Background: The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the "license" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear.
Aim: To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.
Methods: We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an in vitro mixed lymphocyte culture assay, and in vivo in mice with dextran sulfate sodium-induced acute colitis.
Results: Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice.
Conclusion: Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
{"title":"Interferon-gamma and tumor necrosis factor-alpha synergistically enhance the immunosuppressive capacity of human umbilical-cord-derived mesenchymal stem cells by increasing PD-L1 expression.","authors":"Zhuo Chen, Meng-Wei Yao, Zhi-Lin Shen, Shi-Dan Li, Wei Xing, Wei Guo, Zhan Li, Xiao-Feng Wu, Luo-Quan Ao, Wen-Yong Lu, Qi-Zhou Lian, Xiang Xu, Xiang Ao","doi":"10.4252/wjsc.v15.i8.787","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.787","url":null,"abstract":"<p><strong>Background: </strong>The immunosuppressive capacity of mesenchymal stem cells (MSCs) is dependent on the \"license\" of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1 (PD-L1), which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases. In MSCs, interferon-gamma (IFN-γ) is a key inducer of PD-L1 expression, which is synergistically enhanced by tumor necrosis factor-alpha (TNF-α); however, the underlying mechanism is unclear.</p><p><strong>Aim: </strong>To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.</p><p><strong>Methods: </strong>We assessed PD-L1 expression in human umbilical-cord-derived MSCs (hUC-MSCs) induced by IFN-γ and TNF-α, alone or in combination. Additionally, we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γ alone or in combination with TNF-α induces PD-L1 expression. Moreover, we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters. Finally, we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γ and TNF-α in both an <i>in vitro</i> mixed lymphocyte culture assay, and <i>in vivo</i> in mice with dextran sulfate sodium-induced acute colitis.</p><p><strong>Results: </strong>Our results suggest that IFN-γ induction alone upregulates PD-L1 expression in hUC-MSCs while TNF-α alone does not, and that the co-induction of IFN-γ and TNF-α promotes higher expression of PD-L1. IFN-γ induces hUC-MSCs to express PD-L1, in which IFN-γ activates the JAK/STAT1 signaling pathway, up-regulates the expression of the interferon regulatory factor 1 (IRF1) transcription factor, promotes the binding of IRF1 and the PD-L1 gene promoter, and finally promotes PD-L1 mRNA. Although TNF-α alone did not induce PD-L1 expression in hUC-MSCs, the addition of TNF-α significantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation. TNF-α up-regulated IFN-γ receptor expression through activation of the nuclear factor kappa-B signaling pathway, which significantly enhanced IFN-γ signaling. Finally, co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation, and significantly ameliorate weight loss, mucosal damage, inflammatory cell infiltration, and up-regulation of inflammatory factors in colitis mice.</p><p><strong>Conclusion: </strong>Overall, our results suggest that IFN-γ and TNF-α enhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"787-806"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/29/a1/WJSC-15-787.PMC10494569.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Intervertebral disc degeneration (IDD) is a main contributor to low back pain. Oxidative stress, which is highly associated with the progression of IDD, increases senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs (IVDs). Quercetin (Que) has been demonstrated to reduce oxidative stress in diverse degenerative diseases.
Aim: To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.
Methods: In vitro, NPMSCs were isolated from rat tails. Senescence-associated β-galactosidase (SA-β-Gal) staining, cell cycle, reactive oxygen species (ROS), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and western blot analyses were used to evaluated the protective effects of Que. Meanwhile the relationship between miR-34a-5p and Sirtuins 1 (SIRT1) was evaluated by dual-luciferase reporter assay. To explore whether Que modulates tert-butyl hydroperoxide (TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway, we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression. In vivo, a puncture-induced rat IDD model was constructed, and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.
