首页 > 最新文献

Trends in cancer最新文献

英文 中文
Crosstalk of T cells within the ovarian cancer microenvironment. 卵巢癌微环境中 T 细胞的相互影响。
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-27 DOI: 10.1016/j.trecan.2024.09.001
Bovannak S Chap, Nicolas Rayroux, Alizée J Grimm, Eleonora Ghisoni, Denarda Dangaj Laniti

Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvironments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked to enhanced immune responses and long-term survival. In this review we present emerging evidence suggesting that cellular crosstalk tightly regulates the distribution of TILs within the TME, underscoring the need to better understand key cellular networks that promote or impede T cell infiltration in OC. We also capture the emergent methodologies and computational techniques that enable the dissection of cell-cell crosstalk. Finally, we present innovative ex vivo TME models that can be leveraged to map and perturb cellular communications to enhance T cell infiltration and immune reactivity.

卵巢癌(OC)代表着高度多样化的肿瘤微环境(TME)生态系统。肿瘤浸润淋巴细胞(TILs)的存在与增强的免疫反应和长期生存有关。在这篇综述中,我们介绍了新出现的证据,这些证据表明细胞间的串联密切调节着 TILs 在 TME 中的分布,强调了更好地了解促进或阻碍 T 细胞浸润 OC 的关键细胞网络的必要性。我们还捕捉了新出现的方法和计算技术,这些方法和技术有助于剖析细胞-细胞串联。最后,我们介绍了创新的体外 TME 模型,这些模型可用于绘制和扰乱细胞通讯,以增强 T 细胞浸润和免疫反应性。
{"title":"Crosstalk of T cells within the ovarian cancer microenvironment.","authors":"Bovannak S Chap, Nicolas Rayroux, Alizée J Grimm, Eleonora Ghisoni, Denarda Dangaj Laniti","doi":"10.1016/j.trecan.2024.09.001","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.09.001","url":null,"abstract":"<p><p>Ovarian cancer (OC) represents ecosystems of highly diverse tumor microenvironments (TMEs). The presence of tumor-infiltrating lymphocytes (TILs) is linked to enhanced immune responses and long-term survival. In this review we present emerging evidence suggesting that cellular crosstalk tightly regulates the distribution of TILs within the TME, underscoring the need to better understand key cellular networks that promote or impede T cell infiltration in OC. We also capture the emergent methodologies and computational techniques that enable the dissection of cell-cell crosstalk. Finally, we present innovative ex vivo TME models that can be leveraged to map and perturb cellular communications to enhance T cell infiltration and immune reactivity.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malignant glioma remodeling of neuronal circuits: therapeutic opportunities and repurposing of antiepileptic drugs. 恶性胶质瘤重塑神经元回路:治疗机会和抗癫痫药物的再利用。
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-25 DOI: 10.1016/j.trecan.2024.09.003
Cesar Nava Gonzales, Mikias B Negussie, Saritha Krishna, Vardhaan S Ambati, Shawn L Hervey-Jumper

Tumor-associated epilepsy is the most common presenting symptom in patients diagnosed with diffuse gliomas. Recent evidence illustrates the requirement of synaptic activity to drive glioma proliferation and invasion. Class 1, 2, and 3 evidence is limited regarding the use of antiepileptic drugs (AEDs) as antitumor therapy in combination with chemotherapy. Furthermore, no central mechanism has emerged as the most targetable. The optimal timing of AED regimen remains unknown. Targeting aberrant neuronal activity is a promising avenue for glioma treatment. Clinical biomarkers may aid in identifying patients most likely to benefit from AEDs. Quality evidence is needed to guide treatment decisions.

