首页 > 最新文献

Trends in Plant Science最新文献

英文 中文
Advisory Board and Contents 咨询委员会和内容
IF 20.5 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-03 DOI: 10.1016/s1360-1385(24)00157-2
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s1360-1385(24)00157-2","DOIUrl":"https://doi.org/10.1016/s1360-1385(24)00157-2","url":null,"abstract":"No Abstract","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":20.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox regulation of the Calvin-Benson-Bassham cycle during cold acclimation. 低温适应过程中卡尔文-本森-巴塞尔姆循环的氧化还原调节。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-09 DOI: 10.1016/j.tplants.2024.01.007
Przemysław Kopeć, Marcin Rapacz, Rajeev Arora

NADPH-dependent thioredoxin reductase C (NTRC) redox interaction with protein CP12 plays a role in cold acclimation. A recent study by Teh et al. describes the underlying molecular mechanisms that leads to dissociation of the autoinhibitory PRK/CP12/GAPDH (phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase) supracomplex. We propose that chloroplast-to-nucleus retrograde signaling precedes the described mechanism.

NADPH依赖性硫氧还原酶C(NTRC)与蛋白CP12的氧化还原相互作用在冷适应中发挥作用。Teh 等人最近的一项研究描述了导致自抑制性 PRK/CP12/GAPDH(磷脂酰基酶/CP12/甘油醛-3-磷酸脱氢酶)超复合物解离的基本分子机制。我们认为,叶绿体到细胞核的逆行信号传递先于所述机制。
{"title":"Redox regulation of the Calvin-Benson-Bassham cycle during cold acclimation.","authors":"Przemysław Kopeć, Marcin Rapacz, Rajeev Arora","doi":"10.1016/j.tplants.2024.01.007","DOIUrl":"10.1016/j.tplants.2024.01.007","url":null,"abstract":"<p><p>NADPH-dependent thioredoxin reductase C (NTRC) redox interaction with protein CP12 plays a role in cold acclimation. A recent study by Teh et al. describes the underlying molecular mechanisms that leads to dissociation of the autoinhibitory PRK/CP12/GAPDH (phosphoribulokinase/CP12/glyceraldehyde-3-phosphate dehydrogenase) supracomplex. We propose that chloroplast-to-nucleus retrograde signaling precedes the described mechanism.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic regulation of the root angle in cereals. 谷物根角的遗传调控。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-23 DOI: 10.1016/j.tplants.2024.01.008
Gwendolyn K Kirschner, Frank Hochholdinger, Silvio Salvi, Malcolm J Bennett, Guoqiang Huang, Rahul A Bhosale

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.

根系角度在有效捕捉不同土层的养分和水分方面起着至关重要的作用。较陡的根角可以从较深的土层中获取流动的水和氮,而较浅的根角则有利于从表土中获取不流动的磷。因此,了解根角的遗传调控对培育能有效捕获资源和提高产量的作物品种至关重要。此外,这种认识还有助于开发能在更深的土壤层中有效固碳的品种,从而支持全球的碳减排努力。在此,我们回顾并总结了近期有关控制谷类作物根角的分子成分的重要发现,并概述了该领域尚存在的研究空白。
{"title":"Genetic regulation of the root angle in cereals.","authors":"Gwendolyn K Kirschner, Frank Hochholdinger, Silvio Salvi, Malcolm J Bennett, Guoqiang Huang, Rahul A Bhosale","doi":"10.1016/j.tplants.2024.01.008","DOIUrl":"10.1016/j.tplants.2024.01.008","url":null,"abstract":"<p><p>The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ameliorating microalgal OMEGA production using omics platforms. 利用组学平台改善微藻 OMEGA 生产。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-12 DOI: 10.1016/j.tplants.2024.01.002
Iqra Mariam, Maurizio Bettiga, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas, Alok Patel

Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.

