的丰度和分布尚不清楚。我们提出了一个简单的数学模型来解决这个问题。它假定几乎所有的胆固醇都与化学计量复合物中的磷脂有关。一小部分甾醇是非络合的,具有热力学活性。它在细胞器之间进行平衡,根据磷脂的亲和力来设定它们的固醇水平。细胞质膜内稳态蛋白的活性由其与磷脂竞争时与未络合胆固醇的分数饱和决定。质膜(PM)中的高亲和力磷脂被填充到接近化学计量当量,为其提供大部分细胞固醇。值得注意的是,磷脂在膜内(EMs)的亲和力比在膜内的磷脂低几个数量级。因此,em中少量的甾醇远远低于化学计量容量。模拟与各种实验数据相匹配。该模型抓住了细胞胆固醇稳态的本质,使一系列不同的实验结果连贯一致,提供了一个令人惊讶的预测,并建议进行新的实验。
{"title":"A basic model for cell cholesterol homeostasis.","authors":"Theodore L Steck,&nbsp;S M Ali Tabei,&nbsp;Yvonne Lange","doi":"10.1111/tra.12816","DOIUrl":"https://doi.org/10.1111/tra.12816","url":null,"abstract":"<p><p>Cells manage their cholesterol by negative feedback using a battery of sterol-responsive proteins. How these activities are coordinated so as to specify the abundance and distribution of the sterol is unclear. We present a simple mathematical model that addresses this question. It assumes that almost all of the cholesterol is associated with phospholipids in stoichiometric complexes. A small fraction of the sterol is uncomplexed and thermodynamically active. It equilibrates among the organelles, setting their sterol level according to the affinity of their phospholipids. The activity of the homeostatic proteins in the cytoplasmic membranes is then set by their fractional saturation with uncomplexed cholesterol in competition with the phospholipids. The high-affinity phospholipids in the plasma membrane (PM) are filled to near stoichiometric equivalence, giving it most of the cell sterol. Notably, the affinity of the phospholipids in the endomembranes (EMs) is lower by orders of magnitude than that of the phospholipids in the PM. Thus, the small amount of sterol in the EMs rests far below stoichiometric capacity. Simulations match a variety of experimental data. The model captures the essence of cell cholesterol homeostasis, makes coherent a diverse set of experimental findings, provides a surprising prediction and suggests new experiments.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 12","pages":"471-481"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/tra.12816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39420977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Protein kinase D promotes activity-dependent AMPA receptor endocytosis in hippocampal neurons. 蛋白激酶D促进海马神经元活性依赖性AMPA受体内吞作用。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-10-05 DOI: 10.1111/tra.12819
Carlos O Oueslati Morales, Attila Ignácz, Norbert Bencsik, Zsofia Sziber, Anikó Erika Rátkai, Wolfgang S Lieb, Stephan A Eisler, Attila Szűcs, Katalin Schlett, Angelika Hausser

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity-induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1-containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.