肿瘤相关性癫痫是弥漫性胶质瘤患者最常见的症状。最近的证据表明,胶质瘤的增殖和侵袭需要突触活动的驱动。关于使用抗癫痫药物(AEDs)与化疗联合进行抗肿瘤治疗,1 级、2 级和 3 级证据十分有限。此外,还没有发现最有针对性的中心机制。抗癫痫药物治疗的最佳时机仍然未知。以异常神经元活动为靶点是治疗胶质瘤的一个前景广阔的途径。临床生物标志物可能有助于确定最有可能从AEDs中获益的患者。需要高质量的证据来指导治疗决策。
{"title":"Malignant glioma remodeling of neuronal circuits: therapeutic opportunities and repurposing of antiepileptic drugs.","authors":"Cesar Nava Gonzales, Mikias B Negussie, Saritha Krishna, Vardhaan S Ambati, Shawn L Hervey-Jumper","doi":"10.1016/j.trecan.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.09.003","url":null,"abstract":"<p><p>Tumor-associated epilepsy is the most common presenting symptom in patients diagnosed with diffuse gliomas. Recent evidence illustrates the requirement of synaptic activity to drive glioma proliferation and invasion. Class 1, 2, and 3 evidence is limited regarding the use of antiepileptic drugs (AEDs) as antitumor therapy in combination with chemotherapy. Furthermore, no central mechanism has emerged as the most targetable. The optimal timing of AED regimen remains unknown. Targeting aberrant neuronal activity is a promising avenue for glioma treatment. Clinical biomarkers may aid in identifying patients most likely to benefit from AEDs. Quality evidence is needed to guide treatment decisions.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142354700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulation by endothelial cells: prospects for cancer therapy 内皮细胞的免疫调节作用:癌症治疗的前景
IF 18.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-16 DOI: 10.1016/j.trecan.2024.08.002
Halima Alnaqbi, Lisa M. Becker, Mira Mousa, Fatima Alshamsi, Sarah K. Azzam, Besa Emini Veseli, Lauren A. Hymel, Khalood Alhosani, Marwa Alhusain, Massimiliano Mazzone, Habiba Alsafar, Peter Carmeliet

Growing evidence highlights the importance of tumor endothelial cells (TECs) in the tumor microenvironment (TME) for promoting tumor growth and evading immune responses. Immunomodulatory endothelial cells (IMECs) represent a distinct plastic phenotype of ECs that exerts the ability to modulate immunity in health and disease. This review discusses our current understanding of IMECs in cancer biology, scrutinizing insights from single-cell reports to compare their characteristics and function dynamics across diverse tumor types, conditions, and species. We investigate possible implications of exploiting IMECs in the context of cancer treatment, particularly examining their influence on the efficacy of existing therapies and the potential to leverage them as targets in optimizing immunotherapeutic strategies.

越来越多的证据表明,肿瘤微环境(TME)中的肿瘤内皮细胞(TECs)对促进肿瘤生长和逃避免疫反应非常重要。免疫调节内皮细胞(IMECs)代表了一种独特的可塑性内皮细胞表型,在健康和疾病中发挥着调节免疫的能力。本综述讨论了我们目前对癌症生物学中 IMECs 的理解,仔细研究了单细胞报告的见解,比较了它们在不同肿瘤类型、条件和物种中的特征和功能动态。我们探讨了在癌症治疗中利用 IMECs 可能产生的影响,特别是研究了它们对现有疗法疗效的影响,以及将它们作为优化免疫治疗策略靶点的潜力。
{"title":"Immunomodulation by endothelial cells: prospects for cancer therapy","authors":"Halima Alnaqbi, Lisa M. Becker, Mira Mousa, Fatima Alshamsi, Sarah K. Azzam, Besa Emini Veseli, Lauren A. Hymel, Khalood Alhosani, Marwa Alhusain, Massimiliano Mazzone, Habiba Alsafar, Peter Carmeliet","doi":"10.1016/j.trecan.2024.08.002","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.08.002","url":null,"abstract":"<p>Growing evidence highlights the importance of tumor endothelial cells (TECs) in the tumor microenvironment (TME) for promoting tumor growth and evading immune responses. Immunomodulatory endothelial cells (IMECs) represent a distinct plastic phenotype of ECs that exerts the ability to modulate immunity in health and disease. This review discusses our current understanding of IMECs in cancer biology, scrutinizing insights from single-cell reports to compare their characteristics and function dynamics across diverse tumor types, conditions, and species. We investigate possible implications of exploiting IMECs in the context of cancer treatment, particularly examining their influence on the efficacy of existing therapies and the potential to leverage them as targets in optimizing immunotherapeutic strategies.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":18.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes 代谢和表观遗传学:肿瘤细胞可塑性和治疗效果的驱动因素
IF 18.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-14 DOI: 10.1016/j.trecan.2024.08.005
Benjamin N. Gantner, Flavio R. Palma, Madhura R. Pandkar, Marcelo J. Sakiyama, Daniel Arango, Gina M. DeNicola, Ana P. Gomes, Marcelo G. Bonini

Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.

