Volodymyr Svitlyk, Stephan Weiss, Gaston Garbarino, René Hübner, Andreas Worbs, Nina Huittinen, Christoph Hennig
Introduction of Th into synthetic disordered fluorite-type Gd2Zr2O7 induces a transition to an ordered pyrochlore-type phase at a Th concentration of 10 % at the Gd site (Gd1.8Th0.2Zr2O7 composition). The degree of order of the fluorite-type phase reaches 50 % for a Th concentration of 25 % (Gd1.5Th0.5Zr2O7 composition). Upon application of high pressure, the Gd2Zr2O7 phase retains the fluorite-type structure until 33 GPa (K0 = 167(1) GPa), where it undergoes reversible amorphization. The Gd1.7Th0.3Zr2O7 phase was found to be stable up to at least a pressure of 25 GPa (K0 = 169(3) GPa). Upon heating to Tmax of 1135 K, the Gd2Zr2O7 phase retains its disordered fluorite-type structural arrangement (α = 3.03 × 10−5 K−1). The excellent stability of the Gd2−xThxZr2O7 phases under extreme conditions of temperature and pressure makes Gd2Zr2O7 a promising candidate as a host matrix for radioactive elements for safe long-term underground storage of nuclear waste.
{"title":"Phase composition and stability of Gd2−x Th x Zr2O7 under extreme conditions","authors":"Volodymyr Svitlyk, Stephan Weiss, Gaston Garbarino, René Hübner, Andreas Worbs, Nina Huittinen, Christoph Hennig","doi":"10.1515/zkri-2024-0066","DOIUrl":"https://doi.org/10.1515/zkri-2024-0066","url":null,"abstract":"Introduction of Th into synthetic disordered fluorite-type Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> induces a transition to an ordered pyrochlore-type phase at a Th concentration of 10 % at the Gd site (Gd<jats:sub>1.8</jats:sub>Th<jats:sub>0.2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> composition). The degree of order of the fluorite-type phase reaches 50 % for a Th concentration of 25 % (Gd<jats:sub>1.5</jats:sub>Th<jats:sub>0.5</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> composition). Upon application of high pressure, the Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phase retains the fluorite-type structure until 33 GPa (<jats:italic>K</jats:italic> <jats:sub>0</jats:sub> = 167(1) GPa), where it undergoes reversible amorphization. The Gd<jats:sub>1.7</jats:sub>Th<jats:sub>0.3</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phase was found to be stable up to at least a pressure of 25 GPa (<jats:italic>K</jats:italic> <jats:sub>0</jats:sub> = 169(3) GPa). Upon heating to <jats:italic>T</jats:italic> <jats:sub>max</jats:sub> of 1135 K, the Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phase retains its disordered fluorite-type structural arrangement (<jats:italic>α</jats:italic> = 3.03 × 10<jats:sup>−5</jats:sup> K<jats:sup>−1</jats:sup>). The excellent stability of the Gd<jats:sub>2−<jats:italic>x</jats:italic> </jats:sub>Th<jats:sub> <jats:italic>x</jats:italic> </jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> phases under extreme conditions of temperature and pressure makes Gd<jats:sub>2</jats:sub>Zr<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> a promising candidate as a host matrix for radioactive elements for safe long-term underground storage of nuclear waste.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A first cadmium copper selenite–bromide Cd7Cu2(SeO3)8Br2 (1) was obtained via chemical vapor transport reactions. The new compound is triclinic, P1‾$Poverline{1}$, a = 5.3280(5) Å, b = 10.6190(12) Å, c = 11.4380(13) Å, α = 100.856(4)°, β = 93.321(4)°, γ = 91.021(4)°, V = 634.22(12) Å3, R1 = 0.027. 1 has no structural analogs and belongs to a new structure type. The structure of 1 can be described as a host-guest architecture. The host is the [Cd7(SeO3)8]2− interrupted framework, which consists of zigzag layers with a large aperture. The guests are copper bromide species. Thus, the formula can be written as [Cd7(SeO3)8]{Cu2Br2}.
