Pub Date : 2024-10-07DOI: 10.1038/s41398-024-03104-6
Su Hyun Kim, Bomee Lee, Seong Mi Lee, Yangsik Kim
IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.
{"title":"Restoring social deficits in IRSp53-deleted mice: chemogenetic inhibition of ventral dentate gyrus Emx1-expressing cells.","authors":"Su Hyun Kim, Bomee Lee, Seong Mi Lee, Yangsik Kim","doi":"10.1038/s41398-024-03104-6","DOIUrl":"https://doi.org/10.1038/s41398-024-03104-6","url":null,"abstract":"<p><p>IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"425"},"PeriodicalIF":5.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142393586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-06DOI: 10.1038/s41398-024-03115-3
Ruoxi Ding, Xuequan Zhu, Lei Feng, Le Xiao, Ling Zhang, Ping He, Gang Wang
Suicidal ideation (SI) is a significant precursor and risk marker for suicide behaviors in major depressive disorder (MDD). Exploration of SI trajectory from a longitudinal framework are essential for treatment guidelines and clinical management of suicide risk. This study sought to explore SI trajectories and its associated clinical, sociodemographic characteristics, and initial treatment among patients with MDD. We used data from a non-interventional, national multi-centered prospective cohort study. 1 461 patients with MDD were included in the growth mixture modeling using SI at baseline, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and 6 months, 9 months, and 12 months as the indicator. A multinomial regression was employed with SI trajectory as the outcome and anhedonia, depressive symptoms, atypical depressive symptoms, pharmacological treatments, and other covariates as the predictors. Four distinct SI trajectories were identified: a consistently low SI trajectory(50.7%), a persistently mild SI trajectory(20.6%), a fast declined SI trajectory(8.9%), and a slowly declined trajectory(19.8%). Compared to those with a consistently low SI trajectory, a higher score of anhedonia was associated with an increased risk of experiencing persistently mild (RRR = 1.20, 95%CI: 1.05, 1.38) and slowly declined SI (1.54, 95%CI: 1.32, 1.80). Severity of depressive symptom was also positively associated with the risk of experiencing persistently mild (1.15, 95%CI: 1.13, 1.18) and slowly declined SI (1.17, 95%CI: 1.14, 1.21). And the risk of experiencing slowly declined SI was higher for those use SSRI(1.49, 95%CI: 1.02, 2.31), and for those use antidepressant and antipsychotic/mood stabilizer combined therapy (3.78, 95%CI: 1.48, 9.61). The findings of this study are potentially useful for clinical practice as critical indicators of profiles and interventions for prognosis among patients with MDD. Further research is warranted to explore potential modifiable factors and the association between SI trajectories and suicide behavior.
自杀意念(SI)是重度抑郁障碍(MDD)患者自杀行为的重要前兆和风险标志。从纵向框架中探索自杀意念的轨迹对于自杀风险的治疗指南和临床管理至关重要。本研究旨在探索 SI 轨迹及其相关的临床、社会人口学特征以及 MDD 患者的初始治疗。我们使用了一项非干预性、全国性多中心前瞻性队列研究的数据。以基线、2 周、4 周、8 周、12 周、6 个月、9 个月和 12 个月时的 SI 为指标,对 1 461 名 MDD 患者进行了生长混合建模。以 SI 轨迹为结果,以失乐症、抑郁症状、非典型抑郁症状、药物治疗和其他协变量为预测因素,采用多项式回归。结果发现了四种不同的 SI 轨迹:持续低 SI 轨迹(50.7%)、持续轻度 SI 轨迹(20.6%)、快速下降 SI 轨迹(8.9%)和缓慢下降 SI 轨迹(19.8%)。与持续低 SI 轨迹的患者相比,失乐症得分越高,出现持续轻度 SI(RRR = 1.20,95%CI:1.05, 1.38)和缓慢 SI(1.54,95%CI:1.32, 1.80)的风险越高。抑郁症状的严重程度也与出现持续轻度(1.15,95%CI:1.13,1.18)和缓慢下降的 SI(1.17,95%CI:1.14,1.21)的风险呈正相关。而使用 SSRI(1.49,95%CI:1.02,2.31)和抗抑郁药与抗精神病药/情绪稳定剂联合疗法(3.78,95%CI:1.48,9.61)的患者出现 SI 缓慢下降的风险更高。这项研究的结果可能对临床实践很有帮助,因为它是预测 MDD 患者预后的概况和干预措施的关键指标。我们有必要开展进一步研究,探索潜在的可改变因素以及 SI 轨迹与自杀行为之间的关联。
