Pub Date : 2024-04-29DOI: 10.1007/s11274-024-03991-3
J. Harish, Gopal Venkateshbabu, M. K. Prasannakumar, Pramesh Devanna, H. B. Mahesh, D. C. Balasundara, S. Dharanendra Swamy, Sridhara G. Kunjeti, C. Manjunatha, M. E. Puneeth, H. C. Lohithaswa, Prashant P. Jambhulkar
Stalk rot disease is a major constraint in maize production and till date reported to be caused by two to three species of phytopathogenic fungi but, in our present study, we disclose the first report of stalk rot is caused by complex species of phytopathogens, which belongs to five different genera. Therefore, to substantiate these findings, a total of 105 diseased samples of maize were collected from 21 different locations in six different geographical locations of India from which 48 isolates were used for the research study. Morphological features such as pigmentation, colony color, type of mycelium and pattern of mycelium was examined using macro and microscopic methods. A total of 11 different spp. of pathogens belonging to the five different genera: Fusarium verticillioides (56.25%), F. equiseti (14.5%), F. andiyazi (6.25%), F. solani (2.08%), F. proliferatum (2.08%), F. incarnatum (2.08%), Lasidioplodia theobrame (6.25%), Exserohilum rostrtum (4.16%), Nigrospora spp. (4.16%). and Schizophyllum commune (2.08%) were identified by different housekeeping genes (ITS, TEF-1α, RPB2 and Actin). Fusarium verticillioides, F. equiseti and F. andiyazi were major pathogens involved in stalk rot. This is the first report on F. proliferatum, F. solani, F. incarnatum, Lasidioplodia theobrame, Exserohilum rostrtum, Nigrospora spp. and Schizophyllum commune causing stalk rot of maize and their distribution in the different states of India. Studies on population dynamics of PFSR will enhance the understanding of pathogen behavior, virulence, or its association with different pathogens across India, which will facilitate the development of resistant maize genotypes against the PFSR.
茎腐病是玉米生产中的一个主要制约因素,迄今为止,据报道茎腐病是由两到三种植物病原真菌引起的,但在本研究中,我们首次披露了茎腐病是由复杂的植物病原菌引起的,这些病原菌属于五个不同的属。因此,为了证实这些发现,我们从印度 6 个不同地理位置的 21 个不同地点共收集了 105 个玉米病害样本,并从中分离出 48 个样本用于研究。使用宏观和显微镜方法检查了形态特征,如色素沉着、菌落颜色、菌丝类型和菌丝形态。总共有 11 种不同的病原体属于 5 个不同的属:F.equiseti(14.5%)、F. andiyazi(6.25%)、F. solani(2.08%)、F. proliferatum(2.08%)、F. incarnatum(2.08%)、Lasidioplodia theobrame(6.25%), Exserohilum rostrtum (4.16%), Nigrospora spp. (4.16%). and Schizophyllum commune (2.08%) were identified by different housekeeping genes (ITS, TEF-1α, RPB2 and Actin).Fusarium verticillioides、F. equiseti 和 F. andiyazi 是导致茎腐病的主要病原菌。这是首次报道 F. proliferatum、F. solani、F. incarnatum、Lasidioplodia theobrame、Exserohilum rostrtum、Nigrospora spp.和 Schizophyllum commune 引起的玉米茎腐病及其在印度各邦的分布情况。对 PFSR 种群动态的研究将加深对病原体行为、毒性或其与印度各地不同病原体的关联的了解,这将有助于培育抗 PFSR 的玉米基因型。
{"title":"Stalk rot species diversity and molecular phylogeny associated with diseased maize in India","authors":"J. Harish, Gopal Venkateshbabu, M. K. Prasannakumar, Pramesh Devanna, H. B. Mahesh, D. C. Balasundara, S. Dharanendra Swamy, Sridhara G. Kunjeti, C. Manjunatha, M. E. Puneeth, H. C. Lohithaswa, Prashant P. Jambhulkar","doi":"10.1007/s11274-024-03991-3","DOIUrl":"https://doi.org/10.1007/s11274-024-03991-3","url":null,"abstract":"<p>Stalk rot disease is a major constraint in maize production and till date reported to be caused by two to three species of phytopathogenic fungi but, in our present study, we disclose the first report of stalk rot is caused by complex species of phytopathogens, which belongs to five different genera. Therefore, to substantiate these findings, a total of 105 diseased samples of maize were collected from 21 different locations in six different geographical locations of India from which 48 isolates were used for the research study. Morphological features such as pigmentation, colony color, type of mycelium and pattern of mycelium was examined using macro and microscopic methods. A total of 11 different spp. of pathogens belonging to the five different genera: <i>Fusarium verticillioides</i> (56.25%), <i>F. equiseti</i> (14.5%), <i>F. andiyazi</i> (6.25%), <i>F. solani</i> (2.08%), <i>F. proliferatum</i> (2.08%), <i>F. incarnatum</i> (2.08%), <i>Lasidioplodia theobrame</i> (6.25%), <i>Exserohilum rostrtum</i> (4.16%), <i>Nigrospora</i> spp. (4.16%). and <i>Schizophyllum commune</i> (2.08%) were identified by different housekeeping genes (ITS, TEF-1α, RPB2 and Actin). <i>Fusarium verticillioides, F. equiseti</i> and <i>F. andiyazi</i> were major pathogens involved in stalk rot. This is the first report on <i>F. proliferatum, F. solani, F. incarnatum, Lasidioplodia theobrame, Exserohilum rostrtum</i>, <i>Nigrospora</i> spp. and <i>Schizophyllum commune</i> causing stalk rot of maize and their distribution in the different states of India. Studies on population dynamics of PFSR will enhance the understanding of pathogen behavior, virulence, or its association with different pathogens across India, which will facilitate the development of resistant maize genotypes against the PFSR.</p>","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29DOI: 10.1007/s11274-024-03999-9
Anastasiya M. Lendel, Nataliia P. Antonova, Igor V. Grigoriev, Evgeny V. Usachev, Vladimir A. Gushchin, Daria V. Vasina
The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins’ effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.