Pub Date : 2024-09-01Epub Date: 2024-07-16DOI: 10.1016/j.trecan.2024.06.007
Tim R de Back, Sander R van Hooff, Dirkje W Sommeijer, Louis Vermeulen
Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.
{"title":"Transcriptomic subtyping of gastrointestinal malignancies.","authors":"Tim R de Back, Sander R van Hooff, Dirkje W Sommeijer, Louis Vermeulen","doi":"10.1016/j.trecan.2024.06.007","DOIUrl":"10.1016/j.trecan.2024.06.007","url":null,"abstract":"<p><p>Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"842-856"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-19DOI: 10.1016/j.trecan.2024.06.009
Xinran Tang, Michael F Berger, David B Solit
Genomic profiling of hundreds of cancer-associated genes is now a component of routine cancer care. DNA sequencing can identify mutations, mutational signatures, and structural alterations predictive of therapy response and assess for heritable cancer risk, but it has been less useful for identifying predictive biomarkers of sensitivity to cytotoxic chemotherapies, antibody drug conjugates, and immunotherapies. The clinical adoption of molecular profiling platforms such as RNA sequencing better suited to identifying those patients most likely to respond to immunotherapies and drug combinations will be critical to expanding the benefits of precision oncology. This review discusses the potential advantages of innovative molecular and functional profiling platforms designed to replace or complement targeted DNA sequencing and the major hurdles to their clinical adoption.
对数百个癌症相关基因进行基因组分析现已成为常规癌症治疗的一部分。DNA 测序可以确定突变、突变特征和结构改变,预测治疗反应并评估遗传性癌症风险,但在确定对细胞毒性化疗、抗体药物共轭物和免疫疗法敏感性的预测性生物标志物方面作用不大。在临床上采用 RNA 测序等分子剖析平台更适合确定那些最有可能对免疫疗法和药物组合产生反应的患者,这对扩大精准肿瘤学的益处至关重要。本综述讨论了旨在取代或补充 DNA 靶向测序的创新型分子和功能分析平台的潜在优势,以及临床应用的主要障碍。
{"title":"Precision oncology: current and future platforms for treatment selection.","authors":"Xinran Tang, Michael F Berger, David B Solit","doi":"10.1016/j.trecan.2024.06.009","DOIUrl":"10.1016/j.trecan.2024.06.009","url":null,"abstract":"<p><p>Genomic profiling of hundreds of cancer-associated genes is now a component of routine cancer care. DNA sequencing can identify mutations, mutational signatures, and structural alterations predictive of therapy response and assess for heritable cancer risk, but it has been less useful for identifying predictive biomarkers of sensitivity to cytotoxic chemotherapies, antibody drug conjugates, and immunotherapies. The clinical adoption of molecular profiling platforms such as RNA sequencing better suited to identifying those patients most likely to respond to immunotherapies and drug combinations will be critical to expanding the benefits of precision oncology. This review discusses the potential advantages of innovative molecular and functional profiling platforms designed to replace or complement targeted DNA sequencing and the major hurdles to their clinical adoption.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"781-791"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.1016/j.trecan.2024.06.008
Diego Dibitetto, Carmen A Widmer, Sven Rottenberg
In recent years, various poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been approved for the treatment of several cancers to target the vulnerability of homologous recombination (HR) deficiency (e.g., due to BRCA1/2 dysfunction). In this review we analyze the ongoing debates and recent breakthroughs in the use of PARPis for BRCA1/2-deficient cancers, juxtaposing the 'double-strand break (DSB)' and 'single-stranded DNA (ssDNA) gap' models of synthetic lethality induced by PARPis. We spotlight the complexity of this interaction, highlighting emerging research on the role of DNA polymerase theta (POLθ) and ssDNA gaps in shaping therapy responses. We scrutinize the clinical ramifications of these findings, especially concerning PARPi efficacy and resistance mechanisms, underscoring the heterogeneity of BRCA-mutated tumors and the urgent need for advanced research to bridge the gap between laboratory models and patient outcomes.
