Pub Date : 2024-11-28DOI: 10.1016/j.tplants.2024.11.001
Seung Y Rhee, Daniel N Anstett, Edgar B Cahoon, Alejandra A Covarrubias-Robles, Eric Danquah, Natalia Dudareva, Hiroshi Ezura, Kadeem J Gilbert, Rodrigo A Gutiérrez, Michelle Heck, David B Lowry, Ron Mittler, Gloria Muday, Clare Mukankusi, Andrew D L Nelson, Silvia Restrepo, Hatem Rouached, Motoaki Seki, Berkley Walker, Danielle Way, Andreas P M Weber
The accelerated pace of climate change over the past several years should serve as a wake-up call for all scientists, farmers, and decision makers, as it severely threatens our food supply and could result in famine, migration, war, and an overall destabilization of our society. Rapid and significant changes are therefore needed in the way we conduct research on plant resilience, develop new crop varieties, and cultivate those crops in our agricultural systems. Here, we describe the main bottlenecks for these processes and outline a set of key recommendations on how to accelerate research in this critical area for our society.
{"title":"Resilient plants, sustainable future.","authors":"Seung Y Rhee, Daniel N Anstett, Edgar B Cahoon, Alejandra A Covarrubias-Robles, Eric Danquah, Natalia Dudareva, Hiroshi Ezura, Kadeem J Gilbert, Rodrigo A Gutiérrez, Michelle Heck, David B Lowry, Ron Mittler, Gloria Muday, Clare Mukankusi, Andrew D L Nelson, Silvia Restrepo, Hatem Rouached, Motoaki Seki, Berkley Walker, Danielle Way, Andreas P M Weber","doi":"10.1016/j.tplants.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.11.001","url":null,"abstract":"<p><p>The accelerated pace of climate change over the past several years should serve as a wake-up call for all scientists, farmers, and decision makers, as it severely threatens our food supply and could result in famine, migration, war, and an overall destabilization of our society. Rapid and significant changes are therefore needed in the way we conduct research on plant resilience, develop new crop varieties, and cultivate those crops in our agricultural systems. Here, we describe the main bottlenecks for these processes and outline a set of key recommendations on how to accelerate research in this critical area for our society.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.tplants.2024.10.018
Pushan Bag, Alexander G Ivanov, Norman P Huner, Stefan Jansson
Boreal conifers - the 'Christmas trees' - maintain their green needles over the winter by retaining their chlorophyll. These conifers face the toughest challenge in February and March, when subzero temperatures coincide with high solar radiation. To balance the light energy they harvest with the light energy they utilise, conifers deploy various mechanisms in parallel. These include, thylakoid destacking, which facilitates direct energy transfer from Photosystem II (PSII) to Photosystem I (PSI), and excess energy dissipation through sustained nonphotochemical quenching (NPQ). Additionally, they upregulate alternative electron transport pathways to safely reroute excess electrons while maintaining ATP production. From an evolutionary and ecological perspective, we consider these mechanisms as part of a comprehensive photosynthetic alteration, which enhances our understanding of winter acclimation in conifers and their dominance in the boreal forests.
北方针叶树--"圣诞树"--通过保留叶绿素在冬季保持绿色针叶。这些针叶树在二月和三月面临着最严峻的挑战,因为此时零度以下的气温与高太阳辐射同时出现。为了平衡它们采集的光能和利用的光能,针叶树同时采用了多种机制。这些机制包括促进光系统 II(PSII)向光系统 I(PSI)直接能量转移的类木质分解机制,以及通过持续的非光化学淬灭(NPQ)消散多余能量的机制。此外,它们还能上调替代电子传递途径,在维持 ATP 生产的同时安全地转运多余电子。从进化和生态学的角度来看,我们认为这些机制是全面光合作用改变的一部分,从而加深了我们对针叶树冬季适应性及其在北方森林中主导地位的理解。
{"title":"Photosynthetic advantages of conifers in the boreal forest.","authors":"Pushan Bag, Alexander G Ivanov, Norman P Huner, Stefan Jansson","doi":"10.1016/j.tplants.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.018","url":null,"abstract":"<p><p>Boreal conifers - the 'Christmas trees' - maintain their green needles over the winter by retaining their chlorophyll. These conifers face the toughest challenge in February and March, when subzero temperatures coincide with high solar radiation. To balance the light energy they harvest with the light energy they utilise, conifers deploy various mechanisms in parallel. These include, thylakoid destacking, which facilitates direct energy transfer from Photosystem II (PSII) to Photosystem I (PSI), and excess energy dissipation through sustained nonphotochemical quenching (NPQ). Additionally, they upregulate alternative electron transport pathways to safely reroute excess electrons while maintaining ATP production. From an evolutionary and ecological perspective, we consider these mechanisms as part of a comprehensive photosynthetic alteration, which enhances our understanding of winter acclimation in conifers and their dominance in the boreal forests.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.tplants.2024.10.014
Lucas L Peralta Ogorek, Yiqun Gao, Edward Farrar, Bipin K Pandey
Soil compaction is an agricultural challenge with profound influence on the physical, chemical, and biological properties of the soil. It causes drastic changes by increasing mechanical impedance, reducing water infiltration, gaseous exchange, and biological activities. Soil compaction hinders root growth, limiting nutrient and water foraging abilities of plants. Recent research reveals that plant roots sense soil compaction due to higher ethylene accumulation in and around root tips. Ethylene orchestrates auxin and abscisic acid as downstream signals to regulate root adaptive responses to soil compaction. In this review, we describe the changes inflicted by soil compaction ranging from cell to organ scale and explore the latest research regarding plant root compaction sensing and response.