Results: We found that TBHP can cause NPMSCs senescence changes, such as reduced cell proliferation ability, increased SA-β-Gal activity, cell cycle arrest, the accumulation of ROS, and increased expression of senescence-related proteins. While abovementioned senescence indicators were significantly alleviated by Que treatment. Que decreased the expression levels of senescence-related proteins (p16, p21, and p53) and senescence-associated secreted phenotype (SASP), including IL-1β, IL-6, and MMP-13, and it increased the expression of SIRT1. In addition, the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown. In vivo, X-ray, and histological analyses indicated that Que alleviated IDD in a puncture-induced rat model.
Conclusion: In summary, the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway, suggesting that Que may be a potential agent for the treatment of IDD.
{"title":"Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells <i>via</i> the miR-34a-5p/SIRT1 axis.","authors":"Wen-Jie Zhao, Xin Liu, Man Hu, Yu Zhang, Peng-Zhi Shi, Jun-Wu Wang, Xu-Hua Lu, Xiao-Fei Cheng, Yu-Ping Tao, Xin-Min Feng, Yong-Xiang Wang, Liang Zhang","doi":"10.4252/wjsc.v15.i8.842","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.842","url":null,"abstract":"<p><strong>Background: </strong>Intervertebral disc degeneration (IDD) is a main contributor to low back pain. Oxidative stress, which is highly associated with the progression of IDD, increases senescence of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs (IVDs). Quercetin (Que) has been demonstrated to reduce oxidative stress in diverse degenerative diseases.</p><p><strong>Aim: </strong>To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.</p><p><strong>Methods: </strong><i>In vitro</i>, NPMSCs were isolated from rat tails. Senescence-associated β-galactosidase (SA-β-Gal) staining, cell cycle, reactive oxygen species (ROS), real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, and western blot analyses were used to evaluated the protective effects of Que. Meanwhile the relationship between miR-34a-5p and Sirtuins 1 (SIRT1) was evaluated by dual-luciferase reporter assay. To explore whether Que modulates tert-butyl hydroperoxide (TBHP)-induced senescence of NPMSCs <i>via</i> the miR-34a-5p/SIRT1 pathway, we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression. <i>In vivo,</i> a puncture-induced rat IDD model was constructed, and X rays and histological analysis were used to assess whether Que could alleviate IDD <i>in vivo</i>.</p><p><strong>Results: </strong>We found that TBHP can cause NPMSCs senescence changes, such as reduced cell proliferation ability, increased SA-β-Gal activity, cell cycle arrest, the accumulation of ROS, and increased expression of senescence-related proteins. While abovementioned senescence indicators were significantly alleviated by Que treatment. Que decreased the expression levels of senescence-related proteins (p16, p21, and p53) and senescence-associated secreted phenotype (SASP), including IL-1β, IL-6, and MMP-13, and it increased the expression of SIRT1. In addition, the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown. <i>In vivo</i>, X-ray, and histological analyses indicated that Que alleviated IDD in a puncture-induced rat model.</p><p><strong>Conclusion: </strong>In summary, the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs <i>via</i> the miR-34a/SIRT1 signaling pathway, suggesting that Que may be a potential agent for the treatment of IDD.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"842-865"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9e/9f/WJSC-15-842.PMC10494568.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz et al (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Małgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership and coveted citations. The critical necessity of integrating visionary insights is underscored and achieved through a rigorous analysis of pivotal concepts and innovative ideas. Examples can be harnessed to elucidate the application of these solutions. We advocate a paradigm shift, urging literature review writers to embrace the readers' perspective. A literature review's purpose extends beyond providing a comprehensive panorama; it should illuminate avenues for concept development within a specific field of interest. By achieving this balance, literature reviews stand to captivate a devoted readership, paving the way for manuscripts that are both widely read and frequently cited. The pathway forward requires a fusion of astute analysis and visionary insights, shaping the future of literature review composition.