通过化学气相传输反应首次获得了硒铜镉溴化物 Cd7Cu2(SeO3)8Br2 (1)。新化合物呈三菱形,P 1 ‾ $Poverline{1}$ , a = 5.3280(5) Å, b = 10.6190(12) Å, c = 11.4380(13) Å, α = 100.856(4)°, β = 93.321(4)°, γ = 91.021(4)°, V = 634.22(12) Å3, R 1 = 0.027。1 在结构上没有类似物,属于一种新的结构类型。1 的结构可以描述为一种主客体结构。宿主是[Cd7(SeO3)8]2-间断框架,由具有大孔径的之字形层组成。客体是溴化铜。因此,其结构式可写成 [Cd7(SeO3)8]{Cu2Br2} 。
{"title":"[Cd7(SeO3)8]{Cu2Br2}, a host-guest structure derived from β-CdSeO3","authors":"Oleg I. Siidra, Vasili Yu Grishaev","doi":"10.1515/zkri-2024-0072","DOIUrl":"https://doi.org/10.1515/zkri-2024-0072","url":null,"abstract":"A first cadmium copper selenite–bromide Cd<jats:sub>7</jats:sub>Cu<jats:sub>2</jats:sub>(SeO<jats:sub>3</jats:sub>)<jats:sub>8</jats:sub>Br<jats:sub>2</jats:sub> (1) was obtained via chemical vapor transport reactions. The new compound is triclinic, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mi>P</m:mi> <m:mover accent=\"true\"> <m:mn>1</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$Poverline{1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0072_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:italic>a</jats:italic> = 5.3280(5) Å, <jats:italic>b</jats:italic> = 10.6190(12) Å, <jats:italic>c</jats:italic> = 11.4380(13) Å, <jats:italic>α</jats:italic> = 100.856(4)°, <jats:italic>β</jats:italic> = 93.321(4)°, <jats:italic>γ</jats:italic> = 91.021(4)°, <jats:italic>V</jats:italic> = 634.22(12) Å<jats:sup>3</jats:sup>, <jats:italic>R</jats:italic> <jats:sub>1</jats:sub> = 0.027. 1 has no structural analogs and belongs to a new structure type. The structure of 1 can be described as a host-guest architecture. The host is the [Cd<jats:sub>7</jats:sub>(SeO<jats:sub>3</jats:sub>)<jats:sub>8</jats:sub>]<jats:sup>2−</jats:sup> interrupted framework, which consists of zigzag layers with a large aperture. The guests are copper bromide species. Thus, the formula can be written as [Cd<jats:sub>7</jats:sub>(SeO<jats:sub>3</jats:sub>)<jats:sub>8</jats:sub>]{Cu<jats:sub>2</jats:sub>Br<jats:sub>2</jats:sub>}.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Dronskowski, Thomas Brückel, Holger Kohlmann, Maxim Avdeev, Andreas Houben, Martin Meven, Michael Hofmann, Takashi Kamiyama, Mirijam Zobel, Werner Schweika, Raphaël P. Hermann, Asami Sano-Furukawa
Because of the neutron’s special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for in situ and operando studies as well as for high-pressure experiments of today’s materials. For these, the wave-like neutron’s infinite advantage (isotope specific, magnetic) is crucial to answering important scientific questions, for example, on the structure and dynamics of light atoms in energy conversion and storage materials, magnetic matter, or protein structures. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.
