首页 > 最新文献

Trends in cancer最新文献

英文 中文
Recent developments in myeloid immune modulation in cancer therapy.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-09 DOI: 10.1016/j.trecan.2024.12.003
Sepideh Parvanian, Xinying Ge, Christopher S Garris

Myeloid cells play a crucial dual role in cancer progression and response to therapy, promoting tumor growth, enabling immune suppression, and contributing to metastatic spread. The ability of these cells to modulate the immune system has made them attractive targets for therapeutic strategies aimed at shifting their function from tumor promotion to fostering antitumor immunity. Therapeutic approaches targeting myeloid cells focus on modifying their numbers, genetics, metabolism, and interactions within the tumor microenvironment. These strategies aim to reverse their suppressive functions and redirect them to support antitumor immune responses by inhibiting immunosuppressive pathways, targeting specific receptors, and promoting their differentiation into less immunosuppressive phenotypes. Here, we discuss recent approaches to clinically target tumor myeloid cells, focusing on reprogramming myeloid cells to promote antitumor immunity.

{"title":"Recent developments in myeloid immune modulation in cancer therapy.","authors":"Sepideh Parvanian, Xinying Ge, Christopher S Garris","doi":"10.1016/j.trecan.2024.12.003","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.12.003","url":null,"abstract":"<p><p>Myeloid cells play a crucial dual role in cancer progression and response to therapy, promoting tumor growth, enabling immune suppression, and contributing to metastatic spread. The ability of these cells to modulate the immune system has made them attractive targets for therapeutic strategies aimed at shifting their function from tumor promotion to fostering antitumor immunity. Therapeutic approaches targeting myeloid cells focus on modifying their numbers, genetics, metabolism, and interactions within the tumor microenvironment. These strategies aim to reverse their suppressive functions and redirect them to support antitumor immune responses by inhibiting immunosuppressive pathways, targeting specific receptors, and promoting their differentiation into less immunosuppressive phenotypes. Here, we discuss recent approaches to clinically target tumor myeloid cells, focusing on reprogramming myeloid cells to promote antitumor immunity.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embracing diversity: macrophage complexity in cancer.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2025-01-02 DOI: 10.1016/j.trecan.2024.12.002
Jan Hochstadt, Sarai Martínez Pacheco, María Casanova-Acebes

Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.

{"title":"Embracing diversity: macrophage complexity in cancer.","authors":"Jan Hochstadt, Sarai Martínez Pacheco, María Casanova-Acebes","doi":"10.1016/j.trecan.2024.12.002","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.12.002","url":null,"abstract":"<p><p>Macrophages are myeloid cells that receive, integrate, and respond to tumoral cues. Tumors evolve and are shaped by macrophages, with tumor-associated macrophage (TAM)-tumor sculpting capacities going beyond an increase in their cellular mass. Longitudinal and local heterogeneity of TAM states is now possible with the use of single-cell and spatial transcriptomics. However, understanding TAM biology and its fundamental functional programs is still challenging, probably because of the lack of models that fully integrate TAM complexity. Here, we aim to review TAM diversity not only at the level of single-cell phenotypes but also by integrating complex physiological signals that determine their complexity and plasticity in tumors.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of metastatic organotropism.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-27 DOI: 10.1016/j.trecan.2024.11.012
Karen J Dunbar, Gizem Efe, Katherine Cunningham, Emily Esquea, Raul Navaridas, Anil K Rustgi

Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth. Historically, studies of metastatic organotropism have been limited by a lack of models allowing direct comparison of cells exhibiting different patterns of tropism. However, new innovative models and large-scale sequencing efforts have propelled organotropism research. Herein, we summarize the recent discoveries in metastatic organotropism regulation, focusing on lung, liver, brain, and bone tropism. We discuss how emerging technologies are continuing to improve our ability to model and, hopefully, predict and treat organotropism.

{"title":"Regulation of metastatic organotropism.","authors":"Karen J Dunbar, Gizem Efe, Katherine Cunningham, Emily Esquea, Raul Navaridas, Anil K Rustgi","doi":"10.1016/j.trecan.2024.11.012","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.012","url":null,"abstract":"<p><p>Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth. Historically, studies of metastatic organotropism have been limited by a lack of models allowing direct comparison of cells exhibiting different patterns of tropism. However, new innovative models and large-scale sequencing efforts have propelled organotropism research. Herein, we summarize the recent discoveries in metastatic organotropism regulation, focusing on lung, liver, brain, and bone tropism. We discuss how emerging technologies are continuing to improve our ability to model and, hopefully, predict and treat organotropism.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular senescence offers distinct immunological vulnerabilities in cancer.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-27 DOI: 10.1016/j.trecan.2024.11.010
Lin Zhou, Boyang Ma, Marcus Ruscetti

Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies. However, other studies have determined that heterogeneous senescent stromal cell populations contribute to immunosuppression and tumor progression, sparking the development of senotherapeutics to target senescent cells that evade immune detection. We review current findings that provide deeper insights into the mechanisms contributing to the dichotomous role of senescence in immune modulation and how that can be leveraged for cancer immunotherapy.

