Pub Date : 2023-09-07DOI: 10.1016/j.wse.2023.09.001
Qin Ke , Ming-chao Li , Qiu-bing Ren , Wen-chao Zhao
Numerical simulation of concrete-faced rockfill dams (CFRDs) considering the spatial variability of rockfill has become a popular research topic in recent years. In order to determine uncertain rockfill properties efficiently and reliably, this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer. The comprehensive implementation process of the proposed model was described with an illustrative CFRD example. First, the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy. Afterwards, the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters. This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers. Overall, the developed model effectively identified the random parameters of rockfill materials. This study provided scientific references for uncertainty analysis of CFRDs. In addition, the proposed method can be applied to other similar engineering structures.
{"title":"Rockfill material uncertainty inversion analysis of concrete-faced rockfill dams using stacking ensemble strategy and Jaya optimizer","authors":"Qin Ke , Ming-chao Li , Qiu-bing Ren , Wen-chao Zhao","doi":"10.1016/j.wse.2023.09.001","DOIUrl":"10.1016/j.wse.2023.09.001","url":null,"abstract":"<div><p>Numerical simulation of concrete-faced rockfill dams (CFRDs) considering the spatial variability of rockfill has become a popular research topic in recent years. In order to determine uncertain rockfill properties efficiently and reliably, this study developed an uncertainty inversion analysis method for rockfill material parameters using the stacking ensemble strategy and Jaya optimizer. The comprehensive implementation process of the proposed model was described with an illustrative CFRD example. First, the surrogate model method using the stacking ensemble algorithm was used to conduct the Monte Carlo stochastic finite element calculations with reduced computational cost and improved accuracy. Afterwards, the Jaya algorithm was used to inversely calculate the combination of the coefficient of variation of rockfill material parameters. This optimizer obtained higher accuracy and more significant uncertainty reduction than traditional optimizers. Overall, the developed model effectively identified the random parameters of rockfill materials. This study provided scientific references for uncertainty analysis of CFRDs. In addition, the proposed method can be applied to other similar engineering structures.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 4","pages":"Pages 419-428"},"PeriodicalIF":4.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000856/pdfft?md5=300479ee263dbccd562d92bc410cb890&pid=1-s2.0-S1674237023000856-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41511913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1016/j.wse.2023.08.004
Yvelisse Pérez , Enmanuel Vargas , Daniel García-Cortés , William Hernández , Humberto Checo , Ulises Jáuregui-Haza
Constructed wetlands (CW) are well known nature-based systems for water treatment. This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa, the Dominican Republic. The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand (BOD5) and chemical oxygen demand, but not for the removal of phosphorus and fecal coliforms. In addition, a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions. The concentrations of heavy metals, such as zinc, copper, chromium, and iron, were found to decrease in the effluent of the wetland, and the concentrations for nickel and manganese tended to increase. The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards. The construction cost of these facilities was around 200 USD per population equivalent, similar to the cost in other countries in the same region. This study suggested some solutions to the improved performance of CWs: selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen, use of endemic plants that bioaccumulate heavy metals, combination of constructed wetlands with filtration on activated carbon, and inclusion of water purification processes that allow to evaluate the reuse of treated water.