{"title":"Neutron diffraction: a primer","authors":"Richard Dronskowski, Thomas Brückel, Holger Kohlmann, Maxim Avdeev, Andreas Houben, Martin Meven, Michael Hofmann, Takashi Kamiyama, Mirijam Zobel, Werner Schweika, Raphaël P. Hermann, Asami Sano-Furukawa","doi":"10.1515/zkri-2024-0001","DOIUrl":"https://doi.org/10.1515/zkri-2024-0001","url":null,"abstract":"Because of the neutron’s special properties, neutron diffraction may be considered one of the most powerful techniques for structure determination of crystalline and related matter. Neutrons can be released from nuclear fission, from spallation processes, and also from low-energy nuclear reactions, and they can then be used in powder, time-of-flight, texture, single crystal, and other techniques, all of which are perfectly suited to clarify crystal and magnetic structures. With high neutron flux and sufficient brilliance, neutron diffraction also excels for diffuse scattering, for <jats:italic>in situ</jats:italic> and <jats:italic>operando</jats:italic> studies as well as for high-pressure experiments of today’s materials. For these, the wave-like neutron’s infinite advantage (isotope specific, magnetic) is crucial to answering important scientific questions, for example, on the structure and dynamics of light atoms in energy conversion and storage materials, magnetic matter, or protein structures. In this primer, we summarize the current state of neutron diffraction (and how it came to be), but also look at recent advances and new ideas, e.g., the design of new instruments, and what follows from that.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140834230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evgeny V. Nazarchuk, Oleg I. Siidra, Dmitri O. Charkin, Yana G. Tagirova
A new uranyl silicate Cs4[(UO2)5(SiO3OH)2O2F4] (1), was obtained via a hydrothermal route. The new compound is monoclinic, P21/n, a = 8.3870(2), b = 13.4612(2), c = 10.9503(2) Å, β = 91.223(2)°, V = 1236.00(4) Å3; the structure has been solved and refined down to R1 = 0.022. Therein, the phosphouranylite units (PUs) associate into a new type of uranyl-silicate layers, [(UO2)5(SiO3OH)2O2F4]4−, which interleave with the Cs+ cations. Topological analysis of PU based structures indicates that these layers in 1 provide a unique example of complexes constructed only via association of the PU and not involving other building units.
通过水热法获得了一种新的铀硅酸盐 Cs4[(UO2)5(SiO3OH)2O2F4] (1)。新化合物呈单斜型,P21/n,a = 8.3870(2),b = 13.4612(2),c = 10.9503(2)埃,β = 91.223(2)°,V = 1236.00(4) Å3;该结构已被求解并细化至 R 1 = 0.022。其中,磷酰单位(PUs)结合成一种新型的铀硅酸盐层,即[(UO2)5(SiO3OH)2O2F4]4-,与 Cs+ 阳离子交错。对基于 PU 的结构进行的拓扑分析表明,1 中的这些层是仅通过 PU 关联而不涉及其他构建单元构建复合物的独特实例。
{"title":"A new uranyl silicate sheet derived from phosphuranylite topology in the structure of Cs4[(UO2)5(SiO3OH)2O2F4]","authors":"Evgeny V. Nazarchuk, Oleg I. Siidra, Dmitri O. Charkin, Yana G. Tagirova","doi":"10.1515/zkri-2023-0038","DOIUrl":"https://doi.org/10.1515/zkri-2023-0038","url":null,"abstract":"A new uranyl silicate Cs<jats:sub>4</jats:sub>[(UO<jats:sub>2</jats:sub>)<jats:sub>5</jats:sub>(SiO<jats:sub>3</jats:sub>OH)<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>F<jats:sub>4</jats:sub>] (1), was obtained via a hydrothermal route. The new compound is monoclinic, <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub>/<jats:italic>n</jats:italic>, <jats:italic>a</jats:italic> = 8.3870(2), <jats:italic>b</jats:italic> = 13.4612(2), <jats:italic>c</jats:italic> = 10.9503(2) Å, <jats:italic>β</jats:italic> = 91.223(2)°, <jats:italic>V</jats:italic> = 1236.00(4) Å<jats:sup>3</jats:sup>; the structure has been solved and refined down to <jats:italic>R</jats:italic> <jats:sub>1</jats:sub> = 0.022. Therein, the phosphouranylite units (<jats:italic>PU</jats:italic>s) associate into a new type of uranyl-silicate layers, [(UO<jats:sub>2</jats:sub>)<jats:sub>5</jats:sub>(SiO<jats:sub>3</jats:sub>OH)<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>F<jats:sub>4</jats:sub>]<jats:sup>4−</jats:sup>, which interleave with the Cs<jats:sup>+</jats:sup> cations. Topological analysis of <jats:italic>PU</jats:italic> based structures indicates that these layers in 1 provide a unique example of complexes constructed only via association of the <jats:italic>PU</jats:italic> and not involving other building units.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"468 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina Kaneva, Olga Belozerova, Tatiana Radomskaya, Roman Shendrik
Fe-dominant sogdianite, a cyclosilicate compound with the chemical formula (Fe3+0.74Zr0.64Ti0.46 Al0.15)(□1.02Na0.98)K[Li3Si12O30], was studied. The investigation involved a comprehensive analysis of the mineral sample, including crystal-chemical analysis, Raman and FTIR spectroscopy, optical absorption, and luminescence study. Crystallographic site populations were determined through single crystal structure refinement and electron probe microanalysis. The thermoelastic behavior of a powder was studied using in situ high-temperature X-ray diffraction (30–750 °C). Notably, no phase transition was detected; sogdianite exhibited anisotropic thermal expansion. The first time study of vibrational spectra and spectral bands assigning were performed. The electronic transitions in d5-ion impurities of sogdianite were studied using optical absorption and luminescence spectroscopy. The origin of pink color and luminescence of sogdianite was clarified. The broad spectral bands in the visible UV spectral region are responsible for the pink color exhibited by sogdianite and could be attributed to d–d transitions occurring in Fe3+ ions.
