The mouse Agouti gene encodes a paracrine signaling factor which promotes melanocytes to produce yellow instead of black pigment. It has been reported that Agouti mRNA is confined to the dermal papilla after birth in various mammalian species. In this study, we created and characterized a knockin mouse strain in which Cre recombinase was expressed in-frame with endogenous Agouti coding sequence. The Agouti-Cre mice were bred with reporter mice (Rosa26-tdTomato or Rosa26-ZsGreen) to trace the lineage of Agouti-expressing cells during development. In skin, the reporter was detected in some dermal fibroblasts at the embryonic stage and in all dermal fibroblasts postnatally. It was also expressed in all mesenchymal lineage cells in other organs/tissues, including eyes, tongue, muscle, intestine, adipose, prostate and testis. Interestingly, the reporter expression was excluded from epithelial cells in the above organs/tissues. In brain, the reporter was observed in the outermost meningeal fibroblasts. Our work helps to illustrate the Agouti expression pattern during development and provides a valuable mouse strain for conditional gene targeting in mesenchymal lineage cells in multiple organs.
{"title":"A Cre knockin mouse reveals specific expression of Agouti gene in mesenchymal lineage cells in multiple organs and provides a unique tool for conditional gene targeting.","authors":"Xing-Ru Shen, He-Li Zhang, Xu-Bo Zhao, Yang-Ge Wang, Xiao-Yang Tan, Lipeng Gao, Ruilin Sun, Xin-Hua Liao","doi":"10.1007/s11248-023-00334-0","DOIUrl":"10.1007/s11248-023-00334-0","url":null,"abstract":"<p><p>The mouse Agouti gene encodes a paracrine signaling factor which promotes melanocytes to produce yellow instead of black pigment. It has been reported that Agouti mRNA is confined to the dermal papilla after birth in various mammalian species. In this study, we created and characterized a knockin mouse strain in which Cre recombinase was expressed in-frame with endogenous Agouti coding sequence. The Agouti-Cre mice were bred with reporter mice (Rosa26-tdTomato or Rosa26-ZsGreen) to trace the lineage of Agouti-expressing cells during development. In skin, the reporter was detected in some dermal fibroblasts at the embryonic stage and in all dermal fibroblasts postnatally. It was also expressed in all mesenchymal lineage cells in other organs/tissues, including eyes, tongue, muscle, intestine, adipose, prostate and testis. Interestingly, the reporter expression was excluded from epithelial cells in the above organs/tissues. In brain, the reporter was observed in the outermost meningeal fibroblasts. Our work helps to illustrate the Agouti expression pattern during development and provides a valuable mouse strain for conditional gene targeting in mesenchymal lineage cells in multiple organs.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"143-152"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s11248-023-00340-2
Hui Duan, Paul Moresco, Nicolas Champouret
Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.
{"title":"Characterization of host-effector transcription dynamics during pathogen infection in engineered late blight resistant potato.","authors":"Hui Duan, Paul Moresco, Nicolas Champouret","doi":"10.1007/s11248-023-00340-2","DOIUrl":"https://doi.org/10.1007/s11248-023-00340-2","url":null,"abstract":"<p><p>Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"95-107"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9588058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s11248-023-00338-w
Monoj Sutradhar, Nirmal Mandal
Agrobacterium tumefaciens-mediated plant transformation has become routine work across the world to study gene function and the production of genetically modified plants. However, several issues hamper the transformation process in a profound way, both directly and indirectly. One of the major concerns is the overgrowth of Agrobacterium, which occasionally appears after the co-cultivation phase of the explant. This phenomenon is reported in several species and seems to spoil the whole transformation process. There are multiple approaches being employed to counter this unwanted growth of bacteria in a few plant species. In reality, once the overgrowth appears, it becomes nearly impossible to cure it. Hence, for the prevention of this phenomenon, numerous factors are regulated. These factors are: explant nature, A. tumefaciens strain, T-DNA vector, co-cultivation (time and condition), acetosyringone, washing medium, antibiotics (type, concentration, combination, incubation period), etc. In this article, we discuss these factors based on available reports. It can be of immense help in formulating viable strategies to control A. tumefaciens overgrowth.