{"title":"Efficiency and effectiveness of systems for the treatment of domestic wastewater based on subsurface flow constructed wetlands in Jarabacoa, Dominican Republic","authors":"Yvelisse Pérez , Enmanuel Vargas , Daniel García-Cortés , William Hernández , Humberto Checo , Ulises Jáuregui-Haza","doi":"10.1016/j.wse.2023.08.004","DOIUrl":"10.1016/j.wse.2023.08.004","url":null,"abstract":"<div><p>Constructed wetlands (CW) are well known nature-based systems for water treatment. This study evaluated the efficiency and effectiveness of seven domestic wastewater treatment systems based on horizontal flow CWs in Jarabacoa, the Dominican Republic. The results showed that the CWs were efficient in reducing the degree of contamination of wastewater to levels below the Dominican wastewater discharge standards for parameters such as the 5-day biochemical oxygen demand (BOD5) and chemical oxygen demand, but not for the removal of phosphorus and fecal coliforms. In addition, a horizontal flow subsurface wetland in the peri-urban area El Dorado was evaluated in terms of the performance of wastewater treatment in tropical climatic conditions. The concentrations of heavy metals, such as zinc, copper, chromium, and iron, were found to decrease in the effluent of the wetland, and the concentrations for nickel and manganese tended to increase. The levels of heavy metals in the effluent were lower than the limit values of the Dominican wastewater discharge standards. The construction cost of these facilities was around 200 USD per population equivalent, similar to the cost in other countries in the same region. This study suggested some solutions to the improved performance of CWs: selection of a microbial flora that guarantees the reduction of nitrates and nitrites to molecular nitrogen, use of endemic plants that bioaccumulate heavy metals, combination of constructed wetlands with filtration on activated carbon, and inclusion of water purification processes that allow to evaluate the reuse of treated water.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 2","pages":"Pages 118-128"},"PeriodicalIF":4.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000820/pdfft?md5=9829d8165dec934492f98ef0c7395a0b&pid=1-s2.0-S1674237023000820-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41316859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.wse.2023.08.005
Nikita P. Chokshi, Abhi Chauhan, Rahul Chhayani, Sandip Sharma, Jayesh P. Ruparelia
It is necessary to treat textile effluents before discharging them into natural water bodies as they harm the environment. Compared to conventional treatment methods, catalytic ozonation has gained attention due to its effectiveness in removing refractory organic pollutants. In this study, the coprecipitation method was used to synthesize a composite metal oxide of silver and cerium oxide, and the synthesized catalyst was used to eliminate the Reactive Black 5 (RB5) dye. X-ray diffraction, scanning electron microscopic, and Brunauer–Emmett–Teller surface area analyses were performed to characterize the synthesized catalyst. Afterwards, relevant experimental parameters, such as pH, ozone and catalyst dosages, and initial dye concentration, were investigated. The experiments revealed that the optimal experimental conditions were a pH value of 10, a catalyst dosage of 0.7 g/L, and an ozone dosage of 60 L/h. In these optimized conditions, the RB5 dye was entirely removed, and a chemical oxygen demand removal efficiency of 88% was achieved within a reaction time of 80 min. Furthermore, the recycling potential of the catalyst was tested for three cycles, and no deterioration in its activity was observed. Additionally, studies were conducted using a hydroxyl radical scavenger in order to understand the reaction pathway of the system. As a result, the indirect pathway was more dominant than the direct pathway in the system.
{"title":"Preparation and application of Ag–Ce–O composite metal oxide catalyst in catalytic ozonation for elimination of Reactive Black 5 dye from aqueous media","authors":"Nikita P. Chokshi, Abhi Chauhan, Rahul Chhayani, Sandip Sharma, Jayesh P. Ruparelia","doi":"10.1016/j.wse.2023.08.005","DOIUrl":"10.1016/j.wse.2023.08.005","url":null,"abstract":"<div><p>It is necessary to treat textile effluents before discharging them into natural water bodies as they harm the environment. Compared to conventional treatment methods, catalytic ozonation has gained attention due to its effectiveness in removing refractory organic pollutants. In this study, the coprecipitation method was used to synthesize a composite metal oxide of silver and cerium oxide, and the synthesized catalyst was used to eliminate the Reactive Black 5 (RB5) dye. X-ray diffraction, scanning electron microscopic, and Brunauer–Emmett–Teller surface area analyses were performed to characterize the synthesized catalyst. Afterwards, relevant experimental parameters, such as pH, ozone and catalyst dosages, and initial dye concentration, were investigated. The experiments revealed that the optimal experimental conditions were a pH value of 10, a catalyst dosage of 0.7 g/L, and an ozone dosage of 60 L/h. In these optimized conditions, the RB5 dye was entirely removed, and a chemical oxygen demand removal efficiency of 88% was achieved within a reaction time of 80 min. Furthermore, the recycling potential of the catalyst was tested for three cycles, and no deterioration in its activity was observed. Additionally, studies were conducted using a hydroxyl radical scavenger in order to understand the reaction pathway of the system. As a result, the indirect pathway was more dominant than the direct pathway in the system.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"17 3","pages":"Pages 257-265"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000832/pdfft?md5=4e3d981aca9029f136ebff783e53cab1&pid=1-s2.0-S1674237023000832-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48904501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO3)2 concentration, temperature, and heating duration were 0.10 mol/L, 600°C, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.