研究了一种化学式为 (Fe3+ 0.74Zr0.64Ti0.46 Al0.15)(□1.02Na0.98)K[Li3Si12O30] 的环硅酸盐化合物--以铁为主的索格迭石。研究涉及对矿物样品的全面分析,包括晶体化学分析、拉曼光谱和傅立叶变换红外光谱、光学吸收和发光研究。通过单晶结构细化和电子探针显微分析确定了晶体学位点群。利用原位高温 X 射线衍射(30-750 °C)研究了粉末的热弹性行为。值得注意的是,没有检测到任何相变;索吉滇石表现出各向异性的热膨胀。研究人员首次研究了振动光谱和谱带分配。利用光学吸收和发光光谱研究了索格滇石中 d 5 离子杂质的电子跃迁。澄清了钠锰石粉红色和发光的起源。可见紫外光谱区的宽光谱带是索格淀石呈现粉红色的原因,这可能是由于 Fe3+ 离子中发生了 d-d 转变。
{"title":"Crystal chemistry, Raman and FTIR spectroscopy, optical absorption, and luminescence study of Fe-dominant sogdianite","authors":"Ekaterina Kaneva, Olga Belozerova, Tatiana Radomskaya, Roman Shendrik","doi":"10.1515/zkri-2023-0055","DOIUrl":"https://doi.org/10.1515/zkri-2023-0055","url":null,"abstract":"Fe-dominant sogdianite, a cyclosilicate compound with the chemical formula (Fe<jats:sup>3+</jats:sup> <jats:sub>0.74</jats:sub>Zr<jats:sub>0.64</jats:sub>Ti<jats:sub>0.46</jats:sub> Al<jats:sub>0.15</jats:sub>)(□<jats:sub>1.02</jats:sub>Na<jats:sub>0.98</jats:sub>)K[Li<jats:sub>3</jats:sub>Si<jats:sub>12</jats:sub>O<jats:sub>30</jats:sub>], was studied. The investigation involved a comprehensive analysis of the mineral sample, including crystal-chemical analysis, Raman and FTIR spectroscopy, optical absorption, and luminescence study. Crystallographic site populations were determined through single crystal structure refinement and electron probe microanalysis. The thermoelastic behavior of a powder was studied using <jats:italic>in situ</jats:italic> high-temperature X-ray diffraction (30–750 °C). Notably, no phase transition was detected; sogdianite exhibited anisotropic thermal expansion. The first time study of vibrational spectra and spectral bands assigning were performed. The electronic transitions in <jats:italic>d</jats:italic> <jats:sup>5</jats:sup>-ion impurities of sogdianite were studied using optical absorption and luminescence spectroscopy. The origin of pink color and luminescence of sogdianite was clarified. The broad spectral bands in the visible UV spectral region are responsible for the pink color exhibited by sogdianite and could be attributed to <jats:italic>d</jats:italic>–<jats:italic>d</jats:italic> transitions occurring in Fe<jats:sup>3+</jats:sup> ions.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"245 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An X-ray diffraction study of ceramic samples of the BiScO3–PbTiO3–PbMg⅓Nb⅔O3 system with compositions close to the morphotropic phase boundary was carried out at room temperature. The existence of wide areas of solid solutions has been established. The symmetry of the PbTiO3-based solid solutions is tetragonal (space group P4mm). The symmetry of the PbMg⅓Nb⅔O3-based solid solutions is cubic (space group Pm3‾$overline{3}$m). Near the BiScO3 side, the solid solutions are rhombohedral (space group R3m). During the morphotropic phase transition from the cubic solid solutions to the tetragonal ones, additional phases appear. If a tetragonal phase prevails ((1 − 2x)BiScO3–xPbTiO3–xPbMg⅓Nb⅔O3x = 0.46; (1 − 2x)BiScO3–1.1xPbTiO3–0.9xPbMg⅓Nb⅔O3x = 0.45 and 0.42), a satisfactory model is a model with a minority cubic phase (space group Pm3‾$overline{3}$m). If a cubic phase prevails ((1 − 2x)BiScO3–1.1xPbTiO3–0.9xPbMg⅓Nb⅔O3x = 0.39 and 0.36; (1 − 2x)BiScO3–0.8xPbTiO3–1.2xPbMg⅓Nb