{"title":"PARPi, BRCA, and gaps: controversies and future research.","authors":"Diego Dibitetto, Carmen A Widmer, Sven Rottenberg","doi":"10.1016/j.trecan.2024.06.008","DOIUrl":"10.1016/j.trecan.2024.06.008","url":null,"abstract":"<p><p>In recent years, various poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have been approved for the treatment of several cancers to target the vulnerability of homologous recombination (HR) deficiency (e.g., due to BRCA1/2 dysfunction). In this review we analyze the ongoing debates and recent breakthroughs in the use of PARPis for BRCA1/2-deficient cancers, juxtaposing the 'double-strand break (DSB)' and 'single-stranded DNA (ssDNA) gap' models of synthetic lethality induced by PARPis. We spotlight the complexity of this interaction, highlighting emerging research on the role of DNA polymerase theta (POLθ) and ssDNA gaps in shaping therapy responses. We scrutinize the clinical ramifications of these findings, especially concerning PARPi efficacy and resistance mechanisms, underscoring the heterogeneity of BRCA-mutated tumors and the urgent need for advanced research to bridge the gap between laboratory models and patient outcomes.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"857-869"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-20DOI: 10.1016/j.trecan.2024.06.010
Laura Danielson, Phil Prime, Rosanna Larter
Historically, teenage and young adult (TYA) cancers have been understudied, with research largely focussing on paediatric or older adult (OA) indications. With increasing TYA cancer incidence rates internationally, now is the time to focus on teenagers and young adults across the research pipeline to improve not only outcomes but also the quality of life for this underserved group.
{"title":"Mind the gap: why we need to consider teenage and young adult cancers across the research pipeline.","authors":"Laura Danielson, Phil Prime, Rosanna Larter","doi":"10.1016/j.trecan.2024.06.010","DOIUrl":"10.1016/j.trecan.2024.06.010","url":null,"abstract":"<p><p>Historically, teenage and young adult (TYA) cancers have been understudied, with research largely focussing on paediatric or older adult (OA) indications. With increasing TYA cancer incidence rates internationally, now is the time to focus on teenagers and young adults across the research pipeline to improve not only outcomes but also the quality of life for this underserved group.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"774-776"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-07-23DOI: 10.1016/j.trecan.2024.06.005
Jon Corres-Mendizabal, Francesca Zacchi, Natalia Martín-Martín, Joaquin Mateo, Arkaitz Carracedo
Metastatic hormone-naïve prostate cancer (mHNPC) is often the initial form of presentation for metastatic prostate cancer and encompasses a heterogeneous patient population with high inter-patient heterogeneity in prognosis and response to therapy. A more precise treatment of mHNPC, guided by evidence-based biomarkers, remains an unmet medical need. In addition, the limited number of representative laboratory models of mHNPC hampers the translation of basic research into clinical applications. We provide a comprehensive overview of the clinical and biological features that characterize mHNPC, highlight molecular data that could explain the unique prognostic characteristics of mHNPC, and identify key open questions.
{"title":"Metastatic hormone-naïve prostate cancer: a distinct biological entity.","authors":"Jon Corres-Mendizabal, Francesca Zacchi, Natalia Martín-Martín, Joaquin Mateo, Arkaitz Carracedo","doi":"10.1016/j.trecan.2024.06.005","DOIUrl":"10.1016/j.trecan.2024.06.005","url":null,"abstract":"<p><p>Metastatic hormone-naïve prostate cancer (mHNPC) is often the initial form of presentation for metastatic prostate cancer and encompasses a heterogeneous patient population with high inter-patient heterogeneity in prognosis and response to therapy. A more precise treatment of mHNPC, guided by evidence-based biomarkers, remains an unmet medical need. In addition, the limited number of representative laboratory models of mHNPC hampers the translation of basic research into clinical applications. We provide a comprehensive overview of the clinical and biological features that characterize mHNPC, highlight molecular data that could explain the unique prognostic characteristics of mHNPC, and identify key open questions.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"825-841"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11397905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-08-05DOI: 10.1016/j.trecan.2024.06.006
Ancuta Jurj, Beatrice Fontana, Gabriele Varani, George A Calin
Noncoding RNAs, especially miRNAs, play a pivotal role in cancer initiation and metastasis, underscoring their susceptibility to precise modulation via small molecule inhibitors. This review examines the innovative strategy of targeting oncogenic miRNAs with small drug-like molecules, an approach that can reshape the cancer treatment landscape. We review the current understanding of the multifaceted roles of miRNAs in oncogenesis, highlighting emerging therapeutic paradigms that have the potential to expand cancer treatment options. As research on small molecule inhibitors of miRNA is still in its early stages, ongoing investigative efforts and the development of new technologies and chemical matter are essential to fulfill the significant potential of this innovative approach to cancer treatment.