{"title":"Cellular senescence offers distinct immunological vulnerabilities in cancer.","authors":"Lin Zhou, Boyang Ma, Marcus Ruscetti","doi":"10.1016/j.trecan.2024.11.010","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.010","url":null,"abstract":"<p><p>Chronic damage following oncogene induction or cancer therapy can produce cellular senescence. Senescent cells not only exit the cell cycle but communicate damage signals to their environment that can trigger immune responses. Recent work has revealed that senescent tumor cells are highly immunogenic, leading to new ways to activate antitumor immunosurveillance and potentiate T cell-directed immunotherapies. However, other studies have determined that heterogeneous senescent stromal cell populations contribute to immunosuppression and tumor progression, sparking the development of senotherapeutics to target senescent cells that evade immune detection. We review current findings that provide deeper insights into the mechanisms contributing to the dichotomous role of senescence in immune modulation and how that can be leveraged for cancer immunotherapy.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KRAS inhibitors: resistance drivers and combinatorial strategies.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-27 DOI: 10.1016/j.trecan.2024.11.009
Tamara Isermann, Christine Sers, Channing J Der, Bjoern Papke

In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRASG12C inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively. However, rather than marking the end of a successful assault on the Mount Everest of cancer research, this landmark only revealed new challenges in RAS drug discovery. In this review, we highlight the progress on defining resistance mechanisms and developing combination treatment strategies to improve patient responses to KRAS therapies.

{"title":"KRAS inhibitors: resistance drivers and combinatorial strategies.","authors":"Tamara Isermann, Christine Sers, Channing J Der, Bjoern Papke","doi":"10.1016/j.trecan.2024.11.009","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.009","url":null,"abstract":"<p><p>In 1982, the RAS genes HRAS and KRAS were discovered as the first human cancer genes, with KRAS later identified as one of the most frequently mutated oncogenes. Yet, it took nearly 40 years to develop clinically effective inhibitors for RAS-mutant cancers. The discovery in 2013 by Shokat and colleagues of a druggable pocket in KRAS paved the way to FDA approval of the first covalently binding KRAS<sup>G12C</sup> inhibitors, sotorasib and adagrasib, in 2021 and 2022, respectively. However, rather than marking the end of a successful assault on the Mount Everest of cancer research, this landmark only revealed new challenges in RAS drug discovery. In this review, we highlight the progress on defining resistance mechanisms and developing combination treatment strategies to improve patient responses to KRAS therapies.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turning cold into hot: emerging strategies to fire up the tumor microenvironment.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-26 DOI: 10.1016/j.trecan.2024.11.011
Kaili Ma, Lin Wang, Wenhui Li, Tingting Tang, Bo Ma, Liyuan Zhang, Lianjun Zhang

The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.

{"title":"Turning cold into hot: emerging strategies to fire up the tumor microenvironment.","authors":"Kaili Ma, Lin Wang, Wenhui Li, Tingting Tang, Bo Ma, Liyuan Zhang, Lianjun Zhang","doi":"10.1016/j.trecan.2024.11.011","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.011","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer immunotherapeutic challenges from autophagy-immune checkpoint reciprocal regulation.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.trecan.2024.11.001
Gang Zhang, Yinfeng Chen, Xing Huang, Tingbo Liang

Multiple strategies have been clinically employed as combination partners to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs). Although these combinations have demonstrated improved effectiveness in some instances, each presents its own limitations. Autophagy-targeting therapy offers several advantages when combined with ICIs, including enhanced tumor immunogenicity, reduced side effects, and broader applicability to diverse patient populations. However, emerging evidence reveals complex reciprocal regulation between autophagy and immune checkpoints which may complicate combination treatments targeting these two systems. This review focuses on the reciprocal interplay between autophagy and immune checkpoints, and provides valuable guidelines for the determination and adjustment of therapeutic regimens in the future.