在室温下,对成分接近形态相边界的 BiScO3-PbTiO3-PbMg⅓Nb⅔O3 体系陶瓷样品进行了 X 射线衍射研究。研究证实了固溶体的广泛存在。基于 PbTiO3 的固溶体的对称性为四方(空间群 P4mm)。基于 PbMg⅓Nb⅔O3 的固溶体的对称性为立方(空间群 Pm 3 ‾ $overline{3}$ m)。在靠近 BiScO3 的一侧,固溶体为斜方体(空间群 R3m)。在从立方固溶体到四方固溶体的形态相变过程中,会出现其他相。如果以四方相为主((1 - 2x)BiScO3-xPbTiO3-xPbMg⅓Nb⅔O3 x = 0.46;(1 - 2x)BiScO3-1.1xPbTiO3-0.9xPbMg⅓Nb⅔O3 x = 0.45 和 0.42),一个令人满意的模型是具有少数立方相(空间群 Pm 3 ‾ $overline{3}$ m)的模型。如果立方相占优势((1-2x)BiScO3-1.1xPbTiO3-0.9xPbMg⅓Nb⅔O3 x = 0.39 和 0.36;(1-2x)BiScO3-0.8xPbTiO3-1.2xPbMg⅓Nb⅔O3 x = 0.4),一个具有少数单斜相(空间群 Cm)或两个少数相:四方相(空间群 P4mm)和单斜相(空间群 Cm)的模型是令人满意的。
{"title":"Phase structure of the ceramic samples of the BiScO3–PbTiO3–PbMg⅓Nb⅔O3 system near the morphotropic phase boundary studied by the Rietveld method","authors":"Vladimir Sirotinkin, Alexandr Bush, Maksim Sysoev","doi":"10.1515/zkri-2024-0065","DOIUrl":"https://doi.org/10.1515/zkri-2024-0065","url":null,"abstract":"An X-ray diffraction study of ceramic samples of the BiScO<jats:sub>3</jats:sub>–PbTiO<jats:sub>3</jats:sub>–PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> system with compositions close to the morphotropic phase boundary was carried out at room temperature. The existence of wide areas of solid solutions has been established. The symmetry of the PbTiO<jats:sub>3</jats:sub>-based solid solutions is tetragonal (space group <jats:italic>P</jats:italic>4<jats:italic>mm</jats:italic>). The symmetry of the PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub>-based solid solutions is cubic (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0065_ineq_201.png\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). Near the BiScO<jats:sub>3</jats:sub> side, the solid solutions are rhombohedral (space group <jats:italic>R</jats:italic>3<jats:italic>m</jats:italic>). During the morphotropic phase transition from the cubic solid solutions to the tetragonal ones, additional phases appear. If a tetragonal phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.46; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.45 and 0.42), a satisfactory model is a model with a minority cubic phase (space group <jats:italic>Pm</jats:italic> <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_zkri-2024-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> <jats:italic>m</jats:italic>). If a cubic phase prevails ((1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–1.1<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–0.9<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jats:sub>⅔</jats:sub>O<jats:sub>3</jats:sub> <jats:italic>x</jats:italic> = 0.39 and 0.36; (1 − 2<jats:italic>x</jats:italic>)BiScO<jats:sub>3</jats:sub>–0.8<jats:italic>x</jats:italic>PbTiO<jats:sub>3</jats:sub>–1.2<jats:italic>x</jats:italic>PbMg<jats:sub>⅓</jats:sub>Nb<jat","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daria A. Banaru, Sergey M. Aksenov, Alexander M. Banaru, Artem R. Oganov
The correlations of values of the crystal structure complexity indices were calculated using the major modern approaches (10 indices in total), in particular, those, proposed by Krivovichev, Oganov, the concept of implicit hierarchical depth, as well as, for the comparison, the measure of regularity of (r, R)-system introduced by Blatov. To find the correlations, a series of 33 mercury-containing mineral structures with a non-repeating system of crystallographic positions occupied by atoms without any partial occupancy was used. It was shown that almost all pairs of complexity indices are statistically significantly (p < 0.05) positively or negatively correlated. The discriminating power of the indices for the set of structures was calculated. It is discussed that all the indices can be used to assess the complexity for any series of the crystal structures, but each of them has its particular advantages and limitations.
