Pub Date : 2024-10-01Epub Date: 2024-08-22DOI: 10.1007/s11248-024-00394-w
Woodbridge A Foster
Mosquitoes visit flowers to obtain sugar or other nutrients and therefore possibly serve as major or minor pollinators of some plant species. They also often derive plant nutrients from other sources, such as extrafloral nectaries and honeydew. In a few cases, the plant-mosquito relationship is close, and mosquito pollination has been confirmed. Most plant species visited by mosquitoes, however, appear to depend on multiple means of pollination, particularly other flower-feeding insects. In addition, most mosquito species visit the flowers of many kinds of plants, possibly dispersing pollen in both biologically meaningful and irrelevant ways. This apparent lack of selectivity by both plants and mosquitoes liberates each of them from dependence on an unreliable pollen vehicle or nutrient source. A hypothetical pollinating role for the two top vectors of devastating human-disease pathogens, Anopheles gambiae or Aedes aegypti, relies on indirect evidence. So far, this evidence suggests that their participation in pollen transfer of native, introduced, or beneficial plants is negligible. The few plant species likely to be pollinated by these vectors are mostly invasive, harmful weeds associated with humans. That conclusion draws support from four characteristics of these vectors: (1) the numerous alternative potential pollinators of the flowers they visit; (2) their common use of diverse non-floral sources of nutrients; (3) the females' infrequent sugar feeding and heavy reliance on human blood for energy; and (4) their relatively low population densities. From these traits it follows that focused suppression or elimination of these two vectors, by whatever means, is highly unlikely to have adverse effects on pollination in endemic biotic communities or on ornamental plants or food crops.
{"title":"Mosquito pollination of plants: an overview of their role and an assessment of the possible contribution of disease vectors.","authors":"Woodbridge A Foster","doi":"10.1007/s11248-024-00394-w","DOIUrl":"10.1007/s11248-024-00394-w","url":null,"abstract":"<p><p>Mosquitoes visit flowers to obtain sugar or other nutrients and therefore possibly serve as major or minor pollinators of some plant species. They also often derive plant nutrients from other sources, such as extrafloral nectaries and honeydew. In a few cases, the plant-mosquito relationship is close, and mosquito pollination has been confirmed. Most plant species visited by mosquitoes, however, appear to depend on multiple means of pollination, particularly other flower-feeding insects. In addition, most mosquito species visit the flowers of many kinds of plants, possibly dispersing pollen in both biologically meaningful and irrelevant ways. This apparent lack of selectivity by both plants and mosquitoes liberates each of them from dependence on an unreliable pollen vehicle or nutrient source. A hypothetical pollinating role for the two top vectors of devastating human-disease pathogens, Anopheles gambiae or Aedes aegypti, relies on indirect evidence. So far, this evidence suggests that their participation in pollen transfer of native, introduced, or beneficial plants is negligible. The few plant species likely to be pollinated by these vectors are mostly invasive, harmful weeds associated with humans. That conclusion draws support from four characteristics of these vectors: (1) the numerous alternative potential pollinators of the flowers they visit; (2) their common use of diverse non-floral sources of nutrients; (3) the females' infrequent sugar feeding and heavy reliance on human blood for energy; and (4) their relatively low population densities. From these traits it follows that focused suppression or elimination of these two vectors, by whatever means, is highly unlikely to have adverse effects on pollination in endemic biotic communities or on ornamental plants or food crops.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"297-322"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588815/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s11248-024-00412-x
Anurag Kanaujia, Solanki Gupta
Genetically Modified (GM) Organisms have been used in various domains since their introduction in the 1980s. According to ISAAA data, the use of GM crops in agriculture has also increased significantly in the past 30 years. However, even after 3 decades of commercialisation, GM crops are still surrounded with controversies with different countries adopting varying approaches to their introduction in the consumer markets, owing to different stances of various stakeholders. Motivated by this multitude of opinions, and absence of knowledge mapping, this study has undertaken scientometric analysis of the publication (Web of Science) and patent (Lens.org) data about genetically modified technology use in agriculture to explore the changing knowledge patterns and technological advancements in the area. It explores both scientific and technological perspectives regarding the use of Genetically Modified Crops, by using publication as well as patent data. The findings of this study highlight the major domains of research, technology development, and leading actors in the ecosystem. These findings can be helpful in taking effective policy decisions, and furthering the research activities. It presents a composite picture using both publications and patent data. Further, it will be of utility to explore the other technologies which are replacing GM technology in agriculture in future studies.