α-氨基-3-羟基-5-甲基-4-异唑丙酸(AMPA)型谷氨酸受体(AMPARs)介导脑内大部分快速兴奋性神经传递。ampar不断进出突触是突触可塑性的核心特征,它被认为是学习和记忆的细胞基础。然而,突触后AMPAR转运的分子机制尚不完全清楚。在这项工作中,我们证明了蛋白激酶D (PKD)家族在初级海马神经元中促进基础和活性诱导的AMPAR内吞作用。药理抑制PKD增加了含glua1的ampar突触水平,减缓了它们的内吞运输,增加了神经元网络活性。相比之下,组成型活性PKD的异位表达降低了ampar的突触水平,同时增加了它们与早期核内体的共定位。因此,我们的研究结果确立了PKD在突触可塑性过程中调控突触后AMPAR转运的重要作用。
{"title":"Protein kinase D promotes activity-dependent AMPA receptor endocytosis in hippocampal neurons.","authors":"Carlos O Oueslati Morales,&nbsp;Attila Ignácz,&nbsp;Norbert Bencsik,&nbsp;Zsofia Sziber,&nbsp;Anikó Erika Rátkai,&nbsp;Wolfgang S Lieb,&nbsp;Stephan A Eisler,&nbsp;Attila Szűcs,&nbsp;Katalin Schlett,&nbsp;Angelika Hausser","doi":"10.1111/tra.12819","DOIUrl":"https://doi.org/10.1111/tra.12819","url":null,"abstract":"<p><p>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors (AMPARs) mediate the majority of fast excitatory neurotransmission in the brain. The continuous trafficking of AMPARs into and out of synapses is a core feature of synaptic plasticity, which is considered as the cellular basis of learning and memory. The molecular mechanisms underlying the postsynaptic AMPAR trafficking, however, are still not fully understood. In this work, we demonstrate that the protein kinase D (PKD) family promotes basal and activity-induced AMPAR endocytosis in primary hippocampal neurons. Pharmacological inhibition of PKD increased synaptic levels of GluA1-containing AMPARs, slowed down their endocytic trafficking and increased neuronal network activity. By contrast, ectopic expression of constitutive active PKD decreased the synaptic level of AMPARs, while increasing their colocalization with early endosomes. Our results thus establish an important role for PKD in the regulation of postsynaptic AMPAR trafficking during synaptic plasticity.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 12","pages":"454-470"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39451404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Implication of the nuclear trafficking of rabies virus P3 protein in viral pathogenicity. 狂犬病毒P3蛋白核转运在病毒致病性中的意义。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-10-19 DOI: 10.1111/tra.12821
Aaron M Brice, Ericka Watts, Bevan Hirst, David A Jans, Naoto Ito, Gregory W Moseley

Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.

虽然大多数单病毒科病毒只在宿主细胞质中复制,但其中许多病毒编码在细胞核和细胞质之间运输的蛋白质,这被认为在调节受感染宿主细胞的生物学方面具有辅助功能。其中,狂犬病毒的P3蛋白通过几种特定的核定位和核输出信号的活性定位到细胞核。P3的主要功能是逃避干扰素(IFN)介导的抗病毒反应,包括通过抑制干扰素激活的STAT1的dna结合。P3也定位于核仁和早幼粒细胞白血病(PML)核体,并与核仁蛋白和PML蛋白相互作用,表明其在核内具有多种作用。然而,P3核定位与致病性的关系尚不清楚。我们报道了致病性RABV毒株Nishigahara (Ni)和非致病性Ni衍生毒株Ni- ce中P3蛋白的核胞质定位存在显著差异,Ni- ce -P3的核积累存在缺陷。分子图谱表明,定位的改变源于协调效应,包括两个残基取代,这两个残基取代分别禁用核定位和增强核输出信号,共同促进核排斥。有趣的是,这似乎与对蛋白质构象或调节机制的影响有关,而不是直接修改已定义的运输信号序列。这些数据为在细胞质中复制的病毒的致病性中调节病毒蛋白的核运输的作用提供了新的见解。
{"title":"Implication of the nuclear trafficking of rabies virus P3 protein in viral pathogenicity.","authors":"Aaron M Brice,&nbsp;Ericka Watts,&nbsp;Bevan Hirst,&nbsp;David A Jans,&nbsp;Naoto Ito,&nbsp;Gregory W Moseley","doi":"10.1111/tra.12821","DOIUrl":"https://doi.org/10.1111/tra.12821","url":null,"abstract":"<p><p>Although the majority of viruses of the family Mononegvirales replicate exclusively in the host cell cytoplasm, many of these viruses encode proteins that traffic between the nucleus and cytoplasm, which is believed to enable accessory functions in modulating the biology of the infected host cell. Among these, the P3 protein of rabies virus localizes to the nucleus through the activity of several specific nuclear localization and nuclear export signals. The major defined functions of P3 are in evasion of interferon (IFN)-mediated antiviral responses, including through inhibition of DNA-binding by IFN-activated STAT1. P3 also localizes to nucleoli and promyelocytic leukemia (PML) nuclear bodies, and interacts with nucleolin and PML protein, indicative of several intranuclear roles. The relationship of P3 nuclear localization with pathogenicity, however, is unresolved. We report that nucleocytoplasmic localization of P3 proteins from a pathogenic RABV strain, Nishigahara (Ni) and a non-pathogenic Ni-derived strain, Ni-CE, differs significantly, with nuclear accumulation defective for Ni-CE-P3. Molecular mapping indicates that altered localization derives from a coordinated effect, including two residue substitutions that independently disable nuclear localization and augment nuclear export signals, collectively promoting nuclear exclusion. Intriguingly, this appears to relate to effects on protein conformation or regulatory mechanisms, rather than direct modification of defined trafficking signal sequences. These data provide new insights into the role of regulated nuclear trafficking of a viral protein in the pathogenicity of a virus that replicates in the cytoplasm.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 12","pages":"482-489"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39521058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A systematic review of Sec24 cargo interactome. Sec24货物相互作用系统综述。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-12-01 Epub Date: 2021-10-05 DOI: 10.1111/tra.12817
Sharanya Chatterjee, Ana Jeemin Choi, Gad Frankel

Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.

内质网(ER)到高尔基体的运输是一个重要的和高度保守的细胞过程。转运机制的外壳蛋白复合物- ii (COPII)臂通过与COPII外壳的主要亚基Sec24的直接或间接相互作用,将大量的货物蛋白整合到囊泡中。大约三分之一的哺乳动物蛋白质依靠copii介导的分泌途径插入或分泌膜。有4个哺乳动物Sec24类似物和3个酵母Sec24类似物,有证据表明它们具有类似物特异性的货物相互作用基序。此外,个体相似物对货物蛋白上存在的分类基序子集的亲和力也有所不同。与蛋白质贩运的许多方面一样,我们对Sec24与货物的相互作用缺乏系统和彻底的了解。本系统综述的重点是目前对酵母和哺乳动物Sec24类似物及其内质网输出基序的货物结合的了解。分析表明,货物(和货物受体)的Sec24平行特异性范围从排他性平行依赖或偏好到部分冗余。我们还讨论了Sec24分泌系统如何被病毒(如VSV-G、乙型肝炎包膜蛋白)和细菌(如肠致病性大肠杆菌III型分泌系统效应物NleA/EspI)病原体劫持。
{"title":"A systematic review of Sec24 cargo interactome.","authors":"Sharanya Chatterjee,&nbsp;Ana Jeemin Choi,&nbsp;Gad Frankel","doi":"10.1111/tra.12817","DOIUrl":"https://doi.org/10.1111/tra.12817","url":null,"abstract":"<p><p>Endoplasmic reticulum (ER)-to-Golgi trafficking is an essential and highly conserved cellular process. The coat protein complex-II (COPII) arm of the trafficking machinery incorporates a wide array of cargo proteins into vesicles through direct or indirect interactions with Sec24, the principal subunit of the COPII coat. Approximately one-third of all mammalian proteins rely on the COPII-mediated secretory pathway for membrane insertion or secretion. There are four mammalian Sec24 paralogs and three yeast Sec24 paralogs with emerging evidence of paralog-specific cargo interaction motifs. Furthermore, individual paralogs also differ in their affinity for a subset of sorting motifs present on cargo proteins. As with many aspects of protein trafficking, we lack a systematic and thorough understanding of the interaction of Sec24 with cargoes. This systematic review focuses on the current knowledge of cargo binding to both yeast and mammalian Sec24 paralogs and their ER export motifs. The analyses show that Sec24 paralog specificity of cargo (and cargo receptors) range from exclusive paralog dependence or preference to partial redundancy. We also discuss how the Sec24 secretion system is hijacked by viral (eg, VSV-G, Hepatitis B envelope protein) and bacterial (eg, the enteropathogenic Escherichia coli type III secretion system effector NleA/EspI) pathogens.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 12","pages":"412-424"},"PeriodicalIF":4.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/tra.12817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39426871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
BMP2K phosphorylates AP-2 and regulates clathrin-mediated endocytosis. BMP2K磷酸化AP-2并调节网格蛋白介导的内吞作用。
IF 4.5 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2021-11-01 Epub Date: 2021-09-27 DOI: 10.1111/tra.12814
Shikha T Ramesh, Kolaparamba V Navyasree, Sneha Sah, Anjitha B Ashok, Nishada Qathoon, Suryasikha Mohanty, Rajeeb K Swain, Perunthottathu K Umasankar