{"title":"Soil compaction sensing mechanisms and root responses.","authors":"Lucas L Peralta Ogorek, Yiqun Gao, Edward Farrar, Bipin K Pandey","doi":"10.1016/j.tplants.2024.10.014","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.014","url":null,"abstract":"<p><p>Soil compaction is an agricultural challenge with profound influence on the physical, chemical, and biological properties of the soil. It causes drastic changes by increasing mechanical impedance, reducing water infiltration, gaseous exchange, and biological activities. Soil compaction hinders root growth, limiting nutrient and water foraging abilities of plants. Recent research reveals that plant roots sense soil compaction due to higher ethylene accumulation in and around root tips. Ethylene orchestrates auxin and abscisic acid as downstream signals to regulate root adaptive responses to soil compaction. In this review, we describe the changes inflicted by soil compaction ranging from cell to organ scale and explore the latest research regarding plant root compaction sensing and response.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.tplants.2024.10.013
Hanneke A C Suijkerbuijk, Sergio E Ramos, Erik H Poelman
Many plants are extremely plastic in their vegetative and life-history traits, allowing them to deal with a variety of environmental conditions during their lifetime. However, in our understanding of plant reproduction, plasticity in mating system is not broadly considered. Even though mating system shifts are well studied on an evolutionary timescale, we show that many traits affecting plant mating system also show plasticity within an ecological timeframe. This plasticity in reproduction can be found in prepollination, in interactions with pollinators, and in various postpollination processes. We bring together molecular and ecological work on plant reproduction and guide future research on mating systems to embrace trait plasticity and context dependency of mating strategies.
{"title":"Plasticity in plant mating systems.","authors":"Hanneke A C Suijkerbuijk, Sergio E Ramos, Erik H Poelman","doi":"10.1016/j.tplants.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.013","url":null,"abstract":"<p><p>Many plants are extremely plastic in their vegetative and life-history traits, allowing them to deal with a variety of environmental conditions during their lifetime. However, in our understanding of plant reproduction, plasticity in mating system is not broadly considered. Even though mating system shifts are well studied on an evolutionary timescale, we show that many traits affecting plant mating system also show plasticity within an ecological timeframe. This plasticity in reproduction can be found in prepollination, in interactions with pollinators, and in various postpollination processes. We bring together molecular and ecological work on plant reproduction and guide future research on mating systems to embrace trait plasticity and context dependency of mating strategies.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.tplants.2024.10.015
Ziv Aardening, Hitaishi Khandal, Ori Avraham Erlichman, Sigal Savaldi-Goldstein
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
{"title":"The whole and its parts: cell-specific functions of brassinosteroids.","authors":"Ziv Aardening, Hitaishi Khandal, Ori Avraham Erlichman, Sigal Savaldi-Goldstein","doi":"10.1016/j.tplants.2024.10.015","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.015","url":null,"abstract":"<p><p>Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.tplants.2024.10.017
Joerg Fettke, Alisdair R Fernie
The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.
{"title":"Do storage reserves contribute to plant phenotypic plasticity?","authors":"Joerg Fettke, Alisdair R Fernie","doi":"10.1016/j.tplants.2024.10.017","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.017","url":null,"abstract":"<p><p>The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.tplants.2024.10.011
Ülo Niinemets, Martin Zobel
Because of the growing human population, increasing agricultural yields is becoming increasingly more important. However, various environmental crises have led society to demand a reduction in the environmental damage caused by agriculture. Until now, the economic and ecological aspects of plant cultivation have developed largely independently. Here, we propose a novel ecological intensification index (EII) that integrates both economic and ecological goals, measured in relative units as the realized proportion of a possible maximum value. The EII can incorporate multiple ecological and/or economic measures with different weights to balance societal needs, environmental concerns, and scientific knowledge. Using the EII will provide a quantitative target for breeders, agronomists, and farmers to catalyze innovation toward a minimal ecological impact of agriculture.