{"title":"Tracing scientific and technological development in genetically modified crops","authors":"Anurag Kanaujia, Solanki Gupta","doi":"10.1007/s11248-024-00412-x","DOIUrl":"https://doi.org/10.1007/s11248-024-00412-x","url":null,"abstract":"<p>Genetically Modified (GM) Organisms have been used in various domains since their introduction in the 1980s. According to ISAAA data, the use of GM crops in agriculture has also increased significantly in the past 30 years. However, even after 3 decades of commercialisation, GM crops are still surrounded with controversies with different countries adopting varying approaches to their introduction in the consumer markets, owing to different stances of various stakeholders. Motivated by this multitude of opinions, and absence of knowledge mapping, this study has undertaken scientometric analysis of the publication (Web of Science) and patent (Lens.org) data about genetically modified technology use in agriculture to explore the changing knowledge patterns and technological advancements in the area. It explores both scientific and technological perspectives regarding the use of Genetically Modified Crops, by using publication as well as patent data. The findings of this study highlight the major domains of research, technology development, and leading actors in the ecosystem. These findings can be helpful in taking effective policy decisions, and furthering the research activities. It presents a composite picture using both publications and patent data. Further, it will be of utility to explore the other technologies which are replacing GM technology in agriculture in future studies.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"49 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1007/s11248-024-00409-6
Hamza Sohail, Iqra Noor, Xuewen Xu, Xuehao Chen, Xiaodong Yang
The study by Zheng et al. (2024) identifies a NAC transcription factor, SOMBRERO (SMB), localized in the root cap of Arabidopsis, which is essential for root halotropism. SMB influences root halotropism by establishing asymmetric auxin distribution in the lateral root cap (LRC) and maintaining the expression of the auxin influx carrier gene AUX1. This mechanism leads to directional root bending away from high salinity areas. The findings reveal the SMB-AUX1-auxin module as a crucial mediator in root cap signaling and root halotropic response.
{"title":"Bending away from salt: a SMB-AUX1 story","authors":"Hamza Sohail, Iqra Noor, Xuewen Xu, Xuehao Chen, Xiaodong Yang","doi":"10.1007/s11248-024-00409-6","DOIUrl":"https://doi.org/10.1007/s11248-024-00409-6","url":null,"abstract":"<p>The study by Zheng et al. (2024) identifies a NAC transcription factor, SOMBRERO (SMB), localized in the root cap of Arabidopsis, which is essential for root halotropism. SMB influences root halotropism by establishing asymmetric auxin distribution in the lateral root cap (LRC) and maintaining the expression of the auxin influx carrier gene AUX1. This mechanism leads to directional root bending away from high salinity areas. The findings reveal the SMB-AUX1-auxin module as a crucial mediator in root cap signaling and root halotropic response. </p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"37 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrogen (N) fertilizers make up the majority of the input used in rice production, and their excess application leads to significant environmental pollution. Developing rice varieties with improved nitrogen use efficiency (NUE) is essential to maintain the sustainability of rice production. This study aims to evaluate the performance of transgenic Oryza sativa japonica cv. Kitaake expressing the barley (Hordeum vulgare) alanine aminotransferase (HvAlaAT) gene in response to different levels of N fertilizer application under tropical paddy field conditions. Results from this study demonstrate that transgenic nitrogen use efficient Kitaake rice (Kitaake NUE) displays a grain yield increase of up to 41% compared to Kitaake null. Transgenic Kitaake NUE expressing the HvAlaAT gene displays a higher N uptake and achieves a higher nitrogen use efficiency compared to control plants while maintaining lower nitrous oxide (N2O) fluxes. The reduction in N2O emissions in Kitaake NUE compared to Kitaake null ranges from 37.5 to 96.3%. The transgenic Kitaake NUE used in this study has potential as a donor to improve the nitrogen use efficiency of indica rice for better adaptability to tropical conditions.