{"title":"Cancer immunotherapeutic challenges from autophagy-immune checkpoint reciprocal regulation.","authors":"Gang Zhang, Yinfeng Chen, Xing Huang, Tingbo Liang","doi":"10.1016/j.trecan.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.001","url":null,"abstract":"<p><p>Multiple strategies have been clinically employed as combination partners to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs). Although these combinations have demonstrated improved effectiveness in some instances, each presents its own limitations. Autophagy-targeting therapy offers several advantages when combined with ICIs, including enhanced tumor immunogenicity, reduced side effects, and broader applicability to diverse patient populations. However, emerging evidence reveals complex reciprocal regulation between autophagy and immune checkpoints which may complicate combination treatments targeting these two systems. This review focuses on the reciprocal interplay between autophagy and immune checkpoints, and provides valuable guidelines for the determination and adjustment of therapeutic regimens in the future.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hormetic response model for glutamine stress in cancer.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-16 DOI: 10.1016/j.trecan.2024.11.008
Shea F Grenier, Cosimo Commisso

Glutamine metabolism supports the development and progression of many cancers and is considered a therapeutic target. Attempts to inhibit glutamine metabolism have resulted in limited success and have not translated into clinical benefit. The outcomes of these clinical studies, along with preclinical investigations, suggest that cellular stress responses to glutamine deprivation or targeting may be modeled as a biphasic hormetic response. By recognizing the multifaceted aspects of glutamine metabolism inhibition within a more comprehensive biological framework, the adoption of this model may guide future fundamental and translational studies. To achieve clinical efficacy, we posit that as a field we will need to anticipate the hormetic effects of glutamine stress and consider how best to co-target cancer cell adaptive mechanisms.

{"title":"A hormetic response model for glutamine stress in cancer.","authors":"Shea F Grenier, Cosimo Commisso","doi":"10.1016/j.trecan.2024.11.008","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.008","url":null,"abstract":"<p><p>Glutamine metabolism supports the development and progression of many cancers and is considered a therapeutic target. Attempts to inhibit glutamine metabolism have resulted in limited success and have not translated into clinical benefit. The outcomes of these clinical studies, along with preclinical investigations, suggest that cellular stress responses to glutamine deprivation or targeting may be modeled as a biphasic hormetic response. By recognizing the multifaceted aspects of glutamine metabolism inhibition within a more comprehensive biological framework, the adoption of this model may guide future fundamental and translational studies. To achieve clinical efficacy, we posit that as a field we will need to anticipate the hormetic effects of glutamine stress and consider how best to co-target cancer cell adaptive mechanisms.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142839628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional heterogeneity of fibroblasts in primary tumors and metastases. 原发性肿瘤和转移瘤中成纤维细胞的功能异质性。
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-13 DOI: 10.1016/j.trecan.2024.11.005
Priscilla S W Cheng, Marta Zaccaria, Giulia Biffi

Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.

癌症相关成纤维细胞(CAFs)是大多数实体恶性肿瘤的肿瘤微环境(TME)中的丰富成分,已成为癌症进展和治疗反应的关键调节因子。尽管最近的技术进步在单细胞水平上发现了大量的 CAF 分子异质性,但确定大多数已描述的 CAF 群体的功能作用仍具有挑战性。为了在 CAF 分子和功能异质性之间架起一座桥梁,本综述将重点关注最近发现的 CAF 亚型与原发性肿瘤和转移瘤中恶性细胞、免疫细胞和其他基质细胞之间的功能性相互作用。剖析特定 CAF 群体与其他成分的异质性功能串扰,将开始发现针对 TME 和癌症进展的候选组合治疗策略。
{"title":"Functional heterogeneity of fibroblasts in primary tumors and metastases.","authors":"Priscilla S W Cheng, Marta Zaccaria, Giulia Biffi","doi":"10.1016/j.trecan.2024.11.005","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.005","url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intratumoral immune cell manipulations as a strategy to enhance cancer vaccine efficiency.
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-12-12 DOI: 10.1016/j.trecan.2024.11.007
James Adeosun, Mohammad Omar Faruk Shaikh, Timothy Brauns, Yuki Agarwala, Mark C Poznansky, Yohannes Gemechu

Shortcomings in cancer vaccine development are attributable to weak and transient anti-tumor cellular responses in the tumor microenvironment. This restriction of efficacy may be due to an intratumoral immunosuppressive milieu, consisting of regulatory T cells, M2 macrophages, and myeloid derived suppressor cells. Here, we analyze recent advances and propose future directions in the modulation of cellular state propensities combined with cancer vaccines.

{"title":"Intratumoral immune cell manipulations as a strategy to enhance cancer vaccine efficiency.","authors":"James Adeosun, Mohammad Omar Faruk Shaikh, Timothy Brauns, Yuki Agarwala, Mark C Poznansky, Yohannes Gemechu","doi":"10.1016/j.trecan.2024.11.007","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.11.007","url":null,"abstract":"<p><p>Shortcomings in cancer vaccine development are attributable to weak and transient anti-tumor cellular responses in the tumor microenvironment. This restriction of efficacy may be due to an intratumoral immunosuppressive milieu, consisting of regulatory T cells, M2 macrophages, and myeloid derived suppressor cells. Here, we analyze recent advances and propose future directions in the modulation of cellular state propensities combined with cancer vaccines.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":""},"PeriodicalIF":14.3,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1