在Oz等人(2023)的作品中,构建有见地的文献评论手稿的艺术是一个范例,其中概念进展与数字和表格和谐地融合在一起。回顾回顾性数据科学,很明显,被广泛引用的文章可以对《期刊引用报告》的影响因子得分产生变革性的影响,罗伯特·温伯格(Robert Weinberg)关于癌症的里程碑式研究就是一个例子(Hanahan and Weinberg, 2011)。在这里,我们的目标是突出Tuba Oz, Ajeet Kaushik和Małgorzata Kujawska在本期中做出的值得赞扬的贡献,同时重点确定不合格文献综述的特征-阻碍而不是促进进步的因素。在不合格的文献综述中遇到的障碍和障碍是多方面的。对新趋势的预测、对挑战的识别和对解决方案的探索仍然明显缺失。原始贡献没有出现在浩瀚的已有文献中,由于缺乏说明性的数字和表格,明显的差距被放大了。手稿有时呈现出一种骨架的形式,反映出试图容纳过多的参考文献,导致句子中充斥着引用。相反,有效的解决办法在于采取全面的办法。对信息来源进行细致入微的批判性评估,可以促成一场强有力的讨论,而不仅仅是对他人得出的结论进行总结。这种方法经常被忽视,但它有可能提高文章的清晰度、连贯性和逻辑性,最终吸引吸引人的读者和令人垂涎的引用。通过对关键概念和创新思想的严格分析,强调并实现整合远见卓识的关键必要性。可以利用实例来阐明这些解决方案的应用。我们提倡一种范式转换,敦促文学评论作者拥抱读者的视角。文献综述的目的不仅仅是提供一个全面的全景;它应该阐明在特定领域内概念发展的途径。通过实现这种平衡,文学评论能够吸引忠实的读者,为广泛阅读和经常引用的手稿铺平道路。前进的道路需要敏锐的分析和远见卓识的融合,塑造未来的文献综述组成。
{"title":"Mastering the craft: Creating an insightful and widely-cited literature review.","authors":"Shengwen Calvin Li","doi":"10.4252/wjsc.v15.i8.781","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i8.781","url":null,"abstract":"<p><p>The art of constructing an insightful literature review manuscript has witnessed an exemplar in the work of Oz <i>et al</i> (2023), wherein concept progression harmoniously merges with figures and tables. Reflecting on retrospective data science, it is evident that well-cited articles can wield a transformative influence on the Journal Citation Reports Impact Factor score, as exemplified by Robert Weinberg's landmark on cancer (Hanahan and Weinberg, 2011). Here, we aim to spotlight a commendable contribution by Tuba Oz, Ajeet Kaushik, and Małgorzata Kujawska in this issue while pivoting towards identifying the hallmarks of a subpar literature review-elements that hinder rather than promote advancement. The hurdles and roadblocks encountered within subpar literature reviews are multifold. Anticipation of emerging trends, identification of challenges, and exploration of solutions remain conspicuously absent. Original Contributions fail to surface amidst the vast sea of pre-existing literature, with noticeable gaps amplified by the lack of illustrative figures and tables. The manuscript, at times, assumes a skeletal form, reflecting an attempt to accommodate an excess of references, leading to convoluted sentences laden with citations. In contrast, a potent solution lies in adopting a comprehensive approach. A nuanced and critical evaluation of sources can culminate in a robust discussion, surpassing the mere summarization of conclusions drawn by others. This approach, often dismissed, holds the potential to elevate clarity, coherence, and logical flow, ultimately inviting engaged readership and coveted citations. The critical necessity of integrating visionary insights is underscored and achieved through a rigorous analysis of pivotal concepts and innovative ideas. Examples can be harnessed to elucidate the application of these solutions. We advocate a paradigm shift, urging literature review writers to embrace the readers' perspective. A literature review's purpose extends beyond providing a comprehensive panorama; it should illuminate avenues for concept development within a specific field of interest. By achieving this balance, literature reviews stand to captivate a devoted readership, paving the way for manuscripts that are both widely read and frequently cited. The pathway forward requires a fusion of astute analysis and visionary insights, shaping the future of literature review composition.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"781-786"},"PeriodicalIF":4.1,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f9/48/WJSC-15-781.PMC10494571.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10239153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Local mesenchymal stem cell (MSC) therapy for complex perianal fistulas (PFs) has shown considerable promise. But, the long-term safety and efficacy of MSC therapy in complex PFs remain unknown.