在过去十年中,由于微藻具有多种健康益处,人们对微藻中的ω(ω)-3 脂肪酸的关注度不断提高。生物工艺的优化显著提高了ω-3 脂肪酸的产量,但人们对高产菌株的遗传结构和代谢途径的了解仍然有限。利用基因组学、转录组学、蛋白质组学和代谢组学工具,可以提供对本地ω-3 脂肪酸生产微藻的重要系统级见解,从而进一步提高产量。在这篇综述中,我们探讨了 "omics "研究,这些研究揭示了ω-3 脂肪酸合成的替代途径以及全基因组调控对培养参数的响应。我们还强调了为提高产量而进行微调的潜在目标。尽管取得了进展,但要克服当前微藻ω-3 脂肪酸生产过程优化的瓶颈,推进这一关键领域的发展,一个综合的全息平台是必不可少的。
{"title":"Ameliorating microalgal OMEGA production using omics platforms.","authors":"Iqra Mariam, Maurizio Bettiga, Ulrika Rova, Paul Christakopoulos, Leonidas Matsakas, Alok Patel","doi":"10.1016/j.tplants.2024.01.002","DOIUrl":"10.1016/j.tplants.2024.01.002","url":null,"abstract":"<p><p>Over the past decade, the focus on omega (ω)-3 fatty acids from microalgae has intensified due to their diverse health benefits. Bioprocess optimization has notably increased ω-3 fatty acid yields, yet understanding of the genetic architecture and metabolic pathways of high-yielding strains remains limited. Leveraging genomics, transcriptomics, proteomics, and metabolomics tools can provide vital system-level insights into native ω-3 fatty acid-producing microalgae, further boosting production. In this review, we explore 'omics' studies uncovering alternative pathways for ω-3 fatty acid synthesis and genome-wide regulation in response to cultivation parameters. We also emphasize potential targets to fine-tune in order to enhance yield. Despite progress, an integrated omics platform is essential to overcome current bottlenecks in optimizing the process for ω-3 fatty acid production from microalgae, advancing this crucial field.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNAs: the art of being influential without protein. LncRNA:没有蛋白质也能发挥影响力的艺术。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-16 DOI: 10.1016/j.tplants.2024.01.006
Lorena Ramírez Gonzales, Suze Blom, Rossana Henriques, Christian W B Bachem, Richard G H Immink

The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.

植物长非编码(lnc)RNA领域正处于从大规模鉴定lncRNA向其功能特征描述过渡的边缘。由于跨领域的相互作用类型和分子功能保持一致,哺乳动物的 lncRNA 研究有很多值得借鉴之处。在这里,我们讨论了从染色质调控到剪接等涉及 lncRNA 的不同分子过程。此外,我们还讨论了lncRNA相互作用组,其中包括蛋白质、其他RNA和DNA。我们探讨并讨论了哺乳动物的 lncRNA 功能如何反映在植物的类似途径中,并假设哺乳动物研究中的一些突破可能会导致发现新的植物 lncRNA 分子功能。扩大我们对 lncRNA 的生物学作用及其多种应用的认识为未来的农业应用铺平了道路。
{"title":"LncRNAs: the art of being influential without protein.","authors":"Lorena Ramírez Gonzales, Suze Blom, Rossana Henriques, Christian W B Bachem, Richard G H Immink","doi":"10.1016/j.tplants.2024.01.006","DOIUrl":"10.1016/j.tplants.2024.01.006","url":null,"abstract":"<p><p>The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy sensors: emerging regulators of symbiotic nitrogen fixation. 能量传感器:新出现的共生固氮调节器。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-23 DOI: 10.1016/j.tplants.2024.01.010
Xiaolong Ke, Xuelu Wang

Legume-rhizobium symbiotic nitrogen fixation is a highly energy-consuming process. Recent studies demonstrate that nodule-specific energy sensors play important roles in modulating nodule nitrogen fixation capacity. This opens a new field in the energy regulation of symbiotic nitrogen fixation that can provide insights into designing leguminous crops with efficient nitrogen fixation.

豆科-根瘤菌共生固氮是一个高度耗能的过程。最近的研究表明,结核特异性能量传感器在调节结核固氮能力方面发挥着重要作用。这为共生固氮的能量调控开辟了一个新领域,可为设计高效固氮的豆科作物提供启示。
{"title":"Energy sensors: emerging regulators of symbiotic nitrogen fixation.","authors":"Xiaolong Ke, Xuelu Wang","doi":"10.1016/j.tplants.2024.01.010","DOIUrl":"10.1016/j.tplants.2024.01.010","url":null,"abstract":"<p><p>Legume-rhizobium symbiotic nitrogen fixation is a highly energy-consuming process. Recent studies demonstrate that nodule-specific energy sensors play important roles in modulating nodule nitrogen fixation capacity. This opens a new field in the energy regulation of symbiotic nitrogen fixation that can provide insights into designing leguminous crops with efficient nitrogen fixation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139944503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing spatial transcriptomics for advancing plant regeneration research. 利用空间转录组学推进植物再生研究。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-28 DOI: 10.1016/j.tplants.2024.02.004
Bingxu Zhang, Hailei Zhang, Yiji Xia

Song et al. utilized spatial transcriptomics to study the molecular characteristics of various cells - such as shoot primordia and chlorenchyma cells - in tomato callus during shoot regeneration. This research enhances our knowledge of shoot regeneration and demonstrates the potential of spatial transcriptomics in advancing plant biology.