Phosphorylation of the central adaptor protein complex, AP-2 is pivotal for clathrin-mediated endocytosis (CME). Here, we uncover the role of an uncharacterized kinase (BMP-2 inducible kinase-BMP2K) in AP-2 phosphorylation. We demonstrate that BMP2K can phosphorylate AP-2 in vitro and in vivo. Functional impairment of BMP2K impedes AP-2 phosphorylation leading to defects in clathrin-coated pit (CCP) morphology and cargo internalization. BMP2K engages AP-2 via its extended C-terminus and this interaction is important for its CCP localization and function. Notably, endogenous BMP2K levels decline upon functional impairment of AP-2 indicating AP-2 dependent BMP2K stabilization in cells. Further, functional inactivation of BMP2K in zebrafish embryos yields gastrulation phenotypes which mirror AP-2 loss-of-function suggesting physiological relevance of BMP2K in vertebrates. Together, our findings propose involvement of a novel kinase in AP-2 phosphorylation and in the operation of CME.

中心接头蛋白复合物AP-2的磷酸化是网格蛋白介导的内吞作用(CME)的关键。在这里,我们揭示了一种未表征的激酶(BMP-2诱导激酶- bmp2k)在AP-2磷酸化中的作用。我们证明BMP2K可以在体外和体内磷酸化AP-2。BMP2K的功能障碍阻碍AP-2磷酸化,导致网格蛋白包覆坑(CCP)形态和货物内化缺陷。BMP2K通过其扩展的c端与AP-2结合,这种相互作用对其CCP定位和功能很重要。值得注意的是,内源性BMP2K水平在AP-2功能损伤时下降,表明细胞中AP-2依赖性BMP2K稳定。此外,斑马鱼胚胎中BMP2K的功能失活产生的原肠胚表型反映了AP-2的功能丧失,这表明BMP2K在脊椎动物中的生理相关性。总之,我们的研究结果提出了一种新的激酶参与AP-2磷酸化和CME的操作。
{"title":"BMP2K phosphorylates AP-2 and regulates clathrin-mediated endocytosis.","authors":"Shikha T Ramesh,&nbsp;Kolaparamba V Navyasree,&nbsp;Sneha Sah,&nbsp;Anjitha B Ashok,&nbsp;Nishada Qathoon,&nbsp;Suryasikha Mohanty,&nbsp;Rajeeb K Swain,&nbsp;Perunthottathu K Umasankar","doi":"10.1111/tra.12814","DOIUrl":"https://doi.org/10.1111/tra.12814","url":null,"abstract":"<p><p>Phosphorylation of the central adaptor protein complex, AP-2 is pivotal for clathrin-mediated endocytosis (CME). Here, we uncover the role of an uncharacterized kinase (BMP-2 inducible kinase-BMP2K) in AP-2 phosphorylation. We demonstrate that BMP2K can phosphorylate AP-2 in vitro and in vivo. Functional impairment of BMP2K impedes AP-2 phosphorylation leading to defects in clathrin-coated pit (CCP) morphology and cargo internalization. BMP2K engages AP-2 via its extended C-terminus and this interaction is important for its CCP localization and function. Notably, endogenous BMP2K levels decline upon functional impairment of AP-2 indicating AP-2 dependent BMP2K stabilization in cells. Further, functional inactivation of BMP2K in zebrafish embryos yields gastrulation phenotypes which mirror AP-2 loss-of-function suggesting physiological relevance of BMP2K in vertebrates. Together, our findings propose involvement of a novel kinase in AP-2 phosphorylation and in the operation of CME.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"22 11","pages":"377-396"},"PeriodicalIF":4.5,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/tra.12814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39383772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Traffic
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1