Aim: To explore the long-term effectiveness and safety of local MSC therapy for complex PFs.
Methods: Sources included the PubMed, EMBASE, and Cochrane Library databases. A standard meta-analysis was performed using RevMan 5.3.
Results: After screening, 6 studies met the inclusion criteria. MSC therapy was associated with an improved long-term healing rate (HR) compared with the control condition [odds ratio (OR) = 2.13; 95% confidence interval (95%CI): 1.34 to 3.38; P = 0.001]. Compared with fibrin glue (FG) therapy alone, MSC plus FG therapy was associated with an improved long-term HR (OR = 2.30; 95%CI: 1.21 to 4.36; P = 0.01). When magnetic resonance imaging was used to evaluate fistula healing, MSC therapy was found to achieve a higher long-term HR than the control treatment (OR = 2.79; 95%CI: 1.37 to 5.67; P = 0.005). There were no significant differences in long-term safety (OR = 0.77; 95%CI: 0.27 to 2.24; P = 0.64).
Conclusion: Our study indicated that local MSC therapy promotes long-term and sustained healing of complex PFs and that this method is safe.
{"title":"Up-to-date meta-analysis of long-term evaluations of mesenchymal stem cell therapy for complex perianal fistula.","authors":"Fang Cheng, Huang Zhong, Zhong Huang, Zhi Li","doi":"10.4252/wjsc.v15.i8.866","DOIUrl":"10.4252/wjsc.v15.i8.866","url":null,"abstract":"<p><strong>Background: </strong>Local mesenchymal stem cell (MSC) therapy for complex perianal fistulas (PFs) has shown considerable promise. But, the long-term safety and efficacy of MSC therapy in complex PFs remain unknown.</p><p><strong>Aim: </strong>To explore the long-term effectiveness and safety of local MSC therapy for complex PFs.</p><p><strong>Methods: </strong>Sources included the PubMed, EMBASE, and Cochrane Library databases. A standard meta-analysis was performed using RevMan 5.3.</p><p><strong>Results: </strong>After screening, 6 studies met the inclusion criteria. MSC therapy was associated with an improved long-term healing rate (HR) compared with the control condition [odds ratio (OR) = 2.13; 95% confidence interval (95%CI): 1.34 to 3.38; <i>P</i> = 0.001]. Compared with fibrin glue (FG) therapy alone, MSC plus FG therapy was associated with an improved long-term HR (OR = 2.30; 95%CI: 1.21 to 4.36; <i>P</i> = 0.01). When magnetic resonance imaging was used to evaluate fistula healing, MSC therapy was found to achieve a higher long-term HR than the control treatment (OR = 2.79; 95%CI: 1.37 to 5.67; <i>P</i> = 0.005). There were no significant differences in long-term safety (OR = 0.77; 95%CI: 0.27 to 2.24; <i>P</i> = 0.64).</p><p><strong>Conclusion: </strong>Our study indicated that local MSC therapy promotes long-term and sustained healing of complex PFs and that this method is safe.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 8","pages":"866-875"},"PeriodicalIF":3.6,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/60/04/WJSC-15-866.PMC10494567.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing significant challenges in the treatment of severe AP and contributing to increased mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that participate in various inflammatory diseases. Similarly, extracellular vesicles (EVs) secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation. Recently, the therapeutic potential of MSCs-EVs in various inflammatory diseases, including sepsis and AP, has gained increasing recognition. Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited, several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases, wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs. Consequently, we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. This paper aims to discuss this topic. However, additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury, as well as to ascertain their safety and efficacy.