新的证据表明,新陈代谢不仅是细胞分裂的能量和生物材料来源,而且还是癌细胞可塑性和耐药性的驱动因素。这是因为新陈代谢的变化会导致染色质的重塑和基因表达模式的重编程,进一步推动肿瘤细胞表型的转变。因此,新陈代谢与表观遗传学之间的相互影响似乎蕴含着发现各种侵袭性肿瘤的新型治疗靶点的巨大潜力。在此,我们重点介绍最近的发现,这些发现支持了这样一个概念,即代谢和表观遗传学之间的合作使癌症能够克服日益增加的治疗压力。我们讨论了特定的代谢物如何促进癌细胞的恢复能力,并透视了同时针对这些关键力量如何产生协同治疗效果以改善治疗效果。
{"title":"Metabolism and epigenetics: drivers of tumor cell plasticity and treatment outcomes","authors":"Benjamin N. Gantner, Flavio R. Palma, Madhura R. Pandkar, Marcelo J. Sakiyama, Daniel Arango, Gina M. DeNicola, Ana P. Gomes, Marcelo G. Bonini","doi":"10.1016/j.trecan.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.08.005","url":null,"abstract":"<p>Emerging evidence indicates that metabolism not only is a source of energy and biomaterials for cell division but also acts as a driver of cancer cell plasticity and treatment resistance. This is because metabolic changes lead to remodeling of chromatin and reprogramming of gene expression patterns, furthering tumor cell phenotypic transitions. Therefore, the crosstalk between metabolism and epigenetics seems to hold immense potential for the discovery of novel therapeutic targets for various aggressive tumors. Here, we highlight recent discoveries supporting the concept that the cooperation between metabolism and epigenetics enables cancer to overcome mounting treatment-induced pressures. We discuss how specific metabolites contribute to cancer cell resilience and provide perspective on how simultaneously targeting these key forces could produce synergistic therapeutic effects to improve treatment outcomes.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":18.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling data toward pan-cancer foundation models 扩大数据规模,建立泛癌症基础模型
IF 18.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-11 DOI: 10.1016/j.trecan.2024.08.008
Nadieh Khalili, Francesco Ciompi

Recent advances in artificial intelligence (AI) have revolutionized computational pathology (CPath), particularly through deep learning (DL) and neural networks (NNs). In a recent study, Vorontsov et al. introduced Virchow, a new foundation model (FM) for CPath, which has shown promising results in cancer detection and biomarker prediction.

人工智能(AI)的最新进展给计算病理学(CPath)带来了革命性的变化,特别是通过深度学习(DL)和神经网络(NN)。在最近的一项研究中,Vorontsov 等人为 CPath 引入了一种新的基础模型 (FM)--Virchow,该模型在癌症检测和生物标记预测方面取得了令人鼓舞的成果。
{"title":"Scaling data toward pan-cancer foundation models","authors":"Nadieh Khalili, Francesco Ciompi","doi":"10.1016/j.trecan.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.08.008","url":null,"abstract":"<p>Recent advances in artificial intelligence (AI) have revolutionized computational pathology (CPath), particularly through deep learning (DL) and neural networks (NNs). In a recent study, <span><span>Vorontsov <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> introduced Virchow, a new foundation model (FM) for CPath, which has shown promising results in cancer detection and biomarker prediction.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":18.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental pollutants and bad bugs work hand in glove 环境污染物和坏虫子狼狈为奸
IF 18.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-10 DOI: 10.1016/j.trecan.2024.08.007
Dingjiacheng Jia, Shujie Chen

‘Bad bacteria’ could alter the toxicokinetics of environmental pollutants, thereby exacerbating chemically induced tumorigenesis. Recently, Roje et al. reported that specific gut microbiota can metabolize nitrosamine compounds to a toxic oxidation product, aggravating bladder cancer development and progression. These findings have important implications for tumor intervention through the gut microbiota.

坏细菌 "会改变环境污染物的毒物动力学,从而加剧化学诱导的肿瘤发生。最近,Roje 等人报告说,特定的肠道微生物群能将亚硝胺化合物代谢为有毒的氧化产物,从而加剧膀胱癌的发展和恶化。这些发现对通过肠道微生物群干预肿瘤具有重要意义。
{"title":"Environmental pollutants and bad bugs work hand in glove","authors":"Dingjiacheng Jia, Shujie Chen","doi":"10.1016/j.trecan.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.08.007","url":null,"abstract":"<p>‘Bad bacteria’ could alter the toxicokinetics of environmental pollutants, thereby exacerbating chemically induced tumorigenesis. Recently, <span><span>Roje <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> reported that specific gut microbiota can metabolize nitrosamine compounds to a toxic oxidation product, aggravating bladder cancer development and progression. These findings have important implications for tumor intervention through the gut microbiota.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":18.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会和内容
IF 18.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-10 DOI: 10.1016/s2405-8033(24)00176-6
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s2405-8033(24)00176-6","DOIUrl":"https://doi.org/10.1016/s2405-8033(24)00176-6","url":null,"abstract":"No Abstract","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":18.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription & copyright page 订阅和版权页面
IF 18.4 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-10 DOI: 10.1016/s2405-8033(24)00179-1
No Abstract
无摘要
{"title":"Subscription & copyright page","authors":"","doi":"10.1016/s2405-8033(24)00179-1","DOIUrl":"https://doi.org/10.1016/s2405-8033(24)00179-1","url":null,"abstract":"No Abstract","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":18.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic control of immunoevasion in cancer stem cells. 癌症干细胞免疫逃逸的表观遗传学控制。
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-06 DOI: 10.1016/j.trecan.2024.08.004
Claudia Galassi, Manel Esteller, Ilio Vitale, Lorenzo Galluzzi

Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.