{"title":"Mutual correlations of complexity indices of the crystal structure for the series of mercury-containing minerals","authors":"Daria A. Banaru, Sergey M. Aksenov, Alexander M. Banaru, Artem R. Oganov","doi":"10.1515/zkri-2024-0062","DOIUrl":"https://doi.org/10.1515/zkri-2024-0062","url":null,"abstract":"The correlations of values of the crystal structure complexity indices were calculated using the major modern approaches (10 indices in total), in particular, those, proposed by Krivovichev, Oganov, the concept of implicit hierarchical depth, as well as, for the comparison, the measure of regularity of (<jats:italic>r</jats:italic>, <jats:italic>R</jats:italic>)-system introduced by Blatov. To find the correlations, a series of 33 mercury-containing mineral structures with a non-repeating system of crystallographic positions occupied by atoms without any partial occupancy was used. It was shown that almost all pairs of complexity indices are statistically significantly (<jats:italic>p</jats:italic> < 0.05) positively or negatively correlated. The discriminating power of the indices for the set of structures was calculated. It is discussed that all the indices can be used to assess the complexity for any series of the crystal structures, but each of them has its particular advantages and limitations.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trimethylamine N-oxide, Me3N(+)O(−), is an important molecule in biology and medicine. Herein, a survey of the interactions involving the oxide-O atom in crystals containing derivatives of Me3N(+)O(−), namely RR′R″N(+)O(−), is presented; R,R′, R″ = alkyl and/or aryl. A total of 119 RR′R″N(+)O(−) molecules were analysed for the supramolecular interactions involving the oxide-O atom. Hydrates form the largest class of crystals, comprising over 40 % of the 91 crystals investigated, a value slightly higher than expectation. Over 80 % of molecules had at least one O–H⋯O(−)(oxide) hydrogen bond: 3, 45 and 33 % of all molecules had three, two or one O–H⋯O(−)(oxide) hydrogen bonds, respectively. Further, nearly 15 % of molecules formed at least one N–H⋯O(−)(oxide) hydrogen bond, sometimes operating in concert with O–H⋯O(−)(oxide) hydrogen bonds. The overwhelming majority of molecules featured inter- and/or intra-molecular supporting C–H⋯O(−)(oxide) contacts so that a diverse range of supramolecular interaction patterns is apparent, a situation made more complicated by the appearance of different supramolecular association patterns often observed for independent molecules in crystals with more than one molecule in the crystallographic asymmetric-unit. Of the 6 % of molecules devoid of conventional A–H⋯O(−)(oxide) hydrogen bonds, all formed three or four inter-/intra-molecular C–H⋯O(−)(oxide) contacts usually characterised by at least one short H⋯O(−)(oxide) distance.