{"title":"Could extracellular vesicles derived from mesenchymal stem cells be a potential therapy for acute pancreatitis-induced cardiac injury?","authors":"Long-Fei Pan, Ze-Qun Niu, Song Ren, Hong-Hong Pei, Yan-Xia Gao, Hui Feng, Jiang-Li Sun, Zheng-Liang Zhang","doi":"10.4252/wjsc.v15.i7.654","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.654","url":null,"abstract":"<p><p>Acute pancreatitis (AP) often leads to a high incidence of cardiac injury, posing significant challenges in the treatment of severe AP and contributing to increased mortality rates. Mesenchymal stem cells (MSCs) release bioactive molecules that participate in various inflammatory diseases. Similarly, extracellular vesicles (EVs) secreted by MSCs have garnered extensive attention due to their comparable anti-inflammatory effects to MSCs and their potential to avoid risks associated with cell transplantation. Recently, the therapeutic potential of MSCs-EVs in various inflammatory diseases, including sepsis and AP, has gained increasing recognition. Although preclinical research on the utilization of MSCs-EVs in AP-induced cardiac injury is limited, several studies have demonstrated the positive effects of MSCs-EVs in regulating inflammation and immunity in sepsis-induced cardiac injury and cardiovascular diseases. Furthermore, clinical studies have been conducted on the therapeutic application of MSCs-EVs for some other diseases, wherein the contents of these EVs could be deliberately modified through prior modulation of MSCs. Consequently, we hypothesize that MSCs-EVs hold promise as a potential therapy for AP-induced cardiac injury. This paper aims to discuss this topic. However, additional research is essential to comprehensively elucidate the underlying mechanisms of MSCs-EVs in treating AP-induced cardiac injury, as well as to ascertain their safety and efficacy.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"654-664"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b9/dd/WJSC-15-654.PMC10401421.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor.
Aim: To determine the effect of Zn on in vitro growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs).
Methods: hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An in vitro scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry.
Results: Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (CDC20, CDK1, CCNA2, CDCA2), proliferation (transforming growth factor β1, GDF5, hypoxia-inducible factor 1α), migration (CXCR4, VCAM1, VEGF-A), and self-renewal (OCT4, SOX2, NANOG) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn.
Conclusion: Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.
{"title":"Zinc enhances the cell adhesion, migration, and self-renewal potential of human umbilical cord derived mesenchymal stem cells.","authors":"Iqra Sahibdad, Shumaila Khalid, G Rasul Chaudhry, Asmat Salim, Sumreen Begum, Irfan Khan","doi":"10.4252/wjsc.v15.i7.751","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.751","url":null,"abstract":"<p><strong>Background: </strong>Zinc (Zn) is the second most abundant trace element after Fe, present in the human body. It is frequently reported in association with cell growth and proliferation, and its deficiency is considered to be a major disease contributing factor.</p><p><strong>Aim: </strong>To determine the effect of Zn on <i>in vitro</i> growth and proliferation of human umbilical cord (hUC)-derived mesenchymal stem cells (MSCs).</p><p><strong>Methods: </strong>hUC-MSCs were isolated from human umbilical cord tissue and characterized based on immunocytochemistry, immunophenotyping, and tri-lineage differentiation. The impact of Zn on cytotoxicity and proliferation was determined by MTT and Alamar blue assay. To determine the effect of Zn on population doubling time (PDT), hUC-MSCs were cultured in media with and without Zn for several passages. An i<i>n vitro</i> scratch assay was performed to analyze the effect of Zn on the wound healing and migration capability of hUC-MSCs. A cell adhesion assay was used to test the surface adhesiveness of hUC-MSCs. Transcriptional analysis of genes involved in the cell cycle, proliferation, migration, and self-renewal of hUC-MSCs was performed by quantitative real-time polymerase chain reaction. The protein expression of Lin28, a pluripotency marker, was analyzed by immunocytochemistry.