{"title":"Reasons and riddance of Agrobacterium tumefaciens overgrowth in plant transformation.","authors":"Monoj Sutradhar, Nirmal Mandal","doi":"10.1007/s11248-023-00338-w","DOIUrl":"https://doi.org/10.1007/s11248-023-00338-w","url":null,"abstract":"<p><p>Agrobacterium tumefaciens-mediated plant transformation has become routine work across the world to study gene function and the production of genetically modified plants. However, several issues hamper the transformation process in a profound way, both directly and indirectly. One of the major concerns is the overgrowth of Agrobacterium, which occasionally appears after the co-cultivation phase of the explant. This phenomenon is reported in several species and seems to spoil the whole transformation process. There are multiple approaches being employed to counter this unwanted growth of bacteria in a few plant species. In reality, once the overgrowth appears, it becomes nearly impossible to cure it. Hence, for the prevention of this phenomenon, numerous factors are regulated. These factors are: explant nature, A. tumefaciens strain, T-DNA vector, co-cultivation (time and condition), acetosyringone, washing medium, antibiotics (type, concentration, combination, incubation period), etc. In this article, we discuss these factors based on available reports. It can be of immense help in formulating viable strategies to control A. tumefaciens overgrowth.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"33-52"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9535497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Novel transgenic (TG) pigs co-expressing three microbial enzymes, β-glucanase, xylanase, and phytase, in their salivary glands were previously generated, which exhibited reduced phosphorus and nitrogen emissions and improved growth performances. In the present study, we attempted to explore the age-related change of the TG enzymic activity, the residual activity of the enzymes in the simulated gastrointestinal tract, and the effect of the transgenes on the digestion of nitrogen and phosphorus content in the fiber-rich, plant-based diets. Results showed that all the three enzymes were stably expressed over the growing and finishing periods in the F2 generation TG pigs. In simulated gastric juice, all the three enzymes exhibited excellent gastrointestinal environment adaptability. The apparent total tract digestibility of phosphorus was increased by 69.05% and 499.64%, while fecal phosphate outputs were decreased by 56.66% and 37.32%, in the TG pigs compared with the wild-type littermates fed with low non-starch polysaccharides diets and high fiber diets, respectively. Over half of available phosphorus and water-soluble phosphorus in fecal phosphorus were reduced. We also found the performance of phosphorus, calcium, and nitrogen retention rates were significantly improved, resulting in faster growth performance in TG pigs. The results indicate that TG pigs can effectively digest the high-fiber diets and exhibit good growth performance compared with wild type pigs.