{"title":"Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst","authors":"Piyawan Nuengmatcha , Arnannit Kuyyogsuy , Paweena Porrawatkul , Rungnapa Pimsen , Saksit Chanthai , Prawit Nuengmatcha","doi":"10.1016/j.wse.2023.01.004","DOIUrl":"10.1016/j.wse.2023.01.004","url":null,"abstract":"<div><p>In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO<sub>3</sub>)<sub>2</sub> concentration, temperature, and heating duration were 0.10 mol/L, 600°C, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 243-251"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46177171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.wse.2023.05.001
Yi-ming Hu, Zhong-min Liang, Yi-xin Huang, Jun Wang, Bin-quan Li
Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (EFTW) of an extreme flood series in the FTW was used, and two possible methods of estimating EFTW values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from EFTW estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by EFTW estimation.
{"title":"Assessment of first-order-moment-based sample reconstruction method for design flood estimation in changing environment","authors":"Yi-ming Hu, Zhong-min Liang, Yi-xin Huang, Jun Wang, Bin-quan Li","doi":"10.1016/j.wse.2023.05.001","DOIUrl":"10.1016/j.wse.2023.05.001","url":null,"abstract":"<div><p>Estimating the design flood under nonstationary conditions is challenging. In this study, a sample reconstruction approach was developed to transform a nonstationary series into a stationary one in a future time window (FTW). In this approach, the first-order moment (<em>E</em><sub>FTW</sub>) of an extreme flood series in the FTW was used, and two possible methods of estimating <em>E</em><sub>FTW</sub> values in terms of point values and confidence intervals were developed. Three schemes were proposed to analyze the uncertainty of design flood estimation in terms of sample representativeness, uncertainty from <em>E</em><sub>FTW</sub> estimation, and both factors, respectively. To investigate the performance of the sample reconstruction approach, synthesis experiments were designed based on the annual peak series of the Little Sugar Creek in the United States. The results showed that the sample reconstruction approach performed well when the high-order moment of the series did not change significantly in the specified FTW. Otherwise, its performance deteriorated. In addition, the uncertainty of design flood estimation caused by sample representativeness was greater than that caused by <em>E</em><sub>FTW</sub> estimation.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 226-233"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42488701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.wse.2023.04.006
Rui-hua Nie , Qi-hang Zhou , Wen-jie Li , Xing-nian Liu , Gang Xie , Lu Wang
Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.
{"title":"Impact of backwater on water surface profile in curved channels","authors":"Rui-hua Nie , Qi-hang Zhou , Wen-jie Li , Xing-nian Liu , Gang Xie , Lu Wang","doi":"10.1016/j.wse.2023.04.006","DOIUrl":"10.1016/j.wse.2023.04.006","url":null,"abstract":"<div><p>Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (<em>J</em><sub>r</sub>) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. <em>J</em><sub>r</sub> increased with the longitudinal location parameter <em>ξ</em> when −0.2 < <em>ξ</em> < 0.5, and decreased with <em>ξ</em> when 0.5 < <em>ξ</em> < 1.2. Furthermore, the results showed that <em>J</em><sub>r</sub> asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 295-301"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43331971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.wse.2023.03.002
Peter Olusakin Oladoye , Timothy Oladiran Ajiboye , Wycliffe Chisutia Wanyonyi , Elizabeth Oyinkansola Omotola , Mayowa Ezekiel Oladipo
Malachite green (MG) dye is a common industrial dye and organic contaminant that can be found in (waste)water. Textile and food industries make use of MG as dyeing and food coloring agents, respectively. However, MG is both genotoxic and mutagenic. Hence, the elimination of MG from MG-laden-wastewater is germane. This review summarizes up-to-date researches that have been reported in literature as regards the decontamination of toxic MG wastewater. Various removal methods (adsorption, membrane, Fenton system, and heterogenous and homogeneous photodegradation) were discussed. Of the two basic technologies that are comprehensively explored and reviewed, chemical treatment methods are not as viable as physical removal methods, such as the adsorption technology, due to the lack of secondary pollutant production, simple design, low operation costs, and resource availability. This review also presents various practical knowledge gaps needed for large-scale applications of adsorptive removal methods for MG. It concludes by recommending further research on the techniques of cheap and simple decontamination of MG to get clean water.