{"title":"Field performance and nitrous oxide emissions of transgenic nitrogen use efficient rice lines cultivated in tropical paddy fields","authors":"Atmitri Sisharmini, Anicetus Wihardjaka, Wening Enggarini, Aniversari Apriana, Aris Hairmansis, Bahagiawati Amirhusin","doi":"10.1007/s11248-024-00410-z","DOIUrl":"https://doi.org/10.1007/s11248-024-00410-z","url":null,"abstract":"<p>Nitrogen (N) fertilizers make up the majority of the input used in rice production, and their excess application leads to significant environmental pollution. Developing rice varieties with improved nitrogen use efficiency (NUE) is essential to maintain the sustainability of rice production. This study aims to evaluate the performance of transgenic <i>Oryza sativa japonica</i> cv. Kitaake expressing the barley (<i>Hordeum vulgare</i>) alanine aminotransferase (<i>HvAlaAT</i>) gene in response to different levels of N fertilizer application under tropical paddy field conditions. Results from this study demonstrate that transgenic nitrogen use efficient Kitaake rice (Kitaake NUE) displays a grain yield increase of up to 41% compared to Kitaake null. Transgenic Kitaake NUE expressing the <i>HvAlaAT</i> gene displays a higher N uptake and achieves a higher nitrogen use efficiency compared to control plants while maintaining lower nitrous oxide (N<sub>2</sub>O) fluxes. The reduction in N<sub>2</sub>O emissions in Kitaake NUE compared to Kitaake null ranges from 37.5 to 96.3%. The transgenic Kitaake NUE used in this study has potential as a donor to improve the nitrogen use efficiency of <i>indica</i> rice for better adaptability to tropical conditions.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"18 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s11248-024-00407-8
Howard Donninger, Katherine Hobbing, Gavin E. Arteel, Geoffrey J. Clark
NORE1A (RASSF5) is a tumor suppressor that is frequently down-regulated in liver tumors. It is an upstream component of the HIPPO pathway, a key regulator of liver development and metabolism. HIPPO disruption can lead to the development of MASLD/MASH. While studying the phenotype of NORE1A knockout mice, we noticed that they exhibit no overt liver tumor phenotype, but have a strong propensity to develop fatty livers characteristic of MASLD/MASH. Additionally, knockdown of NORE1A in liver cells upregulates sterol regulator element binding protein 1 (SREBP1), whose deregulation is central to the development MASLD. Examination of primary human MASLD samples showed an inverse correlation between the expression of NORE1A protein and TAZ, a downstream effector of the HIPPO pathway. Thus, loss of NORE1A expression may contribute to the development of MASLD/MASH in humans and NORE1A knockout mice may provide a new MASLD/MASH model that more accurately mimics the human disease.
{"title":"NORE1A loss promotes MASLD/MASH","authors":"Howard Donninger, Katherine Hobbing, Gavin E. Arteel, Geoffrey J. Clark","doi":"10.1007/s11248-024-00407-8","DOIUrl":"https://doi.org/10.1007/s11248-024-00407-8","url":null,"abstract":"<p>NORE1A (RASSF5) is a tumor suppressor that is frequently down-regulated in liver tumors. It is an upstream component of the HIPPO pathway, a key regulator of liver development and metabolism. HIPPO disruption can lead to the development of MASLD/MASH. While studying the phenotype of NORE1A knockout mice, we noticed that they exhibit no overt liver tumor phenotype, but have a strong propensity to develop fatty livers characteristic of MASLD/MASH. Additionally, knockdown of NORE1A in liver cells upregulates sterol regulator element binding protein 1 (SREBP1), whose deregulation is central to the development MASLD. Examination of primary human MASLD samples showed an inverse correlation between the expression of NORE1A protein and TAZ, a downstream effector of the HIPPO pathway. Thus, loss of NORE1A expression may contribute to the development of MASLD/MASH in humans and NORE1A knockout mice may provide a new MASLD/MASH model that more accurately mimics the human disease.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"10 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-11DOI: 10.1007/s11248-024-00389-7
Rui Lu, Xiaoming Li, Jian Hu, Yancui Wang, Le Jin
Monellin is a sweet protein that may be used as a safe and healthy sweetener. However, due to its low stability, the application of monellin is currently very limited. Here, we describe a wild-type, a double-sites mutant (E2N/E23A) and a triple-sites mutant (N14A/E23Q/S76Y) of single-chain monellin (MNEI) expressed in transgenic mice milk. Based on enzyme-linked immunoassay (ELISA), Western blot, and sweetness intensity testing, their sweetness and stability were compared. After boiling for 2 min at different pH conditions (2.5, 5.1, 6.8, and 8.2), N14A/E23Q/S76Y-MNEI showed significantly higher sweetness and stability than the wild-type and E2N/E23A-MNEI. These results suggest that N14A/E23Q/S76Y-MNEI shows remarkable potential as a sweetener in the future.
