The hordoindolina genes (Hina and Hinb) are believed to play critical roles in barley (Hordeum vulgare L.) grain texture. In this study, we created novel alleles of the Hina gene using CRISPR/Cas9 (Clustered regularly inter spaced short palindromic repeat-associated protein, CRISPR-Cas) genome editing. Mutagenesis of single bases in these novel alleles led to loss of Hina protein function in edited lines. The grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley. Observation of cross-sectional grain structure using scanning electron microscopy revealed different adhesion levels between starch granules and protein matrix. Starch granules were loose and separated from the protein matrix in the wild type, but deeply trapped and tightly integrated with the protein matrix in hina02 mutants. In addition, the grain width and thousand-grain weight of the hina02 mutant were significantly lower than those of the wild type.
{"title":"Novel Hina alleles created by genome editing increase grain hardness and reduce grain width in barley.","authors":"Yanyan Jiang, Jianmin Li, Baolong Liu, Dong Cao, Yuan Zong, Yanzi Chang, Yun Li","doi":"10.1007/s11248-022-00324-8","DOIUrl":"https://doi.org/10.1007/s11248-022-00324-8","url":null,"abstract":"<p><p>The hordoindolina genes (Hina and Hinb) are believed to play critical roles in barley (Hordeum vulgare L.) grain texture. In this study, we created novel alleles of the Hina gene using CRISPR/Cas9 (Clustered regularly inter spaced short palindromic repeat-associated protein, CRISPR-Cas) genome editing. Mutagenesis of single bases in these novel alleles led to loss of Hina protein function in edited lines. The grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley. Observation of cross-sectional grain structure using scanning electron microscopy revealed different adhesion levels between starch granules and protein matrix. Starch granules were loose and separated from the protein matrix in the wild type, but deeply trapped and tightly integrated with the protein matrix in hina02 mutants. In addition, the grain width and thousand-grain weight of the hina02 mutant were significantly lower than those of the wild type.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10546474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01Epub Date: 2022-10-04DOI: 10.1007/s11248-022-00311-z
W K Tonui, V Ahuja, C J Beech, J B Connolly, B Dass, D C M Glandorf, S James, J N Muchiri, C F Mugoya, E A Okoree, H Quemada, J Romeis
Novel genetically modified biological control products (referred to as "GM biocontrol products") are being considered to address a range of complex problems in public health, conservation, and agriculture, including preventing the transmission of vector-borne parasitic and viral diseases as well as the spread of invasive plant and animal species. These interventions involve release of genetically modified organisms (GMOs) into the environment, sometimes with intentional dissemination of the modification within the local population of the targeted species, which presents new challenges and opportunities for regulatory review and decision-making. Practices developed for GMOs, primarily applied to date for GM crops may need to be adapted to accommodate different types of organisms, such as insects, and different technologies, such as gene drive. Developers of new GM biocontrol products would benefit from an early understanding of safety data and information that are likely to be required within the regulatory dossier for regulatory evaluation and decision making. Here a generalizable tool drawing from existing GM crop dossier requirements, forms, and relevant experience is proposed to assist researchers and developers organize and plan their research and trialing. This tool requires considering specifics of each investigational product, their intended use, and country specific requirements at various phases of potential product development, from laboratory research through contained field testing and experimental release into the environment. This may also be helpful to risk assessors and regulators in supporting their systematic and rigorous evaluation of new biocontrol products.