{"title":"Digestion and utilization of plant-based diets by transgenic pigs secreting β-glucanase, xylanase, and phytase in their salivary glands.","authors":"Shanxin Yang, Tingting Liu, Jianxin Mo, Huaqiang Yang, Haoqiang Wang, Guangyan Huang, Gengyuan Cai, Zhenfang Wu, Xianwei Zhang","doi":"10.1007/s11248-023-00339-9","DOIUrl":"https://doi.org/10.1007/s11248-023-00339-9","url":null,"abstract":"<p><p>Novel transgenic (TG) pigs co-expressing three microbial enzymes, β-glucanase, xylanase, and phytase, in their salivary glands were previously generated, which exhibited reduced phosphorus and nitrogen emissions and improved growth performances. In the present study, we attempted to explore the age-related change of the TG enzymic activity, the residual activity of the enzymes in the simulated gastrointestinal tract, and the effect of the transgenes on the digestion of nitrogen and phosphorus content in the fiber-rich, plant-based diets. Results showed that all the three enzymes were stably expressed over the growing and finishing periods in the F2 generation TG pigs. In simulated gastric juice, all the three enzymes exhibited excellent gastrointestinal environment adaptability. The apparent total tract digestibility of phosphorus was increased by 69.05% and 499.64%, while fecal phosphate outputs were decreased by 56.66% and 37.32%, in the TG pigs compared with the wild-type littermates fed with low non-starch polysaccharides diets and high fiber diets, respectively. Over half of available phosphorus and water-soluble phosphorus in fecal phosphorus were reduced. We also found the performance of phosphorus, calcium, and nitrogen retention rates were significantly improved, resulting in faster growth performance in TG pigs. The results indicate that TG pigs can effectively digest the high-fiber diets and exhibit good growth performance compared with wild type pigs.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"109-119"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9535498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-01-12DOI: 10.1007/s11248-023-00333-1
Despoina Beris, Aliki Tzima, Fani Gousi, Aggeliki Rampou, Venetia Psarra, Ioannis Theologidis, Nikon Vassilakos
In a previous study, tobacco plants, transformed with a sense construct of the 57K domain of the replicase gene of tobacco rattle virus (TRV), provided resistance against genetically distant isolates of the virus. In this work, 57K-specific siRNAs were detected with RT-qPCR solely in the resistant line verifying the RNA-silencing base of the resistance. The integration sites of the transgene into the plant genome were identified with inverse-PCR. Moreover, the resistance against TRV was practically unaffected by low temperature conditions and the presence of heterologous viruses. The mechanism of the resistance was further examined by a gene expression analysis that showed increased transcript levels of genes with a key-role in the RNA silencing pathway and the basal antiviral defence. This work provides a comprehensive characterization of the robust virus resistance obtained by a sense transgene and underlines the usefulness of transgenic plants obtained by such a strategy.
{"title":"Multiple integrations of a sense transgene, including a tandem inverted repeat confer stable RNA-silencing mediated virus resistance under different abiotic and biotic conditions.","authors":"Despoina Beris, Aliki Tzima, Fani Gousi, Aggeliki Rampou, Venetia Psarra, Ioannis Theologidis, Nikon Vassilakos","doi":"10.1007/s11248-023-00333-1","DOIUrl":"10.1007/s11248-023-00333-1","url":null,"abstract":"<p><p>In a previous study, tobacco plants, transformed with a sense construct of the 57K domain of the replicase gene of tobacco rattle virus (TRV), provided resistance against genetically distant isolates of the virus. In this work, 57K-specific siRNAs were detected with RT-qPCR solely in the resistant line verifying the RNA-silencing base of the resistance. The integration sites of the transgene into the plant genome were identified with inverse-PCR. Moreover, the resistance against TRV was practically unaffected by low temperature conditions and the presence of heterologous viruses. The mechanism of the resistance was further examined by a gene expression analysis that showed increased transcript levels of genes with a key-role in the RNA silencing pathway and the basal antiviral defence. This work provides a comprehensive characterization of the robust virus resistance obtained by a sense transgene and underlines the usefulness of transgenic plants obtained by such a strategy.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"53-66"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9587549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s11248-023-00336-y
Shubei Wang, Vera Gramm, Elke Laport, Tim Holland-Letz, Angel Alonso, Johannes Schenkel
In vitro experiments have shown that the E2 protein of human papillomaviruses (HPV) binds to the upstream regulatory region (URR) of the viral genome and modulates transcription. Additionally, it seems to be a necessary component for viral DNA replication together with E1. We have developed a transgenic mouse model containing the URR region of the low-risk virus HPV11 that regulates the expression of the lacZ reporter gene. Most interestingly, in these mice, the transgene was exclusively expressed in the bulge region of the hair follicle but not in any other tissues. Further experimental data indicate that in double transgenic mice that also express the HPV11-E2 protein under the control of the Ubiquitin C-promoter, the transcription of the reporter gene is modulated. When E2 is present, the expression of the reporter gene also occurs exclusively in the bulge region of the hair follicles as it does in the single transgenic mice, but the expression of the lacZ driven by the URR is increased and the statistical spread is greater. Even if the expression of the reporter gene occurs in the hair follicles of the dorsal skin of an animal uniform, E2 obviously has the capacity for both to induce and to repress the URR activity in vivo.