{"title":"Trajectories and predictors of suicidal ideation in clinical characteristics and pharmacological treatments for major depressive disorder: a study based on a national multi-centered prospective cohort.","authors":"Ruoxi Ding, Xuequan Zhu, Lei Feng, Le Xiao, Ling Zhang, Ping He, Gang Wang","doi":"10.1038/s41398-024-03115-3","DOIUrl":"10.1038/s41398-024-03115-3","url":null,"abstract":"<p><p>Suicidal ideation (SI) is a significant precursor and risk marker for suicide behaviors in major depressive disorder (MDD). Exploration of SI trajectory from a longitudinal framework are essential for treatment guidelines and clinical management of suicide risk. This study sought to explore SI trajectories and its associated clinical, sociodemographic characteristics, and initial treatment among patients with MDD. We used data from a non-interventional, national multi-centered prospective cohort study. 1 461 patients with MDD were included in the growth mixture modeling using SI at baseline, 2 weeks, 4 weeks, 8 weeks, 12 weeks, and 6 months, 9 months, and 12 months as the indicator. A multinomial regression was employed with SI trajectory as the outcome and anhedonia, depressive symptoms, atypical depressive symptoms, pharmacological treatments, and other covariates as the predictors. Four distinct SI trajectories were identified: a consistently low SI trajectory(50.7%), a persistently mild SI trajectory(20.6%), a fast declined SI trajectory(8.9%), and a slowly declined trajectory(19.8%). Compared to those with a consistently low SI trajectory, a higher score of anhedonia was associated with an increased risk of experiencing persistently mild (RRR = 1.20, 95%CI: 1.05, 1.38) and slowly declined SI (1.54, 95%CI: 1.32, 1.80). Severity of depressive symptom was also positively associated with the risk of experiencing persistently mild (1.15, 95%CI: 1.13, 1.18) and slowly declined SI (1.17, 95%CI: 1.14, 1.21). And the risk of experiencing slowly declined SI was higher for those use SSRI(1.49, 95%CI: 1.02, 2.31), and for those use antidepressant and antipsychotic/mood stabilizer combined therapy (3.78, 95%CI: 1.48, 9.61). The findings of this study are potentially useful for clinical practice as critical indicators of profiles and interventions for prognosis among patients with MDD. Further research is warranted to explore potential modifiable factors and the association between SI trajectories and suicide behavior.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"422"},"PeriodicalIF":5.8,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-06DOI: 10.1038/s41398-024-03140-2
Srivaishnavi Loganathan, Danusa Menegaz, Jan Philipp Delling, Matthias Eder, Jan M Deussing
CACNA1C, coding for the α1 subunit of L-type voltage-gated calcium channel (LTCC) Cav1.2, has been associated with multiple psychiatric disorders. Clinical studies have revealed alterations in behavior as well as in brain structure and function in CACNA1C risk allele carriers. These findings are supported by rodent models of Cav1.2 deficiency, which showed increased anxiety, cognitive and social impairments as well as a shift towards active stress-coping strategies. These behavioral alterations were accompanied by functional deficits, such as reduced long-term potentiation (LTP) and an excitation/inhibition (E/I) imbalance. However, these preclinical studies are largely limited to male rodents, with few studies exploring sex-specific effects. Here, we investigated the effects of Cav1.2 deficiency in forebrain glutamatergic neurons in female conditional knockout (CKO) mice. CKO mice exhibited hyperlocomotion in a novel environment, increased anxiety-related behavior, cognitive deficits, and increased active stress-coping behavior. These behavioral alterations were neither influenced by the stage of the estrous cycle nor by the Nex/Neurod6 haploinsufficiency or Cre expression, which are intrinsically tied to the utilization of the Nex-Cre driver line for conditional inactivation of Cacna1c. In the hippocampus, Cav1.2 inactivation enhanced presynaptic paired-pulse facilitation without altering postsynaptic LTP at CA3-CA1 synapses. In addition, CA1 pyramidal neurons of female CKO mice displayed a reduction in dendritic complexity and spine density. Taken together, our findings extend the existing knowledge suggesting Cav1.2-dependent structural and functional alterations as possible mechanisms for the behavioral alterations observed in female Cav1.2-Nex mice.