{"title":"Ecological intensification index: reducing global footprint of agriculture.","authors":"Ülo Niinemets, Martin Zobel","doi":"10.1016/j.tplants.2024.10.011","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.011","url":null,"abstract":"<p><p>Because of the growing human population, increasing agricultural yields is becoming increasingly more important. However, various environmental crises have led society to demand a reduction in the environmental damage caused by agriculture. Until now, the economic and ecological aspects of plant cultivation have developed largely independently. Here, we propose a novel ecological intensification index (EII) that integrates both economic and ecological goals, measured in relative units as the realized proportion of a possible maximum value. The EII can incorporate multiple ecological and/or economic measures with different weights to balance societal needs, environmental concerns, and scientific knowledge. Using the EII will provide a quantitative target for breeders, agronomists, and farmers to catalyze innovation toward a minimal ecological impact of agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Calcium signaling is a cornerstone of plant defense responses. In this opinion article we explore how pathogens exploit this pathway by targeting calcium sensors such as calmodulin (CaM) and calmodulin-like proteins (CMLs) with their secreted effectors. We illustrate different mechanisms by which effectors manipulate calcium homeostasis, cytoskeletal dynamics, metabolism, hormone biosynthesis, gene regulation, and chloroplast function to suppress plant immunity and enhance virulence. Targeting calcium signaling to thwart or weaken host defenses appears to be a common strategy among pathogens infecting animal cells, and we present here selected examples of this convergence. Understanding these strategies provides valuable insights into the interactions between plants and pathogens, and should pave the way for the development of new disease control strategies.
{"title":"Pathogen effectors hijack calcium signaling to promote virulence.","authors":"Jean-Philippe Galaud, Stéphane Genin, Didier Aldon","doi":"10.1016/j.tplants.2024.10.012","DOIUrl":"https://doi.org/10.1016/j.tplants.2024.10.012","url":null,"abstract":"<p><p>Calcium signaling is a cornerstone of plant defense responses. In this opinion article we explore how pathogens exploit this pathway by targeting calcium sensors such as calmodulin (CaM) and calmodulin-like proteins (CMLs) with their secreted effectors. We illustrate different mechanisms by which effectors manipulate calcium homeostasis, cytoskeletal dynamics, metabolism, hormone biosynthesis, gene regulation, and chloroplast function to suppress plant immunity and enhance virulence. Targeting calcium signaling to thwart or weaken host defenses appears to be a common strategy among pathogens infecting animal cells, and we present here selected examples of this convergence. Understanding these strategies provides valuable insights into the interactions between plants and pathogens, and should pave the way for the development of new disease control strategies.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-07-15DOI: 10.1016/j.tplants.2024.07.002
Vidhi Raturi, Gaurav Zinta
Warm temperatures and heat stress trigger distinct plant responses. Recently, Li et al. and Tan et al. identified HSFA1 heat shock transcription factors (HSFs) as central gatekeepers of high-temperature signaling, integrating warm temperature and heat shock responses (HSRs) in arabidopsis (Arabidopsis thaliana). HSFA1d stabilizes phytochrome-interacting factor 4 (PIF4) and activates HSFA2, establishing a crosstalk between thermomorphogenesis and thermotolerance.
高温和热胁迫会引发不同的植物反应。最近,Li 等人和 Tan 等人发现 HSFA1 热休克转录因子(HSFs)是高温信号传导的核心看门人,它整合了拟南芥(Arabidopsis thaliana)的暖温和热休克反应(HSRs)。HSFA1d 稳定植物色素互作因子 4(PIF4)并激活 HSFA2,在热形态发生和耐热性之间建立了串联。
{"title":"HSFA1 heat shock factors integrate warm temperature and heat signals in plants.","authors":"Vidhi Raturi, Gaurav Zinta","doi":"10.1016/j.tplants.2024.07.002","DOIUrl":"10.1016/j.tplants.2024.07.002","url":null,"abstract":"<p><p>Warm temperatures and heat stress trigger distinct plant responses. Recently, Li et al. and Tan et al. identified HSFA1 heat shock transcription factors (HSFs) as central gatekeepers of high-temperature signaling, integrating warm temperature and heat shock responses (HSRs) in arabidopsis (Arabidopsis thaliana). HSFA1d stabilizes phytochrome-interacting factor 4 (PIF4) and activates HSFA2, establishing a crosstalk between thermomorphogenesis and thermotolerance.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"1165-1167"},"PeriodicalIF":17.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-30DOI: 10.1016/j.tplants.2024.04.010
Chunjie Li, Hans Lambers, Jingying Jing, Chaochun Zhang, T Martijn Bezemer, John Klironomos, Wen-Feng Cong, Fusuo Zhang
Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.
{"title":"Belowground cascading biotic interactions trigger crop diversity benefits.","authors":"Chunjie Li, Hans Lambers, Jingying Jing, Chaochun Zhang, T Martijn Bezemer, John Klironomos, Wen-Feng Cong, Fusuo Zhang","doi":"10.1016/j.tplants.2024.04.010","DOIUrl":"10.1016/j.tplants.2024.04.010","url":null,"abstract":"<p><p>Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"1191-1202"},"PeriodicalIF":17.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}