Prostaglandin E2 (PGE2) is well known to promote tumor progression by boosting cancer cell proliferation while inhibiting anticancer immunity. Recent data from Lacher et al. and Morotti et al. demonstrate that one of the mechanisms through which PGE2 suppresses tumor-targeting immune responses involves downregulation of interleukin 2 (IL2) receptors and consequent inhibition of mitochondrial metabolism in T cells.
Approved BRAF inhibitors have shown limited clinical benefit due to recurrent disease progression. In a recent Cancer Discovery paper, Yaeger et al. show that a next-generation BRAF inhibitor, PF-07799933, has widespread therapeutic activity in experimental models and patients who were refractory to treatment with approved BRAF inhibitors.
Colorectal cancer (CRC) is a prevalent gastrointestinal cancer posing significant clinical challenges. CRC management traditionally involves surgery, often coupled with chemotherapy. However, unresectable or metastatic CRC (mCRC) presents a complex challenge necessitating innovative treatment strategies. Targeted therapies have emerged as the cornerstone of treatment in such cases, with interventions tailored to specific molecular attributes. Concurrently, immunotherapies have revolutionized cancer treatment by harnessing the immune system to combat malignant cells. This review explores the evolving landscape of CRC treatment, focusing on the synergy between immunotherapies and targeted therapies, thereby offering new avenues for enhancing the effectiveness of therapy for CRC.
B7-H3, an immune checkpoint glycoprotein, facilitates immune evasion and the promotion of tumors and is highly expressed on the surface of prostate cancer (PCa) cells, which makes it a feasible and robust candidate for immunotherapies against advanced prostate cancer. Here, we summarize and discuss recent findings on the suitability of targeting B7-H3 in PCa treatment.
Systemic treatment of resectable non-small cell lung cancer (NSCLC) is evolving with emerging neoadjuvant, perioperative, and adjuvant immunotherapy approaches. Circulating tumor DNA (ctDNA) detection at clinical diagnosis, during neoadjuvant therapy, or after resection may discern high-risk patients who might benefit from therapy escalation or switch. This Review summarizes translational implications of data supporting ctDNA-based risk determination in NSCLC and outstanding questions regarding ctDNA validity/utility as a prognostic biomarker. We discuss emerging ctDNA capabilities to refine clinical tumor–node–metastasis (TNM) staging in lung adenocarcinoma, ctDNA dynamics during neoadjuvant therapy for identifying patients deriving suboptimal benefit, and postoperative molecular residual disease (MRD) detection to escalate systemic therapy. Considering differential relapse characteristics in landmark MRD-negative/MRD-positive patients, we propose how ctDNA might integrate with pathological response data for optimal postoperative risk stratification.
Social, environmental, and biological risk factors influence exposures to newly termed ‘biosocial determinants of health’. As molecular factors that lie at the intersection between lived experiences and individual biology, biosocial determinants may inform on the enduring complexity of cancer disparity across transdisciplinary studies.