{"title":"Cacna1c deficiency in forebrain glutamatergic neurons alters behavior and hippocampal plasticity in female mice.","authors":"Srivaishnavi Loganathan, Danusa Menegaz, Jan Philipp Delling, Matthias Eder, Jan M Deussing","doi":"10.1038/s41398-024-03140-2","DOIUrl":"10.1038/s41398-024-03140-2","url":null,"abstract":"<p><p>CACNA1C, coding for the α1 subunit of L-type voltage-gated calcium channel (LTCC) Ca<sub>v</sub>1.2, has been associated with multiple psychiatric disorders. Clinical studies have revealed alterations in behavior as well as in brain structure and function in CACNA1C risk allele carriers. These findings are supported by rodent models of Ca<sub>v</sub>1.2 deficiency, which showed increased anxiety, cognitive and social impairments as well as a shift towards active stress-coping strategies. These behavioral alterations were accompanied by functional deficits, such as reduced long-term potentiation (LTP) and an excitation/inhibition (E/I) imbalance. However, these preclinical studies are largely limited to male rodents, with few studies exploring sex-specific effects. Here, we investigated the effects of Ca<sub>v</sub>1.2 deficiency in forebrain glutamatergic neurons in female conditional knockout (CKO) mice. CKO mice exhibited hyperlocomotion in a novel environment, increased anxiety-related behavior, cognitive deficits, and increased active stress-coping behavior. These behavioral alterations were neither influenced by the stage of the estrous cycle nor by the Nex/Neurod6 haploinsufficiency or Cre expression, which are intrinsically tied to the utilization of the Nex-Cre driver line for conditional inactivation of Cacna1c. In the hippocampus, Ca<sub>v</sub>1.2 inactivation enhanced presynaptic paired-pulse facilitation without altering postsynaptic LTP at CA3-CA1 synapses. In addition, CA1 pyramidal neurons of female CKO mice displayed a reduction in dendritic complexity and spine density. Taken together, our findings extend the existing knowledge suggesting Ca<sub>v</sub>1.2-dependent structural and functional alterations as possible mechanisms for the behavioral alterations observed in female Ca<sub>v</sub>1.2-Nex mice.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"421"},"PeriodicalIF":5.8,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1038/s41398-024-03121-5
Junhao Wen, Zhijian Yang, Ilya M Nasrallah, Yuhan Cui, Guray Erus, Dhivya Srinivasan, Ahmed Abdulkadir, Elizabeth Mamourian, Gyujoon Hwang, Ashish Singh, Mark Bergman, Jingxuan Bao, Erdem Varol, Zhen Zhou, Aleix Boquet-Pujadas, Jiong Chen, Arthur W Toga, Andrew J Saykin, Timothy J Hohman, Paul M Thompson, Sylvia Villeneuve, Randy Gollub, Aristeidis Sotiras, Katharina Wittfeld, Hans J Grabe, Duygu Tosun, Murat Bilgel, Yang An, Daniel S Marcus, Pamela LaMontagne, Tammie L Benzinger, Susan R Heckbert, Thomas R Austin, Lenore J Launer, Mark Espeland, Colin L Masters, Paul Maruff, Jurgen Fripp, Sterling C Johnson, John C Morris, Marilyn S Albert, R Nick Bryan, Susan M Resnick, Luigi Ferrucci, Yong Fan, Mohamad Habes, David Wolk, Li Shen, Haochang Shou, Christos Davatzikos
Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
{"title":"Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum.","authors":"Junhao Wen, Zhijian Yang, Ilya M Nasrallah, Yuhan Cui, Guray Erus, Dhivya Srinivasan, Ahmed Abdulkadir, Elizabeth Mamourian, Gyujoon Hwang, Ashish Singh, Mark Bergman, Jingxuan Bao, Erdem Varol, Zhen Zhou, Aleix Boquet-Pujadas, Jiong Chen, Arthur W Toga, Andrew J Saykin, Timothy J Hohman, Paul M Thompson, Sylvia Villeneuve, Randy Gollub, Aristeidis Sotiras, Katharina Wittfeld, Hans J Grabe, Duygu Tosun, Murat Bilgel, Yang An, Daniel S Marcus, Pamela LaMontagne, Tammie L Benzinger, Susan R Heckbert, Thomas R Austin, Lenore J Launer, Mark Espeland, Colin L Masters, Paul Maruff, Jurgen Fripp, Sterling C Johnson, John C Morris, Marilyn S Albert, R Nick Bryan, Susan M Resnick, Luigi Ferrucci, Yong Fan, Mohamad Habes, David Wolk, Li Shen, Haochang Shou, Christos Davatzikos","doi":"10.1038/s41398-024-03121-5","DOIUrl":"10.1038/s41398-024-03121-5","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the \"diffuse-AD\" (R1) dimension shows widespread brain atrophy, and the \"MTL-AD\" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were \"druggable genes\" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"420"},"PeriodicalIF":5.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1038/s41398-024-03122-4
Stefanie Malan-Müller, Rebeca Vidal, Esther O'Shea, Eduardo Montero, Elena Figuero, Iñaki Zorrilla, Javier de Diego-Adeliño, Marta Cano, Maria Paz García-Portilla, Ana González-Pinto, Juan C Leza