{"title":"A survey of supramolecular association involving the oxide-O atom in the crystals of triorganoamine N-oxide derivatives, RR′R″N(+)O(−)","authors":"Edward R. T. Tiekink","doi":"10.1515/zkri-2024-0061","DOIUrl":"https://doi.org/10.1515/zkri-2024-0061","url":null,"abstract":"Trimethylamine N-oxide, Me<jats:sub>3</jats:sub>N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup>, is an important molecule in biology and medicine. Herein, a survey of the interactions involving the oxide-O atom in crystals containing derivatives of Me<jats:sub>3</jats:sub>N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup>, namely RR′R″N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup>, is presented; R,R′, R″ = alkyl and/or aryl. A total of 119 RR′R″N<jats:sup>(+)</jats:sup>O<jats:sup>(−)</jats:sup> molecules were analysed for the supramolecular interactions involving the oxide-O atom. Hydrates form the largest class of crystals, comprising over 40 % of the 91 crystals investigated, a value slightly higher than expectation. Over 80 % of molecules had at least one O–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bond: 3, 45 and 33 % of all molecules had three, two or one O–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bonds, respectively. Further, nearly 15 % of molecules formed at least one N–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bond, sometimes operating in concert with O–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bonds. The overwhelming majority of molecules featured inter- and/or intra-molecular supporting C–H⋯O<jats:sup>(−)</jats:sup>(oxide) contacts so that a diverse range of supramolecular interaction patterns is apparent, a situation made more complicated by the appearance of different supramolecular association patterns often observed for independent molecules in crystals with more than one molecule in the crystallographic asymmetric-unit. Of the 6 % of molecules devoid of conventional A–H⋯O<jats:sup>(−)</jats:sup>(oxide) hydrogen bonds, all formed three or four inter-/intra-molecular C–H⋯O<jats:sup>(−)</jats:sup>(oxide) contacts usually characterised by at least one short H⋯O<jats:sup>(−)</jats:sup>(oxide) distance.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new supramolecular cocrystal of bis(3-hydroxy-1-methylpyridin-1-ium iodide)-18-crown-6 (I) has been synthesized successfully from 3-hydroxypyridine, methyl iodide and 18-crown-6 (18C6). The cocrystal was characterized by FT-IR, UV-DRS and PL spectroscopy, single crystal and powder X-ray diffraction (XRD) analysis, SEM and EDS analysis, and thermogravimetric analysis. The bulk phase purity of the compound is confirmed by powder XRD analysis, whereas single-crystal XRD confirms that it packs in a monoclinic system with centrosymmetric space group (P21/c). Single crystal XRD shows that the asymmetric unit is C6H12O3, [C6H8NO]+[I]¯. The presence of C–H⋯O, C–H⋯I and O–H⋯I intermolecular contacts helps to achieve crystal cohesion. The direct band gap energy has been estimated to be 3.21 eV using diffuse reflectance spectral measurements. Thermogravimetric analysis was employed to determine the compound’s thermal behaviour concerning temperature. EDS and SEM investigations were used to examine the elemental composition and surface morphology of the compound.
以 3-羟基吡啶、碘化甲烷和 18-冠醚-6(18C6)为原料,成功合成了一种新的双(3-羟基-1-甲基吡啶-1-碘化鎓)-18-冠醚-6(I)超分子共晶体。通过傅立叶变换红外光谱(FT-IR)、紫外-可见光谱(UV-DRS)和聚光光谱(PL)、单晶和粉末 X 射线衍射(XRD)分析、扫描电镜和 EDS 分析以及热重分析,对该共晶体进行了表征。粉末 X 射线衍射分析证实了该化合物的体相纯度,而单晶 X 射线衍射分析则证实了该化合物具有中心对称空间群(P21/c)的单斜体系。单晶 XRD 显示其不对称单元为 C6H12O3、[C6H8NO]+[I]¯。C-H⋯O、C-H⋯I 和 O-H⋯I 分子间接触的存在有助于实现晶体内聚。通过漫反射光谱测量,直接带隙能估计为 3.21 eV。热重分析用于确定化合物在温度方面的热行为。EDS 和 SEM 研究用于检测化合物的元素组成和表面形态。