{"title":"Transgenic HPV11-E2 protein modulates URR activity in vivo.","authors":"Shubei Wang, Vera Gramm, Elke Laport, Tim Holland-Letz, Angel Alonso, Johannes Schenkel","doi":"10.1007/s11248-023-00336-y","DOIUrl":"https://doi.org/10.1007/s11248-023-00336-y","url":null,"abstract":"<p><p>In vitro experiments have shown that the E2 protein of human papillomaviruses (HPV) binds to the upstream regulatory region (URR) of the viral genome and modulates transcription. Additionally, it seems to be a necessary component for viral DNA replication together with E1. We have developed a transgenic mouse model containing the URR region of the low-risk virus HPV11 that regulates the expression of the lacZ reporter gene. Most interestingly, in these mice, the transgene was exclusively expressed in the bulge region of the hair follicle but not in any other tissues. Further experimental data indicate that in double transgenic mice that also express the HPV11-E2 protein under the control of the Ubiquitin C-promoter, the transcription of the reporter gene is modulated. When E2 is present, the expression of the reporter gene also occurs exclusively in the bulge region of the hair follicles as it does in the single transgenic mice, but the expression of the lacZ driven by the URR is increased and the statistical spread is greater. Even if the expression of the reporter gene occurs in the hair follicles of the dorsal skin of an animal uniform, E2 obviously has the capacity for both to induce and to repress the URR activity in vivo.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"67-76"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9527637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s11248-023-00337-x
Muhammad Fahad, Muhammad Tanveer Altaf, Amna Jamil, Abdul Basit, Muhammad Mudassir Aslam, Waqas Liaqat, Muhammad Nadeem Shah, Izhar Ullah, Heba I Mohamed
Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and β-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of β-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.
{"title":"Functional characterization of transcriptional activator gene SIARRI in tomato reveals its role in fruit growth and ripening.","authors":"Muhammad Fahad, Muhammad Tanveer Altaf, Amna Jamil, Abdul Basit, Muhammad Mudassir Aslam, Waqas Liaqat, Muhammad Nadeem Shah, Izhar Ullah, Heba I Mohamed","doi":"10.1007/s11248-023-00337-x","DOIUrl":"https://doi.org/10.1007/s11248-023-00337-x","url":null,"abstract":"<p><p>Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and β-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of β-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"77-93"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9535496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-03-17DOI: 10.1007/s11248-023-00341-1
Mark A Jackson, Jing Xie, Linh T T Nguyen, Xiaohan Wang, Kuok Yap, Peta J Harvey, Edward K Gilding, David J Craik
Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.
{"title":"Plant-based production of an orally active cyclotide for the treatment of multiple sclerosis.","authors":"Mark A Jackson, Jing Xie, Linh T T Nguyen, Xiaohan Wang, Kuok Yap, Peta J Harvey, Edward K Gilding, David J Craik","doi":"10.1007/s11248-023-00341-1","DOIUrl":"10.1007/s11248-023-00341-1","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"121-133"},"PeriodicalIF":3.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9906507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Dmp1-Cre mouse, expressing Cre from an 8-kb DNA fragment of the mouse Dmp1 gene, is a common tool to study gene functions in osteocytes. Here we report that the deletion of Tsc1 (TSC complex subunit 1) by 8 kb Dmp1-Cre causes rectal prolapse in mice. Histological examination shows the presence of colon polyps in Tsc1-deficient mice in association with significantly larger colon and narrower lumen, which recapitulates the common polyps pathology in Tuberous Sclerosis, an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. The intestine in Tsc1-deficient mice is also enlarged with the presence of taller villi. Using the Ai14 reporter mice that express a red fluorescence protein upon Cre recombination, we show that 8 kb Dmp1-Cre activity is evident in portion of the mesenchyme of the colon and small intestine. Lastly, our data show that Tsc1 deletion by Dmp1-Cre leads to an increased proliferation in the mesenchyme of colon, which at least partly contributes to the polyps pathology seen in this mouse model and is likely a contributing factor of the polyps in Tuberous Sclerosis.