The role of the oral microbiome in mental health has recently been appreciated within the proposed oral-brain axis. This study examined the structure and composition of the salivary microbiome in a large-scale population-based cohort of individuals reporting mental health symptoms (n = 306) compared to mentally healthy controls (n = 164) using 16S rRNA sequencing. Mental health symptoms were evaluated using validated questionnaires and included depression, anxiety, and posttraumatic stress disorder (PTSD), with accompanying periodontal outcomes. Participants also indicated current or previous diagnoses of anxiety, depression, periodontitis, and gingivitis. Mental and periodontal health variables influenced the overall composition of the oral microbiome. PTSD symptoms correlated with a lower clr-transformed relative abundance of Haemophilus sputorum and a higher clr-transformed relative abundance of Prevotella histicola. The clr-transformed relative abundance of P. histicola was also positively associated with depressive scores and negatively associated with psychological quality of life. Anxiety disorder diagnosis was associated with a lower clr-transformed relative abundance of Neisseria elongate and a higher clr-transformed relative abundance of Oribacterium asaccharolyticum. A higher clr-transformed relative abundance of Shuttleworthia and lower clr-transformed relative abundance of Capnocytophaga were evident in those who reported a clinical periodontitis diagnosis. Higher Eggerthia and lower Haemophilus parainfluenzae clr-transformed relative abundances were associated with reported clinical periodontitis diagnoses and psychotherapeutic efficacy. Functional prediction analysis revealed a potential role for tryptophan metabolism/degradation in the oral-brain axis, which was confirmed by lower plasma serotonin levels across symptomatic groups. This study sheds light on the intricate interplay between oral microbiota, periodontal and mental health outcomes, and a potential role for tryptophan metabolism in the proposed oral-brain axis, emphasizing the need for further exploration to pave the way for novel therapeutic interventions and predicting therapeutic response.
{"title":"Probing the oral-brain connection: oral microbiome patterns in a large community cohort with anxiety, depression, and trauma symptoms, and periodontal outcomes.","authors":"Stefanie Malan-Müller, Rebeca Vidal, Esther O'Shea, Eduardo Montero, Elena Figuero, Iñaki Zorrilla, Javier de Diego-Adeliño, Marta Cano, Maria Paz García-Portilla, Ana González-Pinto, Juan C Leza","doi":"10.1038/s41398-024-03122-4","DOIUrl":"10.1038/s41398-024-03122-4","url":null,"abstract":"<p><p>The role of the oral microbiome in mental health has recently been appreciated within the proposed oral-brain axis. This study examined the structure and composition of the salivary microbiome in a large-scale population-based cohort of individuals reporting mental health symptoms (n = 306) compared to mentally healthy controls (n = 164) using 16S rRNA sequencing. Mental health symptoms were evaluated using validated questionnaires and included depression, anxiety, and posttraumatic stress disorder (PTSD), with accompanying periodontal outcomes. Participants also indicated current or previous diagnoses of anxiety, depression, periodontitis, and gingivitis. Mental and periodontal health variables influenced the overall composition of the oral microbiome. PTSD symptoms correlated with a lower clr-transformed relative abundance of Haemophilus sputorum and a higher clr-transformed relative abundance of Prevotella histicola. The clr-transformed relative abundance of P. histicola was also positively associated with depressive scores and negatively associated with psychological quality of life. Anxiety disorder diagnosis was associated with a lower clr-transformed relative abundance of Neisseria elongate and a higher clr-transformed relative abundance of Oribacterium asaccharolyticum. A higher clr-transformed relative abundance of Shuttleworthia and lower clr-transformed relative abundance of Capnocytophaga were evident in those who reported a clinical periodontitis diagnosis. Higher Eggerthia and lower Haemophilus parainfluenzae clr-transformed relative abundances were associated with reported clinical periodontitis diagnoses and psychotherapeutic efficacy. Functional prediction analysis revealed a potential role for tryptophan metabolism/degradation in the oral-brain axis, which was confirmed by lower plasma serotonin levels across symptomatic groups. This study sheds light on the intricate interplay between oral microbiota, periodontal and mental health outcomes, and a potential role for tryptophan metabolism in the proposed oral-brain axis, emphasizing the need for further exploration to pave the way for novel therapeutic interventions and predicting therapeutic response.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"419"},"PeriodicalIF":5.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1038/s41398-024-03135-z
Muhammad Asim, Huajie Wang, Abdul Waris, Jufang He