{"title":"Synthesis, structural characterization of supramolecular cocrystals of bis(3-hydroxy-1-methylpyridin-1-ium iodide)-18-crown-6","authors":"Mageswaran Vijayasri, Natarajan Archana, Chellakarungu Balakrishnan, Mahalingapandian Dhanalakshmi, Shanmugasundaram Parthiban","doi":"10.1515/zkri-2024-0060","DOIUrl":"https://doi.org/10.1515/zkri-2024-0060","url":null,"abstract":"A new supramolecular cocrystal of bis(3-hydroxy-1-methylpyridin-1-ium iodide)-18-crown-6 (I) has been synthesized successfully from 3-hydroxypyridine, methyl iodide and 18-crown-6 (18C6). The cocrystal was characterized by FT-IR, UV-DRS and PL spectroscopy, single crystal and powder X-ray diffraction (XRD) analysis, SEM and EDS analysis, and thermogravimetric analysis. The bulk phase purity of the compound is confirmed by powder XRD analysis, whereas single-crystal XRD confirms that it packs in a monoclinic system with centrosymmetric space group (<jats:italic>P</jats:italic>2<jats:sub>1</jats:sub>/<jats:italic>c</jats:italic>). Single crystal XRD shows that the asymmetric unit is C<jats:sub>6</jats:sub>H<jats:sub>12</jats:sub>O<jats:sub>3</jats:sub>, [C<jats:sub>6</jats:sub>H<jats:sub>8</jats:sub>NO]<jats:sup>+</jats:sup>[I]¯. The presence of C–H⋯O, C–H⋯I and O–H⋯I intermolecular contacts helps to achieve crystal cohesion. The direct band gap energy has been estimated to be 3.21 eV using diffuse reflectance spectral measurements. Thermogravimetric analysis was employed to determine the compound’s thermal behaviour concerning temperature. EDS and SEM investigations were used to examine the elemental composition and surface morphology of the compound.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobias A. Teichtmeister, Alexander Hugo Bernhart, Klaus Wurst, Gunter Heymann, Hubert Huppertz
We report on the synthesis, structure determination, and characterization of a new series of compounds LnCdB6O10(OH)3 (Ln = Sm–Er). Syntheses were carried out in a Walker-type multianvil device at 7 GPa and 650 °C. Structure determinations revealed the coexistence of an orthorhombic and a monoclinic polymorph, depending on the ionic radius of the lanthanoid cation. The orthorhombic structural variants crystallize non-centrosymmetrically in the space group Pna21 (no. 33), while the monoclinic modifications crystallize in space group P21/c (no. 14). Both modifications display a layered crystal structure built up by a repeating [B6O13]8− building block as their main structural feature.
{"title":"High-pressure/high-temperature synthesis of a new polymorphic series of lanthanoid cadmium borates, LnCdB6O10(OH)3 (Ln = Sm–Er)","authors":"Tobias A. Teichtmeister, Alexander Hugo Bernhart, Klaus Wurst, Gunter Heymann, Hubert Huppertz","doi":"10.1515/zkri-2024-0063","DOIUrl":"https://doi.org/10.1515/zkri-2024-0063","url":null,"abstract":"We report on the synthesis, structure determination, and characterization of a new series of compounds <jats:italic>Ln</jats:italic>CdB<jats:sub>6</jats:sub>O<jats:sub>10</jats:sub>(OH)<jats:sub>3</jats:sub> (<jats:italic>Ln</jats:italic> = Sm–Er). Syntheses were carried out in a Walker-type multianvil device at 7 GPa and 650 °C. Structure determinations revealed the coexistence of an orthorhombic and a monoclinic polymorph, depending on the ionic radius of the lanthanoid cation. The orthorhombic structural variants crystallize non-centrosymmetrically in the space group <jats:italic>Pna</jats:italic>2<jats:sub>1</jats:sub> (no. 33), while the monoclinic modifications crystallize in space group <jats:italic>P</jats:italic>2<jats:sub>1</jats:sub>/<jats:italic>c</jats:italic> (no. 14). Both modifications display a layered crystal structure built up by a repeating [B<jats:sub>6</jats:sub>O<jats:sub>13</jats:sub>]<jats:sup>8−</jats:sup> building block as their main structural feature.","PeriodicalId":23855,"journal":{"name":"Zeitschrift für Kristallographie - Crystalline Materials","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}