</p><p><strong>Results: </strong>Zn at lower concentrations enhanced the rate of proliferation but at higher concentrations (> 100 µM), showed concentration dependent cytotoxicity in hUC-MSCs. hUC-MSCs treated with Zn exhibited a significantly greater healing and migration rate compared to untreated cells. Zn also increased the cell adhesion rate, and colony forming efficiency (CFE). In addition, Zn upregulated the expression of genes involved in the cell cycle (<i>CDC20, CDK1, CCNA2, CDCA2</i>), proliferation (<i>transforming growth factor β1, GDF5, hypoxia-inducible factor 1α</i>), migration (<i>CXCR4, VCAM1, VEGF-A</i>), and self-renewal (<i>OCT4, SOX2, NANOG</i>) of hUC-MSCs. Expression of Lin28 protein was significantly increased in cells treated with Zn.</p><p><strong>Conclusion: </strong>Our findings suggest that zinc enhances the proliferation rate of hUC-MSCs decreasing the PDT, and maintaining the CFE. Zn also enhances the cell adhesion, migration, and self-renewal of hUC-MSCs. These results highlight the essential role of Zn in cell growth and development.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"751-767"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/43/37/WJSC-15-751.PMC10401417.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson's disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.
{"title":"Neural stem cells for Parkinson's disease management: Challenges, nanobased support, and prospects.","authors":"Tuba Oz, Ajeet Kaushik, Małgorzata Kujawska","doi":"10.4252/wjsc.v15.i7.687","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.687","url":null,"abstract":"<p><p>Parkinson's disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"687-700"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/a2/WJSC-15-687.PMC10401423.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10005819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li-Jun Wu, Wei Lin, Jian-Jiang Liu, Wei-Xin Chen, Wen-Jun He, Yuan Shi, Xiao Liu, Ke Li
Background: Current evidence shows that human induced pluripotent stem cells (hiPSCs) can effectively differentiate into keratinocytes (KCs), but its effect on skin burn healing has not been reported.
Aim: To observe the effects of hiPSCs-derived KCs transplantation on skin burn healing in mice and to preliminarily reveal the underlying mechanisms.
Methods: An analysis of differentially expressed genes in burn wounds based on GEO datasets GSE140926, and GSE27186 was established. A differentiation medium containing retinoic acid and bone morphogenetic protein 4 was applied to induce hiPSCs to differentiate into KCs. The expression of KCs marker proteins was detected using immunofluorescence staining. A model of a C57BL/6 mouse with deep cutaneous second-degree burn was created, and then phosphate buffered saline (PBS), hiPSCs-KCs, or hiPSCs-KCs with knockdown of COL7A1 were injected around the wound surface. The wound healing, re-epithelialization, engraftment of hiPSCs-KCs into wounds, proinflammatory factor level, and the NF-κB pathway proteins were assessed by hematoxylin-eosin staining, carboxifluorescein diacetate succinimidyl ester (CFSE) fluorescence staining, enzyme linked immunosorbent assay, and Western blotting on days 3, 7, and 14 after the injection, respectively. Moreover, the effects of COL7A1 knockdown on the proliferation and migration of hiPSCs-KCs were confirmed by immunohistochemistry, EdU, Transwell, and damage repair assays.
Results: HiPSCs-KCs could express the hallmark proteins of KCs. COL7A1 was down-regulated in burn wound tissues and highly expressed in hiPSCs-KCs. Transplantation of hiPSCs-KCs into mice with burn wounds resulted in a significant decrease in wound area, an increase in wound re-epithelialization, a decrease in proinflammatory factors content, and an inhibition of NF-κB pathway activation compared to the PBS group. The in vitro assay showed that COL7A1 knockdown could rescue the inhibition of hiPSCs-KCs proliferation and migration, providing further evidence that COL7A1 speeds up burn wound healing by limiting cell proliferation and migration.