{"title":"Insights into remediation technology for malachite green wastewater treatment","authors":"Peter Olusakin Oladoye , Timothy Oladiran Ajiboye , Wycliffe Chisutia Wanyonyi , Elizabeth Oyinkansola Omotola , Mayowa Ezekiel Oladipo","doi":"10.1016/j.wse.2023.03.002","DOIUrl":"https://doi.org/10.1016/j.wse.2023.03.002","url":null,"abstract":"<div><p>Malachite green (MG) dye is a common industrial dye and organic contaminant that can be found in (waste)water. Textile and food industries make use of MG as dyeing and food coloring agents, respectively. However, MG is both genotoxic and mutagenic. Hence, the elimination of MG from MG-laden-wastewater is germane. This review summarizes up-to-date researches that have been reported in literature as regards the decontamination of toxic MG wastewater. Various removal methods (adsorption, membrane, Fenton system, and heterogenous and homogeneous photodegradation) were discussed. Of the two basic technologies that are comprehensively explored and reviewed, chemical treatment methods are not as viable as physical removal methods, such as the adsorption technology, due to the lack of secondary pollutant production, simple design, low operation costs, and resource availability. This review also presents various practical knowledge gaps needed for large-scale applications of adsorptive removal methods for MG. It concludes by recommending further research on the techniques of cheap and simple decontamination of MG to get clean water.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 261-270"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49831243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.wse.2023.01.003
Nur Azalina Suzianti Feisal , Noor Haziqah Kamaludin , Muhammad Firdaus Abdullah Sani , Dayang Khairulnisa Awang Ahmad , Mohd Azwan Ahmad , Nur Faiza Abdul Razak , Tengku Nilam Baizura Tengku Ibrahim
Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.
{"title":"Anthropogenic disturbance of aquatic biodiversity and water quality of an urban river in Penang, Malaysia","authors":"Nur Azalina Suzianti Feisal , Noor Haziqah Kamaludin , Muhammad Firdaus Abdullah Sani , Dayang Khairulnisa Awang Ahmad , Mohd Azwan Ahmad , Nur Faiza Abdul Razak , Tengku Nilam Baizura Tengku Ibrahim","doi":"10.1016/j.wse.2023.01.003","DOIUrl":"10.1016/j.wse.2023.01.003","url":null,"abstract":"<div><p>Malaysia's rapid economic and demographic development have placed negative pressure on its water supplies and the quality of the Juru River, which is close to the nation's capital and its major source of water. Healthy aquatic ecosystems are supported by physicochemical properties and biological diversity. This study evaluated the anthropogenic impacts on aquatic biodiversity, especially plankton, fish, and macrobenthos, as well as the water quality of the Juru River in the Penang area. Aquatic biodiversity and river water parameters were collected from ten sampling stations along the Juru River. Seven variables were used to assess the physicochemical environment: pH, temperature, total suspended solids (TSS), salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand. At each sampling station, the total number of plankton, fish, and macrobenthic taxa were counted and analyzed. The relationships between the physicochemical parameters and aquatic biodiversity were investigated with biotypological analysis, principal component analysis, hierarchical cluster analysis, and linear regression analysis. These analyses showed that the richness and diversity indices were generally influenced by salinity, temperature, TSS, BOD, and pH. The data obtained in this study supported the bioindicator concept. The findings, as they related to scientifically informed conservation, could serve as a model for Juru River management, as well as for river management throughout Malaysia and other tropical Asian countries.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 234-242"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43100599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.wse.2023.04.002
Huan-ling Wang , Xu-fei Zhao , Hong-jie Chen , Kui Yi , Wei-chau Xie , Wei-ya Xu
Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights of the decision-making trial and evaluation laboratory (DEMATEL) and criteria importance through intercriteria correlation (CRITIC) methods. A safety evaluation system was developed according to in situ monitoring data. The backward cloud generator was used to calculate the numerical characteristics of a cloud model of quantitative indices, and different virtual clouds were used to synthesize some clouds into a generalized one. The synthesized numerical characteristics were calculated to comprehensively evaluate the safety of toppling rock slopes. A case study of a toppling rock slope near the Huangdeng Hydropower Station in China was conducted using monitoring data collected since operation of the hydropower project began. The results indicated that the toppling rock slope was moderately safe with a low safety margin. The composite cloud model considers the fuzziness and randomness of safety evaluation and enables interchange between qualitative and quantitative knowledge. This study provides a new theoretical method for evaluating the safety of toppling rock slopes. It can aid in the predication, control, and even prevention of disasters.
