Every year, more than 5 million deaths are attributed to injuries worldwide. However, accurately identifying and distinguishing the types of injuries in decomposed corpses is a significant challenge in forensic identification. Determining the cause of death in cases involving decomposed cadavers is particularly difficult, because traditional methods often lack conclusive evidence. To address this gap, this study aimed to explore the potential of attenuated total reflection/Fourier-transform infrared (ATR-FTIR) spectroscopy in analyzing the molecular composition changes in tissue samples from putrefied corpses. To simulate different environmental conditions, 54 experimental mice were randomly divided into three groups: ante-mortem injury (AI), post-mortem injury (PI), and non-injury (NI) groups, and their bodies were monitored at different time points. Subsequently, we conducted comprehensive analyses of these tissue samples using ATR-FTIR. The results indicate that under winter conditions, PC1 explained 78.3 % of the variance, whereas PC2 explained 15.4 %. Similarly, under summer conditions, PC1 explained 75.3 % of the variance, whereas PC2 explained 16.1 %. The results under both conditions, the AUC values of the ROC curve exceeded 0.9, indicating the reliability and accuracy of this method in discriminating ante-mortem injuries from post-mortem injuries on decomposed bodies, highlighting its significance in forensic investigations. This demonstrates the capability of ATR-FTIR technology to identify distinct molecular changes linked to ante-mortem and post-mortem injuries in decomposed corpses. The findings of this study underscores the forensic significance of understanding the molecular composition changes in decomposed cadavers. Therefore, ATR-FTIR is a valuable tool for differentiating ante-mortem and post-mortem injuries while also considering environmental factors.
Taaffeite (BeMg3Al8O16) and musgravite (Be(Mg,Fe,Zn)2Al6O12) are two of the rarest gem kinds worldwide, and their scarcity greatly enhances their extraordinary worth. Due to their nearly matched physical properties, discriminating between the two gems using basic gemological equipment will be exceedingly difficult, considering that they both belong to the same mineral family. Distinguishing between these two categories is crucial due to the substantial variation in their rarity levels, which greatly impacts on their market pricing. Nevertheless, there is a lack of published data in the scientific literature about the spectroscopic characterization of musgravite and taaffeite.
In this article, ATR-FTIR spectroscopy successfully distinguished Tanzanian musgravite from taaffeite for the first time. In addition, Raman spectroscopy and EPMA are employed for the identification of musgravite and taaffeite specimens. The EPMA results confirm that the Tanzanian gems under investigation have similar elemental compositions to those of the same kinds of stones discovered from other sources. The peaks observed in the ATR and Raman spectra serve as indicators for distinguishing between musgravite and taaffeite gemstones, with the goal of simplifying the identification process. The ATR and Raman spectra of musgravite and taaffeite are comprehensively analyzed and found to be achievable. The main Raman bands used to identify Tanzanian musgravite are situated at 412 and 713 cm−1, whereas for taaffeite, the significant bands were detected at 416 and 761 cm−1. The distinct ATR bands observed at 773 cm−1, corresponding to the vibration of Al–O, can be efficiently utilized as indications to differentiate Tanzanian musgravite from taaffeite. The results prove that ATR-FTIR spectroscopy, like Raman spectroscopy, is a very effective non-invasive method for rapidly distinguishing these precious gemstones.
High-throughput on-line Raman detection has become commonplace in pharmaceutical and PAT. This has increased the demand for efficient, parallel spectral detection. In this work, a method of adjusting the optical structure parameters through multi-field theory is proposed to realize the detector accepting two spectral information from the light source at the same time. By combining two Raman probes and two customized Y-fibers, Raman spectra of two samples at the same laser power can be acquired simultaneously online. Compared with the multi-channel Raman spectroscopy detection system based on microscope device and multiple Raman spectroscopy coupling system, the measurement time and cost are greatly reduced. Thus, dual-channel Raman spectroscopy detection devices provide a cost and time-saving method for modern high-throughput on-line Raman detection.
Cannabidiolic acid (CBDA) is found in cannabis as genuine phytocompound of the well-known non-psychoactive cannabinoid - cannabidiol (CBD), notable for its various therapeutic purposes. Decarboxylation of CBDA to CBD is commonly used in the production of finished cannabis products, thus increasing its bioavailability, and making it more effective for various therapeutic purposes. Optimization of decarboxylation time and the possibility of monitoring this process in real-time is quite a challenge for the cannabis producers' R&D divisions, since incomplete decarboxylation is associated with quality and efficiency concerns, whereas prolonged reaction time can lead to potentially lower production efficacy. The purpose of this study is to emphasize the use of mid-infrared (MIR) spectroscopy for in-situ real-time monitoring and understanding of the CBDA decarboxylation process. For the first time, the TG/DTG curves of CBDA provided insights into the solid-solid decarboxylation dynamics, process endpoint, and maximal conversion rate temperature, which were used for designing the subsequent infrared experiments. In addition, the DSC curve illustrated the melting point of the pure CBDA. Temperature-controlled infrared spectroscopy studies were performed on CBDA standard and cannabis flowers followed by precise band assignment and spectra-structure correlations based on the idea of functional group vibrations. In order to investigate the spectral regions of major relevance for the CBDA to CBD interconversion process, a principal component analysis (PCA) was used. In the obtained models, PC1 was capable to describe 81.3 %, 77.8 % and 77 % of the total spectral fluctuations in the CBDA standard and two plant samples, respectively. The PC1 score plot of the CBDA standard (as a function of temperature) showed a perfect complementarity to the TG/DTG curve, indicating that PC1 of the MIR spectrum model may quantitatively describe the CBDA decarboxylation dynamics, which allowed for the derivation of decarboxylation rate constants for the CBDA standard and the plant material at prechosen temperatures. The temperature-controlled experiments revealed significantly higher kinetics constants of CBDA decarboxylation in the plant material compared to the CBDA standard and supported the assumption that the complex matrix in cannabis plants accelerates the conversion of CBDA to CBD. In this way, progress in the development and optimization of an efficient and fast approach for monitoring and elucidation of the phytocannabinoid decarboxylation process was made, launching the possibility for further employment in the medical cannabis industry.