The basolateral amygdala (BLA) is increasingly recognized as a key regulator of depression and anxiety-like behaviors. However, the specific contribution of individual BLA neurons to these behaviors remains poorly understood. Building on our previous study, which demonstrated increased activity in glutamatergic BLA neurons in response to aversive stimuli and that enhancing inhibition in the BLA can alleviate depressive-like behaviors, we investigated the role of individual BLA GABAergic neurons (BLAGABA) in depressive and anxiety-like phenotypes. To address this question, we employed a comprehensive array of techniques, including c-fos staining, fiber photometry recording, optogenetic and chemogenetic manipulation, and behavior analysis. Our findings indicate that BLAGABA neurons show decreased activity during tail suspension and after chronic social defeat stress (CSDS) during social interaction. High-frequency activation of BLAGABA neurons attenuated depressive and anxiety-like behaviors, while low-frequency activation had no effect. Fiber photometry recordings revealed increased activity in BLA GABAergic neurons expressing somatostatin (SST), parvalbumin (PV), and cholecystokinin (CCK) during footshock aversive stimuli. Moreover, we found increased activity in PV and SST neurons and decreased activity in CCK-GABA neurons in the BLA during tail suspension stress. However, after CSDS, BLAPV neurons displayed decreased activity, while SST and CCK neurons showed no changes during the social interaction test. Behavioral analysis demonstrated that chemogenetic inhibition of PV and CCK-GABA neurons induced depressive and anxiety-like behaviors. whereas SST neuron inhibition had no effect. Conversely, chemogenetic activation of BLAPV neurons alleviated depressive behaviors, and activation of BLACCK-GABA neurons alleviated at least partly both depressive and anxiety-like behaviors. This study provides compelling evidence that BLAPV neurons play a critical role in regulating depressive-like behaviors, and that BLACCK-GABA neurons are involved, at least in part, in modulating both depressive-like and anxiety-like behaviors in mice.
{"title":"Basolateral amygdala parvalbumin and cholecystokinin-expressing GABAergic neurons modulate depressive and anxiety-like behaviors.","authors":"Muhammad Asim, Huajie Wang, Abdul Waris, Jufang He","doi":"10.1038/s41398-024-03135-z","DOIUrl":"10.1038/s41398-024-03135-z","url":null,"abstract":"<p><p>The basolateral amygdala (BLA) is increasingly recognized as a key regulator of depression and anxiety-like behaviors. However, the specific contribution of individual BLA neurons to these behaviors remains poorly understood. Building on our previous study, which demonstrated increased activity in glutamatergic BLA neurons in response to aversive stimuli and that enhancing inhibition in the BLA can alleviate depressive-like behaviors, we investigated the role of individual BLA GABAergic neurons (BLA<sup>GABA</sup>) in depressive and anxiety-like phenotypes. To address this question, we employed a comprehensive array of techniques, including c-fos staining, fiber photometry recording, optogenetic and chemogenetic manipulation, and behavior analysis. Our findings indicate that BLA<sup>GABA</sup> neurons show decreased activity during tail suspension and after chronic social defeat stress (CSDS) during social interaction. High-frequency activation of BLA<sup>GABA</sup> neurons attenuated depressive and anxiety-like behaviors, while low-frequency activation had no effect. Fiber photometry recordings revealed increased activity in BLA GABAergic neurons expressing somatostatin (SST), parvalbumin (PV), and cholecystokinin (CCK) during footshock aversive stimuli. Moreover, we found increased activity in PV and SST neurons and decreased activity in CCK-GABA neurons in the BLA during tail suspension stress. However, after CSDS, BLA<sup>PV</sup> neurons displayed decreased activity, while SST and CCK neurons showed no changes during the social interaction test. Behavioral analysis demonstrated that chemogenetic inhibition of PV and CCK-GABA neurons induced depressive and anxiety-like behaviors. whereas SST neuron inhibition had no effect. Conversely, chemogenetic activation of BLA<sup>PV</sup> neurons alleviated depressive behaviors, and activation of BLA<sup>CCK-GABA</sup> neurons alleviated at least partly both depressive and anxiety-like behaviors. This study provides compelling evidence that BLA<sup>PV</sup> neurons play a critical role in regulating depressive-like behaviors, and that BLA<sup>CCK-GABA</sup> neurons are involved, at least in part, in modulating both depressive-like and anxiety-like behaviors in mice.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"418"},"PeriodicalIF":5.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1038/s41398-024-03113-5
Caroline Gora, Ana Dudas, Océane Vaugrente, Lucile Drobecq, Emmanuel Pecnard, Gaëlle Lefort, Lucie P Pellissier
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.