{"title":"Points to consider in seeking biosafety approval for research, testing, and environmental release of experimental genetically modified biocontrol products during research and development.","authors":"W K Tonui, V Ahuja, C J Beech, J B Connolly, B Dass, D C M Glandorf, S James, J N Muchiri, C F Mugoya, E A Okoree, H Quemada, J Romeis","doi":"10.1007/s11248-022-00311-z","DOIUrl":"10.1007/s11248-022-00311-z","url":null,"abstract":"<p><p>Novel genetically modified biological control products (referred to as \"GM biocontrol products\") are being considered to address a range of complex problems in public health, conservation, and agriculture, including preventing the transmission of vector-borne parasitic and viral diseases as well as the spread of invasive plant and animal species. These interventions involve release of genetically modified organisms (GMOs) into the environment, sometimes with intentional dissemination of the modification within the local population of the targeted species, which presents new challenges and opportunities for regulatory review and decision-making. Practices developed for GMOs, primarily applied to date for GM crops may need to be adapted to accommodate different types of organisms, such as insects, and different technologies, such as gene drive. Developers of new GM biocontrol products would benefit from an early understanding of safety data and information that are likely to be required within the regulatory dossier for regulatory evaluation and decision making. Here a generalizable tool drawing from existing GM crop dossier requirements, forms, and relevant experience is proposed to assist researchers and developers organize and plan their research and trialing. This tool requires considering specifics of each investigational product, their intended use, and country specific requirements at various phases of potential product development, from laboratory research through contained field testing and experimental release into the environment. This may also be helpful to risk assessors and regulators in supporting their systematic and rigorous evaluation of new biocontrol products.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9091741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An important optimization step in plant-based recombinant protein production systems is the selection of an appropriate cultivar after a potential host has been determined. Previously, we have shown that transgenic tomatoes of the variety 'Micro-Tom' accumulate incredibly high levels of miraculin (MIR) due to the introduction of MIR gene controlled by a CaMV35S promoter and a heat-shock protein terminator. However, 'Micro-Tom' is unsuitable for commercial production of MIR as it is a dwarf cultivar characterized by small-sized fruit and poor yield. Here, we used the crossbreeding approach to transfer the high MIR accumulation trait of transgenic 'Micro-Tom' tomatoes to 'Natsunokoma' and 'Aichi First', two commercial cultivars producing medium and large fruit sizes, respectively. Fruits of the resultant crossbred lines were larger (~ 95 times), but their miraculin accumulation levels (~ 1,062 μg/g fresh mass) were comparable to the donor cultivar, indicating that the high miraculin accumulation trait was preserved regardless of fruit size or cultivar. Further, the transferred trait resulted in a 3-4 fold increase in overall miraculin production than that of the previously reported line 5B. These findings demonstrate the effectiveness of crossbreeding in improving MIR production in tomatoes and could pave the way for a more efficient production of recombinant proteins in other plants.
{"title":"Improvement of recombinant miraculin production in transgenic tomato by crossbreeding-based genetic background modification.","authors":"Kyoko Hiwasa-Tanase, Suzuno Ohmura, Natsumi Kitazawa, Azusa Ono, Takeshi Suzuki, Hiroshi Ezura","doi":"10.1007/s11248-022-00320-y","DOIUrl":"https://doi.org/10.1007/s11248-022-00320-y","url":null,"abstract":"<p><p>An important optimization step in plant-based recombinant protein production systems is the selection of an appropriate cultivar after a potential host has been determined. Previously, we have shown that transgenic tomatoes of the variety 'Micro-Tom' accumulate incredibly high levels of miraculin (MIR) due to the introduction of MIR gene controlled by a CaMV35S promoter and a heat-shock protein terminator. However, 'Micro-Tom' is unsuitable for commercial production of MIR as it is a dwarf cultivar characterized by small-sized fruit and poor yield. Here, we used the crossbreeding approach to transfer the high MIR accumulation trait of transgenic 'Micro-Tom' tomatoes to 'Natsunokoma' and 'Aichi First', two commercial cultivars producing medium and large fruit sizes, respectively. Fruits of the resultant crossbred lines were larger (~ 95 times), but their miraculin accumulation levels (~ 1,062 μg/g fresh mass) were comparable to the donor cultivar, indicating that the high miraculin accumulation trait was preserved regardless of fruit size or cultivar. Further, the transferred trait resulted in a 3-4 fold increase in overall miraculin production than that of the previously reported line 5B. These findings demonstrate the effectiveness of crossbreeding in improving MIR production in tomatoes and could pave the way for a more efficient production of recombinant proteins in other plants.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40714734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01DOI: 10.1007/s11248-022-00317-7
Robert K D Peterson, Marni G Rolston
{"title":"Correction: Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques.","authors":"Robert K D Peterson, Marni G Rolston","doi":"10.1007/s11248-022-00317-7","DOIUrl":"https://doi.org/10.1007/s11248-022-00317-7","url":null,"abstract":"","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40693096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-08-12DOI: 10.1007/s11248-022-00319-5
Nariman Battulin, Alexey Korablev, Anastasia Ryzhkova, Alexander Smirnov, Evelyn Kabirova, Anna Khabarova, Timofey Lagunov, Irina Serova, Oleg Serov
In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.