{"title":"Expression of a single-chain monellin (MNEI) mutant with enhanced stability in transgenic mice milk.","authors":"Rui Lu, Xiaoming Li, Jian Hu, Yancui Wang, Le Jin","doi":"10.1007/s11248-024-00389-7","DOIUrl":"10.1007/s11248-024-00389-7","url":null,"abstract":"<p><p>Monellin is a sweet protein that may be used as a safe and healthy sweetener. However, due to its low stability, the application of monellin is currently very limited. Here, we describe a wild-type, a double-sites mutant (E2N/E23A) and a triple-sites mutant (N14A/E23Q/S76Y) of single-chain monellin (MNEI) expressed in transgenic mice milk. Based on enzyme-linked immunoassay (ELISA), Western blot, and sweetness intensity testing, their sweetness and stability were compared. After boiling for 2 min at different pH conditions (2.5, 5.1, 6.8, and 8.2), N14A/E23Q/S76Y-MNEI showed significantly higher sweetness and stability than the wild-type and E2N/E23A-MNEI. These results suggest that N14A/E23Q/S76Y-MNEI shows remarkable potential as a sweetener in the future.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"211-218"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141301664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-08DOI: 10.1007/s11248-024-00390-0
David W Edwards, Gabrielle M Kroepfl, Jacob M Jackson, Sonja Chen, Lisa Hudson-Price, Ganapati Srinivasa, Kavya Kannan, Qianqian Liu, Joel E Michalek, Charles Keller
Rhabdomyosarcoma (RMS) is a solid tumor whose metastatic progression can be accelerated through interleukin-4 receptor alpha (Il4ra) mediated interaction with normal muscle stem cells (satellite cells). To understand the function of Il4ra in this tumor initiation phase of RMS, we conditionally deleted Il4ra in genetically-engineered RMS mouse models. Nullizygosity of Il4ra altered the latency, site and/or stage distribution of RMS tumors compared to IL4RA intact models. Primary tumor cell cultures taken from the genetically-engineered models then used in orthotopic allografts further defined the interaction of satellite cells and RMS tumor cells in the context of tumor initiation: in alveolar rhabdomyosarcoma (ARMS), satellite cell co-injection was necessary for Il4ra null tumor cells engraftment, whereas in embryonal rhabdomyosarcoma (ERMS), satellite cell co-injection decreased latency of engraftment of Il4ra wildtype tumor cells but not Il4ra null tumor cells. When refocusing on Il4ra wildtype tumors by single cell sequencing and cytokine studies, we have uncovered a putative signaling interplay of Il4 from T-lymphocytes being received by Il4ra + rhabdomyosarcoma tumor cells, which in turn express Ccl2, the ligand for Ccr2 and Ccr5. Taken together, these results suggest that mutations imposed during tumor initiation have different effects than genetic or therapeutic intervention imposed once tumors are already formed. We also propose that CCL2 and its cognate receptors CCR2 and/or CCR5 are potential therapeutic targets in Il4ra mediated RMS progression.