{"title":"Deciphering autism heterogeneity: a molecular stratification approach in four mouse models.","authors":"Caroline Gora, Ana Dudas, Océane Vaugrente, Lucile Drobecq, Emmanuel Pecnard, Gaëlle Lefort, Lucie P Pellissier","doi":"10.1038/s41398-024-03113-5","DOIUrl":"10.1038/s41398-024-03113-5","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in social interaction and communication, as well as restrained or stereotyped behaviors. The inherent heterogeneity within the autism spectrum poses challenges for developing effective pharmacological treatments targeting core features. Successful clinical trials require the identification of robust markers to enable patient stratification. In this study, we identified molecular markers within the oxytocin and immediate early gene families across five interconnected brain structures of the social circuit. We used wild-type and four heterogeneous mouse models, each exhibiting unique autism-like behaviors modeling the autism spectrum. While dysregulations in the oxytocin family were model-specific, immediate early genes displayed widespread alterations, reflecting global changes across the four models. Through integrative analysis, we identified Egr1, Foxp1, Homer1a, Oxt, and Oxtr as five robust and discriminant molecular markers that allowed the successful stratification of the four models. Importantly, our stratification demonstrated predictive values when challenged with a fifth mouse model or identifying subgroups of mice potentially responsive to oxytocin treatment. Beyond providing insights into oxytocin and immediate early gene mRNA dynamics, this proof-of-concept study represents a significant step toward the potential stratification of individuals with ASD. This work has implications for the success of clinical trials and the development of personalized medicine in autism.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"416"},"PeriodicalIF":5.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452541/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1038/s41398-024-03123-3
Robson C Lillo Vizin, Hisakatsu Ito, Caroline M Kopruszinski, Megumi Ikegami, Daigo Ikegami, Xu Yue, Edita Navratilova, Aubin Moutal, Stephen L Cowen, Frank Porreca
Sleep disruption and negative affect are attendant features of many psychiatric and neurological conditions that are often co-morbid including major depressive disorder, generalized anxiety disorder and chronic pain. Whether there is a causal relationship between negative affect and sleep disruption remains unclear. We therefore asked if mechanisms promoting negative affect can disrupt sleep and whether inhibition of pathological negative affect can normalize disrupted sleep. Signaling at the kappa opioid receptor (KOR) elicits dysphoria in humans and aversive conditioning in animals. We tested the possibility that (a) increased KOR signaling in the anterior cingulate cortex (ACC), a brain region associated with negative emotions, would be sufficient to promote both aversiveness and sleep disruption and (b) inhibition of KOR signaling would normalize pathological negative affect and sleep disruption induced by chronic pain. Chemogenetic Gi-mediated inhibition of KOR-expressing ACC neurons produced conditioned place aversion (CPA) as well as sleep fragmentation in naïve mice. CRISPR/Cas9 editing of ACC KOR normalized both the negative affect and sleep disruption elicited by pathological chronic pain while maintaining the physiologically critical sensory features of pain. These findings suggest therapeutic utility of KOR antagonists for treatment of disease conditions that are associated with both negative affect and sleep disturbances.