{"title":"Small molecules targeting microRNAs: new opportunities and challenges in precision cancer therapy.","authors":"Ancuta Jurj, Beatrice Fontana, Gabriele Varani, George A Calin","doi":"10.1016/j.trecan.2024.06.006","DOIUrl":"10.1016/j.trecan.2024.06.006","url":null,"abstract":"<p><p>Noncoding RNAs, especially miRNAs, play a pivotal role in cancer initiation and metastasis, underscoring their susceptibility to precise modulation via small molecule inhibitors. This review examines the innovative strategy of targeting oncogenic miRNAs with small drug-like molecules, an approach that can reshape the cancer treatment landscape. We review the current understanding of the multifaceted roles of miRNAs in oncogenesis, highlighting emerging therapeutic paradigms that have the potential to expand cancer treatment options. As research on small molecule inhibitors of miRNA is still in its early stages, ongoing investigative efforts and the development of new technologies and chemical matter are essential to fulfill the significant potential of this innovative approach to cancer treatment.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"809-824"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
{"title":"Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells.","authors":"Pengrong Ouyang, Bo Cheng, Xijing He, Jiatao Lou, Xiaokang Li, Hui Guo, Feng Xu","doi":"10.1016/j.trecan.2024.07.003","DOIUrl":"10.1016/j.trecan.2024.07.003","url":null,"abstract":"<p><p>Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":" ","pages":"792-808"},"PeriodicalIF":14.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1016/s2405-8033(24)00150-x
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s2405-8033(24)00150-x","DOIUrl":"https://doi.org/10.1016/s2405-8033(24)00150-x","url":null,"abstract":"No Abstract","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":"11 1","pages":""},"PeriodicalIF":18.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.trecan.2024.07.004
The evolution of antitumor therapies has significantly improved cancer prognosis but has concurrently resulted in cardiovascular toxicities. Understanding the biological mechanisms behind these toxicities is crucial for effective management. Immunotherapy-related cardiovascular toxicities are primarily mediated by immune cells and secreted cytokines. Chemotherapy may cause cardiovascular damage through autophagy disruption and mitochondrial dysfunction. Targeted therapies can induce toxicity through endothelin-1 (ET-1) production and cardiac signaling disruption. Radiotherapy may lead to cardiomyopathy and myocardial fibrosis by affecting endothelial cells, triggering inflammatory responses and accelerating atherosclerosis. This review provides insights into these mechanisms and strategies, aiming to enhance the clinical prevention and treatment of cardiovascular toxicities.
{"title":"Cardiovascular toxicity in antitumor therapy: biological and therapeutic insights","authors":"","doi":"10.1016/j.trecan.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.07.004","url":null,"abstract":"<p>The evolution of antitumor therapies has significantly improved cancer prognosis but has concurrently resulted in cardiovascular toxicities. Understanding the biological mechanisms behind these toxicities is crucial for effective management. Immunotherapy-related cardiovascular toxicities are primarily mediated by immune cells and secreted cytokines. Chemotherapy may cause cardiovascular damage through autophagy disruption and mitochondrial dysfunction. Targeted therapies can induce toxicity through endothelin-1 (ET-1) production and cardiac signaling disruption. Radiotherapy may lead to cardiomyopathy and myocardial fibrosis by affecting endothelial cells, triggering inflammatory responses and accelerating atherosclerosis. This review provides insights into these mechanisms and strategies, aiming to enhance the clinical prevention and treatment of cardiovascular toxicities.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":"141 1","pages":""},"PeriodicalIF":18.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}