P. Navin, Patel Sarvil, P. Amit, P. Divyesh, Rajani Dhansukh, R. Moo-Puc, G. Rivera
Abstract A series of thiazepines and diazepines having 1,3,4-oxadiazole moiety were synthesized, and they were analyzed for their in vitro antimicrobial activity against several bacteria (Staphylococcus aureus, Staphylococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa) and fungi (Candida albicans, Aspergillus niger, and Aspergillus Clavatus) and protozoa (Entamoeba histolytica, Giardia lamblia, Trypanosoma cruzi and Leishmania mexicana). Few of the selected compounds were tested for their antitubercular activity. However, it was noticed that the potency of final analogs against each strain placed reliance on the type of substituent present on aryl ring of oxadiazole as well as presence of thiophene, pyridine, and furan at benzothiazepines and benzodiazepines. The biological screening identified that some of the compounds were found to possess good antimicrobial and antitubercular (62.5–100 μg/mL of MIC) activity.
{"title":"Synthesis and biological evaluation of newer 1,3,4-oxadiazoles incorporated with benzothiazepine and benzodiazepine moieties","authors":"P. Navin, Patel Sarvil, P. Amit, P. Divyesh, Rajani Dhansukh, R. Moo-Puc, G. Rivera","doi":"10.1515/znc-2016-0129","DOIUrl":"https://doi.org/10.1515/znc-2016-0129","url":null,"abstract":"Abstract A series of thiazepines and diazepines having 1,3,4-oxadiazole moiety were synthesized, and they were analyzed for their in vitro antimicrobial activity against several bacteria (Staphylococcus aureus, Staphylococcus pyogenes, Escherichia coli, and Pseudomonas aeruginosa) and fungi (Candida albicans, Aspergillus niger, and Aspergillus Clavatus) and protozoa (Entamoeba histolytica, Giardia lamblia, Trypanosoma cruzi and Leishmania mexicana). Few of the selected compounds were tested for their antitubercular activity. However, it was noticed that the potency of final analogs against each strain placed reliance on the type of substituent present on aryl ring of oxadiazole as well as presence of thiophene, pyridine, and furan at benzothiazepines and benzodiazepines. The biological screening identified that some of the compounds were found to possess good antimicrobial and antitubercular (62.5–100 μg/mL of MIC) activity.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"100 1","pages":"133 - 146"},"PeriodicalIF":0.0,"publicationDate":"2017-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88415368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aikaterini Papazi, A. Ioannou, Myrto Symeonidi, A. Doulis, K. Kotzabasis
Abstract Olive mill wastewater has significant polluting properties due to its high phenolic content [mainly tyrosol (trs) and hydroxytyrosol (htrs)]. Growth kinetics and a series of fluorescence induction measurements for Scenedesmus obliquus cultures showed that microalgae can be tolerant of these phenolic compounds. Changes in the cellular energy reserves and concentration of the phenolic compounds adjust the “toxicity” of these compounds to the microalgae and are, therefore, the main parameters that affect biodegradation. Autotrophic growth conditions of microalgae and high concentrations of trs or htrs induce higher biodegradation compared with mixotrophic conditions and lower phenolic concentrations. When microalgae face trs and htrs simultaneously, biodegradation begins from htrs, the more energetically demanding compound. All these lead to the conviction that microalgae have a “rational” management of cellular energy balance. Low toxicity levels lead to higher growth and lower biodegradation, whereas higher toxicity levels lead to lower growth and higher biodegradation. The selection of appropriate conditions (compatible to the bioenergetic strategies of microalgae) seems to be the key for a successful biodegradation of a series of toxic compounds, thus paving the way for future biotechnological applications for solving complicated pollution problems, like the detoxification of olive mill wastewater.