睡眠障碍和消极情绪是许多精神和神经疾病的伴随特征,这些疾病往往同时存在,包括重度抑郁症、广泛性焦虑症和慢性疼痛。负面情绪与睡眠紊乱之间是否存在因果关系,目前仍不清楚。因此,我们想知道促进负面情绪的机制是否会扰乱睡眠,以及抑制病理性负面情绪是否能使扰乱的睡眠恢复正常。卡巴阿片受体(KOR)的信号在人类和动物中都会引起幻觉。我们测试了以下可能性:(a) 前扣带回皮层(ACC)是一个与负面情绪相关的脑区,KOR信号的增加足以促进厌恶情绪和睡眠紊乱;(b) KOR信号的抑制将使慢性疼痛引起的病理性负面情绪和睡眠紊乱恢复正常。化学遗传 Gi- 介导的对表达 KOR 的 ACC 神经元的抑制会产生条件性场所厌恶(CPA),并使天真小鼠的睡眠破碎化。CRISPR/Cas9 编辑 ACC KOR 使病理性慢性疼痛引起的负面情绪和睡眠中断正常化,同时保持了生理上关键的疼痛感觉特征。这些发现表明,KOR拮抗剂可用于治疗与负面情绪和睡眠障碍相关的疾病。
{"title":"Cortical kappa opioid receptors integrate negative affect and sleep disturbance.","authors":"Robson C Lillo Vizin, Hisakatsu Ito, Caroline M Kopruszinski, Megumi Ikegami, Daigo Ikegami, Xu Yue, Edita Navratilova, Aubin Moutal, Stephen L Cowen, Frank Porreca","doi":"10.1038/s41398-024-03123-3","DOIUrl":"10.1038/s41398-024-03123-3","url":null,"abstract":"<p><p>Sleep disruption and negative affect are attendant features of many psychiatric and neurological conditions that are often co-morbid including major depressive disorder, generalized anxiety disorder and chronic pain. Whether there is a causal relationship between negative affect and sleep disruption remains unclear. We therefore asked if mechanisms promoting negative affect can disrupt sleep and whether inhibition of pathological negative affect can normalize disrupted sleep. Signaling at the kappa opioid receptor (KOR) elicits dysphoria in humans and aversive conditioning in animals. We tested the possibility that (a) increased KOR signaling in the anterior cingulate cortex (ACC), a brain region associated with negative emotions, would be sufficient to promote both aversiveness and sleep disruption and (b) inhibition of KOR signaling would normalize pathological negative affect and sleep disruption induced by chronic pain. Chemogenetic Gi-mediated inhibition of KOR-expressing ACC neurons produced conditioned place aversion (CPA) as well as sleep fragmentation in naïve mice. CRISPR/Cas9 editing of ACC KOR normalized both the negative affect and sleep disruption elicited by pathological chronic pain while maintaining the physiologically critical sensory features of pain. These findings suggest therapeutic utility of KOR antagonists for treatment of disease conditions that are associated with both negative affect and sleep disturbances.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"417"},"PeriodicalIF":5.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s41398-024-03130-4
Tsuyoshi Nishiguchi, Kyosuke Yamanishi, Shivani Patel, Johnny R Malicoat, Nathan James Phuong, Tomoteru Seki, Takaya Ishii, Bun Aoyama, Akiyoshi Shimura, Nipun Gorantla, Takehiko Yamanashi, Masaaki Iwata, Andrew A Pieper, Gen Shinozaki
Delirium is a multifactorial medical condition of waxing and waning impairment across various domains of mental functioning over time. Importantly, delirium is also one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Studying this important condition is challenging due to the difficulty in both objective diagnosis in patients and validation of laboratory models. As a result, there is a lack of protective treatments for delirium. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes, advancing the concept that this simple measure could represent an additional vital sign for patients. Here, we applied BSEEG to characterize and validate a novel lipopolysaccharide (LPS) mouse model of infection-related delirium. We then applied this model to evaluate the protective efficacy of three putative therapeutic agents: the conventional antipsychotic medication haloperidol, the neuroprotective compound P7C3-A20, and the antibiotic minocycline. Aged mice were more susceptible than young mice to LPS-induced aberration in BSEEG, reminiscent of the greater vulnerability of older adults to delirium. In both young and old mice, P7C3-A20 and minocycline administration prevented LPS-induced BSEEG abnormality. By contrast, haloperidol did not. P7C3-A20 and minocycline have been shown to limit different aspects of LPS toxicity, and our data offers proof of principle that these agents might help protect patients from developing infection-related delirium. Thus, utilization of BSEEG in a mouse model for infection-related delirium can identify putative therapeutic agents for applications in patient clinical trials.