{"title":"The human EF1a promoter does not provide expression of the transgene in mice.","authors":"Nariman Battulin, Alexey Korablev, Anastasia Ryzhkova, Alexander Smirnov, Evelyn Kabirova, Anna Khabarova, Timofey Lagunov, Irina Serova, Oleg Serov","doi":"10.1007/s11248-022-00319-5","DOIUrl":"https://doi.org/10.1007/s11248-022-00319-5","url":null,"abstract":"<p><p>In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40704694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-07-07DOI: 10.1007/s11248-022-00315-9
Robert K D Peterson, Marni G Rolston
Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.
{"title":"Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques.","authors":"Robert K D Peterson, Marni G Rolston","doi":"10.1007/s11248-022-00315-9","DOIUrl":"https://doi.org/10.1007/s11248-022-00315-9","url":null,"abstract":"<p><p>Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40570551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rice is an important food crop for three billion people worldwide. The crop is vulnerable to several diseases. Sheath blight caused by fungal pathogen Rhizoctonia solani is a significant threat to rice cultivation accounting for up to 50% yield losses. The pathogen penetrates leaf blades and sheaths, leading to plant necrosis; and major disease resistance gene against the pathogen is not available. This study describes development of sheath blight resistant transgenic indica and japonica rice cultivars through introduction of antifungal β-1,3-glucanase transgene cloned from Trichoderma. The transgene integration and expression in transformed T0 rice plants was examined by PCR, RT-PCR, qRT-PCR demonstrating up to 5-fold higher expression as compared to non-transgenic plants. The bioassay of T0, T1 and homozygous T2 progeny plants with virulent R. solani isolate revealed that plants carrying high level of β-1,3-glucanase expression displayed moderately resistant reaction to the pathogen. The optical micrographs of leaf sheath cells from moderately resistant plant after pathogen inoculation displayed presence of a few hyphae with sparse branching; on the contrary, pathogen hyphae in susceptible non-transgenic plant cells were present in abundance with profuse hyphal branching and forming prominent infection cushions. The disease severity in T2 progeny plants was significantly less as compared to non-transgenic plants confirming role of β-1,3-glucanase in imparting resistance.
{"title":"Conversion of sheath blight susceptible indica and japonica rice cultivars into moderately resistant through expression of antifungal β-1,3-glucanase transgene from Trichoderma spp.","authors":"Shivali Pathania, Jagjeet Singh Lore, Anu Kalia, Ajinder Kaur, Manveer Sharma, Gurjit Singh Mangat, Jagdeep Singh Sandhu","doi":"10.1007/s11248-022-00318-6","DOIUrl":"https://doi.org/10.1007/s11248-022-00318-6","url":null,"abstract":"<p><p>Rice is an important food crop for three billion people worldwide. The crop is vulnerable to several diseases. Sheath blight caused by fungal pathogen Rhizoctonia solani is a significant threat to rice cultivation accounting for up to 50% yield losses. The pathogen penetrates leaf blades and sheaths, leading to plant necrosis; and major disease resistance gene against the pathogen is not available. This study describes development of sheath blight resistant transgenic indica and japonica rice cultivars through introduction of antifungal β-1,3-glucanase transgene cloned from Trichoderma. The transgene integration and expression in transformed T<sub>0</sub> rice plants was examined by PCR, RT-PCR, qRT-PCR demonstrating up to 5-fold higher expression as compared to non-transgenic plants. The bioassay of T<sub>0</sub>, T<sub>1</sub> and homozygous T<sub>2</sub> progeny plants with virulent R. solani isolate revealed that plants carrying high level of β-1,3-glucanase expression displayed moderately resistant reaction to the pathogen. The optical micrographs of leaf sheath cells from moderately resistant plant after pathogen inoculation displayed presence of a few hyphae with sparse branching; on the contrary, pathogen hyphae in susceptible non-transgenic plant cells were present in abundance with profuse hyphal branching and forming prominent infection cushions. The disease severity in T<sub>2</sub> progeny plants was significantly less as compared to non-transgenic plants confirming role of β-1,3-glucanase in imparting resistance.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40693097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-08-08DOI: 10.1007/s11248-022-00316-8
Kevin C Glenn, Andre Silvanovich, Soon Goo Lee, Aron Allen, Stephanie Park, S Eliza Dunn, Colton Kessenich, Chen Meng, John L Vicini, Joseph M Jez