癌症干细胞(CSCs)是一种分化不良的恶性细胞群,(至少在某些肿瘤中)是肿瘤进展、抗药性和疾病复发的罪魁祸首。根据一种广为接受的模式,癌症进展的所有阶段都涉及肿瘤细胞逃避宿主免疫系统识别或清除的能力。根据这一概念,癌细胞干细胞不仅能比其分化程度较高的同类细胞更好地应对环境和治疗引发的压力,而且似乎还能更好地逃避肿瘤靶向免疫反应。我们总结了DNA和组蛋白的表观遗传学修饰,通过这些修饰,CSCs可以逃避免疫识别或消灭,并提出这种改变是很有希望的治疗靶点,可以提高一些恶性肿瘤对免疫疗法的敏感性。
{"title":"Epigenetic control of immunoevasion in cancer stem cells.","authors":"Claudia Galassi, Manel Esteller, Ilio Vitale, Lorenzo Galluzzi","doi":"10.1016/j.trecan.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.08.004","url":null,"abstract":"<p><p>Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in cancer imaging. 癌症成像趋势。
IF 14.3 1区 医学 Q1 ONCOLOGY Pub Date : 2024-09-03 DOI: 10.1016/j.trecan.2024.08.006
Xinyuan Zhou, Binyu Shi, Gang Huang, Jianjun Liu, Weijun Wei

Molecular imaging of cancer is a collaborative endeavor, uniting scientists and physicians from diverse fields. Such collaboration is actively developing and translating cutting-edge molecular imaging approaches to enhance the diagnostic landscape of human malignancies. The advent of positron emission tomography (PET) and PET imaging tracers has realized non-invasive target annotation and tumor characterization at the molecular level. In surgical procedures, novel imaging techniques, such as fluorescence or Cherenkov luminescence, help identify tumors and enhance surgical precision. Simultaneously, progress in imaging equipment, innovative algorithms, and artificial intelligence has opened avenues for next-generation cancer screening and imaging, augmenting the efficiency and accuracy of cancer diagnosis. In this review, we provide a panorama of molecular cancer imaging and ongoing developments in the field.

癌症分子成像是一项合作性工作,它将来自不同领域的科学家和医生团结在一起。这种合作正在积极开发和转化最前沿的分子成像方法,以改善人类恶性肿瘤的诊断状况。正电子发射断层扫描(PET)和 PET 成像示踪剂的出现实现了分子水平的无创靶标标注和肿瘤特征描述。在外科手术中,荧光或切伦科夫发光等新型成像技术有助于识别肿瘤并提高手术精确度。与此同时,成像设备、创新算法和人工智能的进步为下一代癌症筛查和成像开辟了道路,提高了癌症诊断的效率和准确性。在这篇综述中,我们将介绍癌症分子成像的全景以及该领域的持续发展。
{"title":"Trends in cancer imaging.","authors":"Xinyuan Zhou, Binyu Shi, Gang Huang, Jianjun Liu, Weijun Wei","doi":"10.1016/j.trecan.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.trecan.2024.08.006","url":null,"abstract":"<p><p>Molecular imaging of cancer is a collaborative endeavor, uniting scientists and physicians from diverse fields. Such collaboration is actively developing and translating cutting-edge molecular imaging approaches to enhance the diagnostic landscape of human malignancies. The advent of positron emission tomography (PET) and PET imaging tracers has realized non-invasive target annotation and tumor characterization at the molecular level. In surgical procedures, novel imaging techniques, such as fluorescence or Cherenkov luminescence, help identify tumors and enhance surgical precision. Simultaneously, progress in imaging equipment, innovative algorithms, and artificial intelligence has opened avenues for next-generation cancer screening and imaging, augmenting the efficiency and accuracy of cancer diagnosis. In this review, we provide a panorama of molecular cancer imaging and ongoing developments in the field.</p>","PeriodicalId":23336,"journal":{"name":"Trends in cancer","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in cancer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1