Conclusion: In deep, second-degree burn wounds, COL7A1 can promote KC proliferation and migration while also suppressing the inflammatory response.
{"title":"Transplantation of human induced pluripotent stem cell derived keratinocytes accelerates deep second-degree burn wound healing.","authors":"Li-Jun Wu, Wei Lin, Jian-Jiang Liu, Wei-Xin Chen, Wen-Jun He, Yuan Shi, Xiao Liu, Ke Li","doi":"10.4252/wjsc.v15.i7.713","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.713","url":null,"abstract":"<p><strong>Background: </strong>Current evidence shows that human induced pluripotent stem cells (hiPSCs) can effectively differentiate into keratinocytes (KCs), but its effect on skin burn healing has not been reported.</p><p><strong>Aim: </strong>To observe the effects of hiPSCs-derived KCs transplantation on skin burn healing in mice and to preliminarily reveal the underlying mechanisms.</p><p><strong>Methods: </strong>An analysis of differentially expressed genes in burn wounds based on GEO datasets GSE140926, and GSE27186 was established. A differentiation medium containing retinoic acid and bone morphogenetic protein 4 was applied to induce hiPSCs to differentiate into KCs. The expression of KCs marker proteins was detected using immunofluorescence staining. A model of a C57BL/6 mouse with deep cutaneous second-degree burn was created, and then phosphate buffered saline (PBS), hiPSCs-KCs, or hiPSCs-KCs with knockdown of <i>COL7A1</i> were injected around the wound surface. The wound healing, re-epithelialization, engraftment of hiPSCs-KCs into wounds, proinflammatory factor level, and the NF-κB pathway proteins were assessed by hematoxylin-eosin staining, carboxifluorescein diacetate succinimidyl ester (CFSE) fluorescence staining, enzyme linked immunosorbent assay, and Western blotting on days 3, 7, and 14 after the injection, respectively. Moreover, the effects of <i>COL7A1</i> knockdown on the proliferation and migration of hiPSCs-KCs were confirmed by immunohistochemistry, EdU, Transwell, and damage repair assays.</p><p><strong>Results: </strong>HiPSCs-KCs could express the hallmark proteins of KCs. <i>COL7A1</i> was down-regulated in burn wound tissues and highly expressed in hiPSCs-KCs. Transplantation of hiPSCs-KCs into mice with burn wounds resulted in a significant decrease in wound area, an increase in wound re-epithelialization, a decrease in proinflammatory factors content, and an inhibition of NF-κB pathway activation compared to the PBS group. The in vitro assay showed that <i>COL7A1</i> knockdown could rescue the inhibition of hiPSCs-KCs proliferation and migration, providing further evidence that <i>COL7A1</i> speeds up burn wound healing by limiting cell proliferation and migration.</p><p><strong>Conclusion: </strong>In deep, second-degree burn wounds, <i>COL7A1</i> can promote KC proliferation and migration while also suppressing the inflammatory response.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"713-733"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2e/c8/WJSC-15-713.PMC10401420.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.
{"title":"Human retinal secretome: A cross-link between mesenchymal and retinal cells.","authors":"Luigi Donato, Concetta Scimone, Simona Alibrandi, Sergio Zaccaria Scalinci, Domenico Mordà, Carmela Rinaldi, Rosalia D'Angelo, Antonina Sidoti","doi":"10.4252/wjsc.v15.i7.665","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.665","url":null,"abstract":"<p><p>In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"665-686"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/54/WJSC-15-665.PMC10401416.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10005818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai-Song Wang, Xin-Rui Ma, Wen-Bin Niu, Hao Shi, Yi-Dong Liu, Ning-Zhao Ma, Nan Zhang, Zi-Wei Jiang, Ying-Pu Sun
Background: Haploid embryonic stem cells (haESCs) have been established in many species. Differentiated haploid cell line types in mammals are lacking due to spontaneous diploidization during differentiation that compromises lineage-specific screens.