{"title":"Developmental and therapeutic implications of IL4ra expression for rhabdomyosarcoma.","authors":"David W Edwards, Gabrielle M Kroepfl, Jacob M Jackson, Sonja Chen, Lisa Hudson-Price, Ganapati Srinivasa, Kavya Kannan, Qianqian Liu, Joel E Michalek, Charles Keller","doi":"10.1007/s11248-024-00390-0","DOIUrl":"10.1007/s11248-024-00390-0","url":null,"abstract":"<p><p>Rhabdomyosarcoma (RMS) is a solid tumor whose metastatic progression can be accelerated through interleukin-4 receptor alpha (Il4ra) mediated interaction with normal muscle stem cells (satellite cells). To understand the function of Il4ra in this tumor initiation phase of RMS, we conditionally deleted Il4ra in genetically-engineered RMS mouse models. Nullizygosity of Il4ra altered the latency, site and/or stage distribution of RMS tumors compared to IL4RA intact models. Primary tumor cell cultures taken from the genetically-engineered models then used in orthotopic allografts further defined the interaction of satellite cells and RMS tumor cells in the context of tumor initiation: in alveolar rhabdomyosarcoma (ARMS), satellite cell co-injection was necessary for Il4ra null tumor cells engraftment, whereas in embryonal rhabdomyosarcoma (ERMS), satellite cell co-injection decreased latency of engraftment of Il4ra wildtype tumor cells but not Il4ra null tumor cells. When refocusing on Il4ra wildtype tumors by single cell sequencing and cytokine studies, we have uncovered a putative signaling interplay of Il4 from T-lymphocytes being received by Il4ra + rhabdomyosarcoma tumor cells, which in turn express Ccl2, the ligand for Ccr2 and Ccr5. Taken together, these results suggest that mutations imposed during tumor initiation have different effects than genetic or therapeutic intervention imposed once tumors are already formed. We also propose that CCL2 and its cognate receptors CCR2 and/or CCR5 are potential therapeutic targets in Il4ra mediated RMS progression.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"229-241"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-10DOI: 10.1007/s11248-024-00387-9
J C M Rodrigues, J Carrijo, R M Anjos, N B Cunha, P Grynberg, F J L Aragão, G R Vianna
Plants evolved, over millions of years, complex defense systems against pathogens. Once infected, the interaction between pathogen effector molecules and host receptors triggers plant immune responses, which include apoptosis, systemic immune response, among others. An important protein family responsible for pathogen effector recognition is the nucleotide binding site-leucine repeat rich (NBS-LRR) proteins. The NBS-LRR gene family is the largest disease resistance gene class in plants. These proteins are widely distributed in vascular plants and have a complex multigenic cluster distribution in plant genomes. To counteract the genetic load of such a large gene family on fitness cost, plants evolved a mechanism using post transcriptional gene silencing induced by small RNAs, particularly microRNAs. For the NBS-LRR gene family, the small RNAs involved in this silencing mechanism are mainly the microRNA482/2118 superfamily. This suppression mechanism is relieved upon pathogen infection, thus allowing increased NBS-LRR expression and triggering plant immunity. In this review, we will discuss the biogenesis of microRNAs and secondary RNAs involved in this silencing mechanism, biochemical and structural features of NBS-LRR proteins in response to pathogen effectors and the evolution of microRNA-based silencing mechanism with a focus on the miR482/2118 family. Furthermore, the biotechnological manipulation of microRNA expression, using both transgenic or genome editing approaches to improve cultivated plants will be discussed, with a focus on the miR482/2118 family in soybean.
{"title":"The role of microRNAs in NBS-LRR gene expression and its implications for plant immunity and crop development.","authors":"J C M Rodrigues, J Carrijo, R M Anjos, N B Cunha, P Grynberg, F J L Aragão, G R Vianna","doi":"10.1007/s11248-024-00387-9","DOIUrl":"10.1007/s11248-024-00387-9","url":null,"abstract":"<p><p>Plants evolved, over millions of years, complex defense systems against pathogens. Once infected, the interaction between pathogen effector molecules and host receptors triggers plant immune responses, which include apoptosis, systemic immune response, among others. An important protein family responsible for pathogen effector recognition is the nucleotide binding site-leucine repeat rich (NBS-LRR) proteins. The NBS-LRR gene family is the largest disease resistance gene class in plants. These proteins are widely distributed in vascular plants and have a complex multigenic cluster distribution in plant genomes. To counteract the genetic load of such a large gene family on fitness cost, plants evolved a mechanism using post transcriptional gene silencing induced by small RNAs, particularly microRNAs. For the NBS-LRR gene family, the small RNAs involved in this silencing mechanism are mainly the microRNA482/2118 superfamily. This suppression mechanism is relieved upon pathogen infection, thus allowing increased NBS-LRR expression and triggering plant immunity. In this review, we will discuss the biogenesis of microRNAs and secondary RNAs involved in this silencing mechanism, biochemical and structural features of NBS-LRR proteins in response to pathogen effectors and the evolution of microRNA-based silencing mechanism with a focus on the miR482/2118 family. Furthermore, the biotechnological manipulation of microRNA expression, using both transgenic or genome editing approaches to improve cultivated plants will be discussed, with a focus on the miR482/2118 family in soybean.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"159-174"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-24DOI: 10.1007/s11248-024-00386-w
Song-Hyok Pak, Tae-Song Ri, Tong-Su Ho, Gyong-Song Kim, Hyok-Il Kim, Un-Hyang Ho
Plant WRKY transcription factors are responsible for biotic and abiotic stresses and play an important role in enhancing their adaptability. The AtWRKY33 is a gene that functions in response to abiotic stresses such as low temperature, drought, salinity, etc. In this study, a recombinant vector YG8198-ZmWRKY53 carrying the ZmWRKY53, an interspecific homolog of the dicotyledonous AtWRKY33, was transferred to rice plants by Agrobacterium mediated transformation. The ectopic expression of the ZmWRKY53 in transgenic rice plants conferred cold tolerance with a higher accumulation of free proline and water-soluble sugars, an increase in chlorophyll content, a decrease in electrolyte leakage rate and MDA levels compared to control plants. This result suggests that ZmWRKY53 may confer cold tolerance in rice.