Song等人利用空间转录组学研究了番茄胼胝体中嫩枝再生过程中各种细胞(如嫩枝原基和软骨细胞)的分子特征。这项研究增进了我们对嫩枝再生的了解,并展示了空间转录组学在推动植物生物学发展方面的潜力。
{"title":"Harnessing spatial transcriptomics for advancing plant regeneration research.","authors":"Bingxu Zhang, Hailei Zhang, Yiji Xia","doi":"10.1016/j.tplants.2024.02.004","DOIUrl":"10.1016/j.tplants.2024.02.004","url":null,"abstract":"<p><p>Song et al. utilized spatial transcriptomics to study the molecular characteristics of various cells - such as shoot primordia and chlorenchyma cells - in tomato callus during shoot regeneration. This research enhances our knowledge of shoot regeneration and demonstrates the potential of spatial transcriptomics in advancing plant biology.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salicylic acid-driven innate antiviral immunity in plants. 水杨酸驱动的植物先天性抗病毒免疫。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-02-07 DOI: 10.1016/j.tplants.2024.01.009
Muhammad Arslan Mahmood, Rubab Zahra Naqvi, Imran Amin, Shahid Mansoor

Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.

致病病毒对包括植物在内的所有生物都构成持续威胁。然而,在植物体内,有一小部分细胞(干细胞)能保护自己免受病毒入侵。最近,Incarbone 等人发现了一种新型的水杨酸(SA)和 RNAi 干细胞抗性机制,拓宽了我们对 RNAi 介导的植物抗病毒免疫的认识。
{"title":"Salicylic acid-driven innate antiviral immunity in plants.","authors":"Muhammad Arslan Mahmood, Rubab Zahra Naqvi, Imran Amin, Shahid Mansoor","doi":"10.1016/j.tplants.2024.01.009","DOIUrl":"10.1016/j.tplants.2024.01.009","url":null,"abstract":"<p><p>Pathogenic viruses are a constant threat to all organisms, including plants. However, in plants, a small group of cells (stem cells) protect themselves from viral invasion. Recently, Incarbone et al. uncovered a novel salicylic acid (SA) and RNAi mechanism of stem cell resistance, broadening our understanding of RNAi-mediated antiviral plant immunity.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139707991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward uncovering an operating system in plant organs. 朝着揭示植物器官的操作系统的方向。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2023-11-29 DOI: 10.1016/j.tplants.2023.11.006
Gwendolyn V Davis, Tatiana de Souza Moraes, Swanand Khanapurkar, Hannah Dromiack, Zaki Ahmad, Emmanuelle M Bayer, Rishikesh P Bhalerao, Sara I Walker, George W Bassel

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.

分子基序可以解释单细胞内的信息处理,而细胞组合如何共同实现这一目标仍然不太清楚。植物的适应性和生存依赖于它们分散的多细胞器官系统中健全而准确的决策。包括激素、代谢物和rna在内的移动因子在协调多细胞集体决策中起着核心作用,然而描述细胞间通讯如何扩展到器官水平转变的机制却知之甚少。在这里,我们探索如何统一输出可能出现在植物器官通过分布式信息处理跨不同尺度和使用不同的方式。还探讨了这些事件的数学和计算表示,以了解这些事件是如何发生的,并利用这些事件来操纵植物的发育以响应环境。
{"title":"Toward uncovering an operating system in plant organs.","authors":"Gwendolyn V Davis, Tatiana de Souza Moraes, Swanand Khanapurkar, Hannah Dromiack, Zaki Ahmad, Emmanuelle M Bayer, Rishikesh P Bhalerao, Sara I Walker, George W Bassel","doi":"10.1016/j.tplants.2023.11.006","DOIUrl":"10.1016/j.tplants.2023.11.006","url":null,"abstract":"<p><p>Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood. Here, we explore how unified outputs may emerge in plant organs by distributed information processing across different scales and using different modalities. Mathematical and computational representations of these events are also explored toward understanding how these events take place and are leveraged to manipulate plant development in response to the environment.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138462859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Not just signals: RALFs as cell wall-structuring peptides. 不仅仅是信号作为细胞壁结构肽的 RALFs。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2024-07-01 Epub Date: 2024-03-07 DOI: 10.1016/j.tplants.2024.02.005
Jia Chen, Feng Yu, Fan Xu

Rapid alkalinization factors (RALFs) have long been known to act as signaling molecules in plant cells, but whether they affect cell wall (CW) patterning and expansion remains unclear. Very recent advances in tip-growing cells showed that positively charged RALFs affect key attributes of the structural components of the nascent CW.

人们早就知道快速碱化因子(RALFs)是植物细胞中的信号分子,但它们是否会影响细胞壁(CW)的形态和扩展仍不清楚。最近在顶端生长细胞中取得的进展表明,带正电荷的 RALFs 会影响新生细胞壁结构成分的关键属性。
{"title":"Not just signals: RALFs as cell wall-structuring peptides.","authors":"Jia Chen, Feng Yu, Fan Xu","doi":"10.1016/j.tplants.2024.02.005","DOIUrl":"10.1016/j.tplants.2024.02.005","url":null,"abstract":"<p><p>Rapid alkalinization factors (RALFs) have long been known to act as signaling molecules in plant cells, but whether they affect cell wall (CW) patterning and expansion remains unclear. Very recent advances in tip-growing cells showed that positively charged RALFs affect key attributes of the structural components of the nascent CW.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":null,"pages":null},"PeriodicalIF":17.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Plant Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1