The utilization of the soil pedotransfer functions (PTFs) developed based on the basic soil propertied is an alternative, fast, cost-effective and applicable approach for the prediction of field capacity (FC) and permanent wilting point (PWP). In addition, the Visible–Near-Infrared (Vis-NIR) spectra in soil science has gained prominence due to its practicality and relevance. In this paper, we used the data of the soil PWP and FC of 135 soil samples, easily measurable soil properties and Vis-NIR spectroscopy. The multiple linear regression (MLR) model was utilized to formulate PTFs model and Vis-NIR spectroscopy combined with MLR and partial least-squares (PLSR) was used to develop Spectrotransfer Function (STF). Results showed that among the easily measurable soil properties, particle-size diameter (dg) with Beta of −0.72 and −0.63 the most influential parameters for predicting FC and PWP, respectively, followed by the clay content. Developed PTFs for both FC and PWP with a R2 of 0.71 and 0.68, respectively, had a better performance than other previous developed PTFs. Results also revealed that the PLSR with a higher R2 (0.81) and lower RMSE (4 %) significantly performed better in comparison to STF for both FC and PWP prediction.
To characterize a mixture of powders using several analytical techniques, it is necessary that successive analyses be carried out on well-identified and localized particles, so that each characterization corresponds to a given powder. In this publication, powdered nuclear materials are characterized at the morphological and elemental levels with a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) and at the chemical level with a micro-Raman spectrometer (MRS). However, to avoid a time-consuming and insufficiently accurate microparticle relocation process between SEM/EDS and MRS, micro-Raman analyses are carried out inside the SEM using a coupling device. In this way, all three pieces of information are obtained for exactly the same micrometric spot, without moving the sample or relocating the microparticles analyzed. The information can therefore be combined to characterize each component of the mixture. In this article, we describe in detail the methodology we have developed and optimized for morphological, elemental and chemical analysis of microparticles using a combined SEM/EDS and SRM. This methodology has been applied to powdered nuclear materials in two international nuclear forensics exercises. In the first exercise, named CMX-6, the combined use of the two instruments identified the presence of PuO2 microparticles and several uranium compounds (UO2, U3O8, UO2F2) in both materials. In the second exercise, called CMX-7, the methodology developed enabled us to distinguish two chemical phases of uranium, a uranyl oxy-hydroxide and a uranyl nitrate, each characterized by specific morphologies and the detection or non-detection of a minor elemental constituent (calcium).
In this study, the mineralogical composition of 284 sherds obtained from the sites of Yeşilova Höyük and Yassıtepe Höyük, two of the oldest settlements in Western Anatolia, and corresponding to a wide period starting from the Neolithic period to the Chalcolithic and Early Bronze Age (EBA), was studied by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. FTIR data was used to classify the sherds and state their firing conditions as a result of determining their mineralogical composition using principal component analysis (PCA), multivariate curve resolution (MCR), and hierarchical cluster analysis (HCA). According to the PCA results, the second-order derivative FTIR spectrum with 19 smoothing points in the range of 1300–400 cm−1 was determined to be the most successful model in classifying sherds. As a result of MCR, which allows comparison of standard minerals obtained within the scope of the study, it was determined that kaolinite, illite, chlorite, and some feldspar types were dominant in the sherds. According to HCA analysis, all sherds except five of them exhibited a similar mineralogical structure. According to the derivative spectra, it was seen that the sherds had a composition consisting of kaolinite, illite, hematite, chlorite, and some feldspar types at different rates. Upon examining the data, it becomes evident that the sherds are composed of nearly identical minerals and might have been fired in an oxidizing atmosphere. Even while 279 sherds had many mineralogical traits, N-061, EB-030, N-043, C-068, and N-059 were found to have distinct proportions of comparable minerals, including more kaolinite, illite, calcite, and chlorite. Regarding color, additives, and the amount of ceramic pastes present, these five sherds differ from the others. This suggests that there might have been attempts at manufacture or pots brought in from outside the Yeşilova Höyük-Yassıtepe Höyük sites. The results provided from the derivative spectra showed that all sherds except five of them have been fired at about at temperatures slightly above 450–500 °C due to their relatively low kaolinite character, but below 800 °C because diopside and similar high-temperature minerals could not be detected. The five sherds may have been fired at a temperature of around 450–500 °C due to the presence of a high character of kaolinite, illite, and chlorite. It was understood that the residents of the sites of Yeşilova Höyük and Yassıtepe Höyük produced their ceramics using the same raw materials and the same production methods from the Neolithic period to EBA thanks to FTIR and chemometrics, which are very good tools for analyzing large numbers of sherds with low cost and fast analysis time.