Many protein families have numerous members listed in databases as allergens; however, some allergen database entries, herein called "orphan allergens", are members of large families of which all other members are not allergens. These orphan allergens provide an opportunity to assess whether specific structural features render a protein allergenic. Three orphan allergens [Cladosporium herbarum aldehyde dehydrogenase (ChALDH), Alternaria alternata ALDH (AaALDH), and C. herbarum mannitol dehydrogenase (ChMDH)] were recombinantly produced and purified for structure characterization and for clinical skin prick testing (SPT) in mold allergic participants. Examination of the X-ray crystal structures of ChALDH and ChMDH and a homology structure model of AaALDH did not identify any discernable epitopes that distinguish these putative orphan allergens from their non-allergenic protein relatives. SPT results were aligned with ChMDH being an allergen, 53% of the participants were SPT (+). AaALDH did not elicit SPT reactivity above control proteins not in allergen databases (i.e., Psedomonas syringae indole-3-acetaldehyde dehydrogenase and Zea mays ALDH). Although published results showed consequential human IgE reactivity with ChALDH, no SPT reactivity was observed in this study. With only one of these three orphan allergens, ChMDH, eliciting SPT(+) reactions consistent with the protein being included in allergen databases, this underscores the complicated nature of how bioinformatics is used to assess the potential allergenicity of food proteins that could be newly added to human diets and, when needed, the subsequent clinical testing of that bioinformatic assessment.Trial registration number and date of registration AAC-2017-0467, approved as WIRB protocol #20172536 on 07DEC2017 by WIRB-Copernicus (OHRP/FDA Registration #: IRB00000533, organization #: IORG0000432).
{"title":"Biochemical and clinical studies of putative allergens to assess what distinguishes them from other non-allergenic proteins in the same family.","authors":"Kevin C Glenn, Andre Silvanovich, Soon Goo Lee, Aron Allen, Stephanie Park, S Eliza Dunn, Colton Kessenich, Chen Meng, John L Vicini, Joseph M Jez","doi":"10.1007/s11248-022-00316-8","DOIUrl":"https://doi.org/10.1007/s11248-022-00316-8","url":null,"abstract":"<p><p>Many protein families have numerous members listed in databases as allergens; however, some allergen database entries, herein called \"orphan allergens\", are members of large families of which all other members are not allergens. These orphan allergens provide an opportunity to assess whether specific structural features render a protein allergenic. Three orphan allergens [Cladosporium herbarum aldehyde dehydrogenase (ChALDH), Alternaria alternata ALDH (AaALDH), and C. herbarum mannitol dehydrogenase (ChMDH)] were recombinantly produced and purified for structure characterization and for clinical skin prick testing (SPT) in mold allergic participants. Examination of the X-ray crystal structures of ChALDH and ChMDH and a homology structure model of AaALDH did not identify any discernable epitopes that distinguish these putative orphan allergens from their non-allergenic protein relatives. SPT results were aligned with ChMDH being an allergen, 53% of the participants were SPT (+). AaALDH did not elicit SPT reactivity above control proteins not in allergen databases (i.e., Psedomonas syringae indole-3-acetaldehyde dehydrogenase and Zea mays ALDH). Although published results showed consequential human IgE reactivity with ChALDH, no SPT reactivity was observed in this study. With only one of these three orphan allergens, ChMDH, eliciting SPT(+) reactions consistent with the protein being included in allergen databases, this underscores the complicated nature of how bioinformatics is used to assess the potential allergenicity of food proteins that could be newly added to human diets and, when needed, the subsequent clinical testing of that bioinformatic assessment.Trial registration number and date of registration AAC-2017-0467, approved as WIRB protocol #20172536 on 07DEC2017 by WIRB-Copernicus (OHRP/FDA Registration #: IRB00000533, organization #: IORG0000432).</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40702438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-01Epub Date: 2022-06-25DOI: 10.1007/s11248-022-00314-w
Atsushi Yoshiki, Gregory Ballard, Ana V Perez
Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.
{"title":"Genetic quality: a complex issue for experimental study reproducibility.","authors":"Atsushi Yoshiki, Gregory Ballard, Ana V Perez","doi":"10.1007/s11248-022-00314-w","DOIUrl":"10.1007/s11248-022-00314-w","url":null,"abstract":"<p><p>Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9233100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}