{"title":"Stress responsive ZmWRKY53 gene increases cold tolerance in rice.","authors":"Song-Hyok Pak, Tae-Song Ri, Tong-Su Ho, Gyong-Song Kim, Hyok-Il Kim, Un-Hyang Ho","doi":"10.1007/s11248-024-00386-w","DOIUrl":"10.1007/s11248-024-00386-w","url":null,"abstract":"<p><p>Plant WRKY transcription factors are responsible for biotic and abiotic stresses and play an important role in enhancing their adaptability. The AtWRKY33 is a gene that functions in response to abiotic stresses such as low temperature, drought, salinity, etc. In this study, a recombinant vector YG8198-ZmWRKY53 carrying the ZmWRKY53, an interspecific homolog of the dicotyledonous AtWRKY33, was transferred to rice plants by Agrobacterium mediated transformation. The ectopic expression of the ZmWRKY53 in transgenic rice plants conferred cold tolerance with a higher accumulation of free proline and water-soluble sugars, an increase in chlorophyll content, a decrease in electrolyte leakage rate and MDA levels compared to control plants. This result suggests that ZmWRKY53 may confer cold tolerance in rice.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"219-227"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-26DOI: 10.1007/s11248-024-00393-x
Abdullah Al Mamun, M Mizanur Rahman, Md Amdadul Huq, Md Mashiar Rahman, Md Rasel Rana, Shabiha Tasbir Rahman, Mst Lata Khatun, Md Khasrul Alam
Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.
{"title":"Phytoremediation: a transgenic perspective in omics era.","authors":"Abdullah Al Mamun, M Mizanur Rahman, Md Amdadul Huq, Md Mashiar Rahman, Md Rasel Rana, Shabiha Tasbir Rahman, Mst Lata Khatun, Md Khasrul Alam","doi":"10.1007/s11248-024-00393-x","DOIUrl":"10.1007/s11248-024-00393-x","url":null,"abstract":"<p><p>Phytoremediation is an environmental safety strategy that might serve as a viable preventative approach to reduce soil contamination in a cost-effective manner. Using plants to remediate pollution from the environment is referred to as phytoremediation. In the past few decades, plants have undergone genetic manipulation to overcome inherent limitations by using genetically modified plants. This review illustrates the eco-friendly process of cleaning the environment using transgenic strategies combined with omics technologies. Herbicides tolerance and phytoremediation abilities have been established in genetically modified plants. Transgenic plants have eliminated the pesticides atrazine and metolachlor from the soil. To expand the application of genetically engineered plants for phytoremediation process, it is essential to test strategies in the field and have contingency planning. Omics techniques were used for understanding various genetic, hormonal, and metabolic pathways responsible for phytoremediation in soil. Transcriptomics and metabolomics provide useful information as resources to understand the mechanisms behind phytoremediation. This review aims to highlight the integration of transgenic strategies and omics technologies to enhance phytoremediation efficiency, emphasizing the need for field testing and comprehensive planning for successful implementation.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":" ","pages":"175-194"},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141451598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}