{"title":"Evaluation of toppling rock slopes using a composite cloud model with DEMATEL–CRITIC method","authors":"Huan-ling Wang , Xu-fei Zhao , Hong-jie Chen , Kui Yi , Wei-chau Xie , Wei-ya Xu","doi":"10.1016/j.wse.2023.04.002","DOIUrl":"10.1016/j.wse.2023.04.002","url":null,"abstract":"<div><p>Safety evaluation of toppling rock slopes developing in reservoir areas is crucial. To reduce the uncertainty of safety evaluation, this study developed a composite cloud model, which improved the combination weights of the decision-making trial and evaluation laboratory (DEMATEL) and criteria importance through intercriteria correlation (CRITIC) methods. A safety evaluation system was developed according to in situ monitoring data. The backward cloud generator was used to calculate the numerical characteristics of a cloud model of quantitative indices, and different virtual clouds were used to synthesize some clouds into a generalized one. The synthesized numerical characteristics were calculated to comprehensively evaluate the safety of toppling rock slopes. A case study of a toppling rock slope near the Huangdeng Hydropower Station in China was conducted using monitoring data collected since operation of the hydropower project began. The results indicated that the toppling rock slope was moderately safe with a low safety margin. The composite cloud model considers the fuzziness and randomness of safety evaluation and enables interchange between qualitative and quantitative knowledge. This study provides a new theoretical method for evaluating the safety of toppling rock slopes. It can aid in the predication, control, and even prevention of disasters.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 280-288"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43419701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO2 per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.
本研究探讨了协同效益型废水处理技术在鱼类加工业中的应用。由于缺乏关于印度尼西亚鱼类加工工业废水的资料,因此进行了现场调查。对于全国整个鱼类加工业来说,污水处理设施的普及率不到50%。采用协同效益的方法,在印度尼西亚巴厘岛的一家鱼粉加工厂安装了实际规模的游泳床技术(SBT)和厌氧折流板反应器(ABR)与SBT (ABR - SBT)相结合的系统,并对废水系统的处理性能进行了评估。在一切照旧的情况下,印度尼西亚鱼类加工业废水的化学需氧量负荷和温室气体(GHG)排放量估计分别为每年3.3万吨和22万吨当量二氧化碳。SBT系统和ABR-SBT系统协同效益情景下的温室气体排放量分别为98 149和26 720 t /年。因此,在印度尼西亚的鱼类加工业中引入协同效益型废水处理将显著减少污染负荷和温室气体排放。
{"title":"Greenhouse gas reduction of co-benefit-type wastewater treatment system for fish-processing industry: A real-scale case study in Indonesia","authors":"Yoshiteru Hamatani , Takahiro Watari , Masashi Hatamoto , Takashi Yamaguchi , Tjandra Setiadi , Toshihiko Konda","doi":"10.1016/j.wse.2023.03.001","DOIUrl":"10.1016/j.wse.2023.03.001","url":null,"abstract":"<div><p>This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO<sub>2</sub> per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 3","pages":"Pages 271-279"},"PeriodicalIF":4.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45318755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}