Aim: To derive human haploid neural stem cells (haNSCs) to carry out lineage-specific screens.
Methods: Human haNSCs were differentiated from human extended haESCs with the help of Y27632 (ROCK signaling pathway inhibitor) and a series of cytokines to reduce diploidization. Neuronal differentiation of haNSCs was performed to examine their neural differentiation potency. Global gene expression analysis was con-ducted to compare haNSCs with diploid NSCs and haESCs. Fluorescence activated cell sorting was performed to assess the diploidization rate of extended haESCs and haNSCs. Genetic manipulation and screening were utilized to evaluate the significance of human haNSCs as genetic screening tools.
Results: Human haESCs in extended pluripotent culture medium showed more compact and smaller colonies, a higher efficiency in neural differentiation, a higher cell survival ratio and higher stability in haploidy maintenance. These characteristics effectively facilitated the derivation of human haNSCs. These human haNSCs can be generated by differentiation and maintain haploidy and multipotency to neurons and glia in the long term in vitro. After PiggyBac transfection, there were multiple insertion sites in the human haNSCs' genome, and the insertion sites were evenly spread across all chromosomes. In addition, after the cells were treated with manganese, we were able to generate a list of manganese-induced toxicity genes, demonstrating their utility as genetic screening tools.
Conclusion: This is the first report of a generated human haploid somatic cell line with a complete genome, proliferative ability and neural differentiation potential that provides cell resources for recessive inheritance and drug targeted screening.
{"title":"Generation of a human haploid neural stem cell line for genome-wide genetic screening.","authors":"Hai-Song Wang, Xin-Rui Ma, Wen-Bin Niu, Hao Shi, Yi-Dong Liu, Ning-Zhao Ma, Nan Zhang, Zi-Wei Jiang, Ying-Pu Sun","doi":"10.4252/wjsc.v15.i7.734","DOIUrl":"https://doi.org/10.4252/wjsc.v15.i7.734","url":null,"abstract":"<p><strong>Background: </strong>Haploid embryonic stem cells (haESCs) have been established in many species. Differentiated haploid cell line types in mammals are lacking due to spontaneous diploidization during differentiation that compromises lineage-specific screens.</p><p><strong>Aim: </strong>To derive human haploid neural stem cells (haNSCs) to carry out lineage-specific screens.</p><p><strong>Methods: </strong>Human haNSCs were differentiated from human extended haESCs with the help of Y27632 (ROCK signaling pathway inhibitor) and a series of cytokines to reduce diploidization. Neuronal differentiation of haNSCs was performed to examine their neural differentiation potency. Global gene expression analysis was con-ducted to compare haNSCs with diploid NSCs and haESCs. Fluorescence activated cell sorting was performed to assess the diploidization rate of extended haESCs and haNSCs. Genetic manipulation and screening were utilized to evaluate the significance of human haNSCs as genetic screening tools.</p><p><strong>Results: </strong>Human haESCs in extended pluripotent culture medium showed more compact and smaller colonies, a higher efficiency in neural differentiation, a higher cell survival ratio and higher stability in haploidy maintenance. These characteristics effectively facilitated the derivation of human haNSCs. These human haNSCs can be generated by differentiation and maintain haploidy and multipotency to neurons and glia in the long term <i>in vitro</i>. After PiggyBac transfection, there were multiple insertion sites in the human haNSCs' genome, and the insertion sites were evenly spread across all chromosomes. In addition, after the cells were treated with manganese, we were able to generate a list of manganese-induced toxicity genes, demonstrating their utility as genetic screening tools.</p><p><strong>Conclusion: </strong>This is the first report of a generated human haploid somatic cell line with a complete genome, proliferative ability and neural differentiation potential that provides cell resources for recessive inheritance and drug targeted screening.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"15 7","pages":"734-750"},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/01/dc/WJSC-15-734.PMC10401418.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10005820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}