{"title":"Discovery of novel protective agents for infection-related delirium through bispectral electroencephalography.","authors":"Tsuyoshi Nishiguchi, Kyosuke Yamanishi, Shivani Patel, Johnny R Malicoat, Nathan James Phuong, Tomoteru Seki, Takaya Ishii, Bun Aoyama, Akiyoshi Shimura, Nipun Gorantla, Takehiko Yamanashi, Masaaki Iwata, Andrew A Pieper, Gen Shinozaki","doi":"10.1038/s41398-024-03130-4","DOIUrl":"10.1038/s41398-024-03130-4","url":null,"abstract":"<p><p>Delirium is a multifactorial medical condition of waxing and waning impairment across various domains of mental functioning over time. Importantly, delirium is also one of the greatest risk factors for prolonged hospitalization, morbidity, and mortality. Studying this important condition is challenging due to the difficulty in both objective diagnosis in patients and validation of laboratory models. As a result, there is a lack of protective treatments for delirium. Our recent studies report the efficacy of bispectral electroencephalography (BSEEG) in diagnosing delirium in patients and predicting patient outcomes, advancing the concept that this simple measure could represent an additional vital sign for patients. Here, we applied BSEEG to characterize and validate a novel lipopolysaccharide (LPS) mouse model of infection-related delirium. We then applied this model to evaluate the protective efficacy of three putative therapeutic agents: the conventional antipsychotic medication haloperidol, the neuroprotective compound P7C3-A20, and the antibiotic minocycline. Aged mice were more susceptible than young mice to LPS-induced aberration in BSEEG, reminiscent of the greater vulnerability of older adults to delirium. In both young and old mice, P7C3-A20 and minocycline administration prevented LPS-induced BSEEG abnormality. By contrast, haloperidol did not. P7C3-A20 and minocycline have been shown to limit different aspects of LPS toxicity, and our data offers proof of principle that these agents might help protect patients from developing infection-related delirium. Thus, utilization of BSEEG in a mouse model for infection-related delirium can identify putative therapeutic agents for applications in patient clinical trials.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"413"},"PeriodicalIF":5.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s41398-024-03133-1
Yuan-Yuan Ma, Xin Li, Zhong-Yuan Yu, Tong Luo, Cheng-Rong Tan, Yu-Di Bai, Gang Xu, Bin-Da Sun, Xian-Le Bu, Yu-Hui Liu, Wang-Sheng Jin, Yu-Qi Gao, Xin-Fu Zhou, Juan Liu, Yan-Jiang Wang
Chronic hypobaric hypoxia at high altitudes can impair cognitive functions, especially causing deficits in learning and memory, which require therapeutic intervention. Here, we showed that mice subjected to hypobaric hypoxia (simulating an altitude of 5000 m) for one month experienced significant cognitive impairment, accompanied by increased biomarker levels of oxidative stress in the brain and blood. Oral administration of a novel formulation of edaravone, a free radical scavenger approved for the treatment of ischaemic stroke and amyotrophic lateral sclerosis, significantly alleviated oxidative stress and cognitive impairments caused by chronic hypobaric hypoxia. Furthermore, oral edaravone treatment also mitigated neuroinflammation and restored hippocampal neural stem cell exhaustion. Additionally, periostin (Postn) is vital in the cognitive deficits caused by chronic hypobaric hypoxia and may be a molecular target of edaravone. In conclusion, our results suggest that oxidative stress plays a crucial role in the cognitive deficits caused by chronic hypobaric hypoxia and that oral edaravone is a potential medicine for protecting against cognitive deficits caused by chronic hypobaric hypoxia in high-altitude areas.
{"title":"Oral antioxidant edaravone protects against cognitive deficits induced by chronic hypobaric hypoxia at high altitudes.","authors":"Yuan-Yuan Ma, Xin Li, Zhong-Yuan Yu, Tong Luo, Cheng-Rong Tan, Yu-Di Bai, Gang Xu, Bin-Da Sun, Xian-Le Bu, Yu-Hui Liu, Wang-Sheng Jin, Yu-Qi Gao, Xin-Fu Zhou, Juan Liu, Yan-Jiang Wang","doi":"10.1038/s41398-024-03133-1","DOIUrl":"10.1038/s41398-024-03133-1","url":null,"abstract":"<p><p>Chronic hypobaric hypoxia at high altitudes can impair cognitive functions, especially causing deficits in learning and memory, which require therapeutic intervention. Here, we showed that mice subjected to hypobaric hypoxia (simulating an altitude of 5000 m) for one month experienced significant cognitive impairment, accompanied by increased biomarker levels of oxidative stress in the brain and blood. Oral administration of a novel formulation of edaravone, a free radical scavenger approved for the treatment of ischaemic stroke and amyotrophic lateral sclerosis, significantly alleviated oxidative stress and cognitive impairments caused by chronic hypobaric hypoxia. Furthermore, oral edaravone treatment also mitigated neuroinflammation and restored hippocampal neural stem cell exhaustion. Additionally, periostin (Postn) is vital in the cognitive deficits caused by chronic hypobaric hypoxia and may be a molecular target of edaravone. In conclusion, our results suggest that oxidative stress plays a crucial role in the cognitive deficits caused by chronic hypobaric hypoxia and that oral edaravone is a potential medicine for protecting against cognitive deficits caused by chronic hypobaric hypoxia in high-altitude areas.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"14 1","pages":"415"},"PeriodicalIF":5.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142372955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}