{"title":"Off-target activity of the 8 kb Dmp1-Cre results in the deletion of Tsc1 gene in mouse intestinal mesenchyme.","authors":"Iya Ghassib, Honghao Zhang, Shuqun Qi, Rawan Moshen, Yuji Mishina, Teresita Bellido, Fei Liu","doi":"10.1007/s11248-022-00332-8","DOIUrl":"10.1007/s11248-022-00332-8","url":null,"abstract":"<p><p>The Dmp1-Cre mouse, expressing Cre from an 8-kb DNA fragment of the mouse Dmp1 gene, is a common tool to study gene functions in osteocytes. Here we report that the deletion of Tsc1 (TSC complex subunit 1) by 8 kb Dmp1-Cre causes rectal prolapse in mice. Histological examination shows the presence of colon polyps in Tsc1-deficient mice in association with significantly larger colon and narrower lumen, which recapitulates the common polyps pathology in Tuberous Sclerosis, an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. The intestine in Tsc1-deficient mice is also enlarged with the presence of taller villi. Using the Ai14 reporter mice that express a red fluorescence protein upon Cre recombination, we show that 8 kb Dmp1-Cre activity is evident in portion of the mesenchyme of the colon and small intestine. Lastly, our data show that Tsc1 deletion by Dmp1-Cre leads to an increased proliferation in the mesenchyme of colon, which at least partly contributes to the polyps pathology seen in this mouse model and is likely a contributing factor of the polyps in Tuberous Sclerosis.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"135-141"},"PeriodicalIF":2.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9905560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2022-12-19DOI: 10.1007/s11248-022-00331-9
Anastasiia Buziashvili, Alla Yemets
Agricultural crops are susceptible to many diseases caused by various pathogens, such as viruses, bacteria and fungi. This paper reviews the general principles of plant protection against pathogens, as well as the role of iron and antimicrobial peptide metabolism in plant immunity. The article highlights the principles of antibacterial, fungicidal and antiviral action of lactoferrin, a mammalian secretory glycoprotein, and lactoferrin peptides, and their role in protecting plants from phytopathogens. This review offers a comprehensive analysis and shows potential prospects of using the lactoferrin gene to enhance plant resistance to various phytopathogens, as well as the advantages of this biotechnological approach over existing methods of protecting plants against various diseases.
{"title":"Lactoferrin and its role in biotechnological strategies for plant defense against pathogens.","authors":"Anastasiia Buziashvili, Alla Yemets","doi":"10.1007/s11248-022-00331-9","DOIUrl":"10.1007/s11248-022-00331-9","url":null,"abstract":"<p><p>Agricultural crops are susceptible to many diseases caused by various pathogens, such as viruses, bacteria and fungi. This paper reviews the general principles of plant protection against pathogens, as well as the role of iron and antimicrobial peptide metabolism in plant immunity. The article highlights the principles of antibacterial, fungicidal and antiviral action of lactoferrin, a mammalian secretory glycoprotein, and lactoferrin peptides, and their role in protecting plants from phytopathogens. This review offers a comprehensive analysis and shows potential prospects of using the lactoferrin gene to enhance plant resistance to various phytopathogens, as well as the advantages of this biotechnological approach over existing methods of protecting plants against various diseases.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"32 1-2","pages":"1-16"},"PeriodicalIF":2.7,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9761627/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9535455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}