{"title":"Bioenergetic strategy of microalgae for the biodegradation of tyrosol and hydroxytyrosol","authors":"Aikaterini Papazi, A. Ioannou, Myrto Symeonidi, A. Doulis, K. Kotzabasis","doi":"10.1515/znc-2016-0214","DOIUrl":"https://doi.org/10.1515/znc-2016-0214","url":null,"abstract":"Abstract Olive mill wastewater has significant polluting properties due to its high phenolic content [mainly tyrosol (trs) and hydroxytyrosol (htrs)]. Growth kinetics and a series of fluorescence induction measurements for Scenedesmus obliquus cultures showed that microalgae can be tolerant of these phenolic compounds. Changes in the cellular energy reserves and concentration of the phenolic compounds adjust the “toxicity” of these compounds to the microalgae and are, therefore, the main parameters that affect biodegradation. Autotrophic growth conditions of microalgae and high concentrations of trs or htrs induce higher biodegradation compared with mixotrophic conditions and lower phenolic concentrations. When microalgae face trs and htrs simultaneously, biodegradation begins from htrs, the more energetically demanding compound. All these lead to the conviction that microalgae have a “rational” management of cellular energy balance. Low toxicity levels lead to higher growth and lower biodegradation, whereas higher toxicity levels lead to lower growth and higher biodegradation. The selection of appropriate conditions (compatible to the bioenergetic strategies of microalgae) seems to be the key for a successful biodegradation of a series of toxic compounds, thus paving the way for future biotechnological applications for solving complicated pollution problems, like the detoxification of olive mill wastewater.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"33 2","pages":"227 - 236"},"PeriodicalIF":0.0,"publicationDate":"2017-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91446898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Cinci, L. di Cesare Mannelli, A. Maidecchi, L. Mattoli, C. Ghelardini
Abstract Hypericum perforatum L. has been used for centuries as a natural remedy for the treatment of many disorders. Neuropathic pain is a common side effect of oxaliplatin-based chemotherapy and often the cause of therapy discontinuation. Thanks to its anti-inflammatory and analgesic effects, the use of H. perforatum may be a novel therapeutic strategy for neuropathy. The aim of this paper was to evaluate the effect of H. perforatum hydrophilic extract on an in vitro model of oxaliplatin-induced neurotoxicity. The antioxidant potential of extract was first evaluated in cell-free models by the thiobarbituric acid-reactive substances assay and nitro blue tetrazolium oxidation test; the ability of H. perforatum extract to reduce oxaliplatin-induced caspase-3 activity in rat astrocytes and its potential interference with the cytotoxic effects of oxaliplatin in a colorectal cancer in vitro model (HT-29 cells) were also evaluated. The extract showed a significant antioxidant effect and was able to reduce caspase-3 activity in rat astrocytes. Of note, the extract alone exerted a cytotoxic effect in HT-29 cells and did not reduce the cytotoxicity of oxaliplatin in HT-29 cells. These data suggest that H. perforatum could be used as a novel therapeutic strategy for counteracting chemotherapy-induced neuropathy.
{"title":"Effects of Hypericum perforatum extract on oxaliplatin-induced neurotoxicity: in vitro evaluations","authors":"L. Cinci, L. di Cesare Mannelli, A. Maidecchi, L. Mattoli, C. Ghelardini","doi":"10.1515/znc-2016-0194","DOIUrl":"https://doi.org/10.1515/znc-2016-0194","url":null,"abstract":"Abstract Hypericum perforatum L. has been used for centuries as a natural remedy for the treatment of many disorders. Neuropathic pain is a common side effect of oxaliplatin-based chemotherapy and often the cause of therapy discontinuation. Thanks to its anti-inflammatory and analgesic effects, the use of H. perforatum may be a novel therapeutic strategy for neuropathy. The aim of this paper was to evaluate the effect of H. perforatum hydrophilic extract on an in vitro model of oxaliplatin-induced neurotoxicity. The antioxidant potential of extract was first evaluated in cell-free models by the thiobarbituric acid-reactive substances assay and nitro blue tetrazolium oxidation test; the ability of H. perforatum extract to reduce oxaliplatin-induced caspase-3 activity in rat astrocytes and its potential interference with the cytotoxic effects of oxaliplatin in a colorectal cancer in vitro model (HT-29 cells) were also evaluated. The extract showed a significant antioxidant effect and was able to reduce caspase-3 activity in rat astrocytes. Of note, the extract alone exerted a cytotoxic effect in HT-29 cells and did not reduce the cytotoxicity of oxaliplatin in HT-29 cells. These data suggest that H. perforatum could be used as a novel therapeutic strategy for counteracting chemotherapy-induced neuropathy.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"79 1","pages":"219 - 226"},"PeriodicalIF":0.0,"publicationDate":"2017-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83794947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Danial, A. M. Abdel Wahab, Houssam H Arafat, R. Abdel-Basset
Abstract Two local hydrogen-evolving strains of purple nonsulfur bacteria have been isolated, characterized, and identified as Rhodopseudomonas sp. TUT (strains Rh1 and Rh2). Lactate followed by succinate and malate supported the highest amounts of H2 production, growth (O.D.660nm, proteins and bacteriochlorphyll contents), nitrogenase activity, and uptake hydrogenase; the least of which was acetate. Alginate-immobilized cells evolved higher hydrogen amounts than free cell counterparts. Rh1 was more productive than Rh2 at all circumstances. Lactate-dependent hydrogen evolution was more than twice that of acetate, due to ATP productivity (2/–1, respectively), which is limiting to the nitrogenase activity. The preference of lactate over other acids indicates the feasibility of using these two strains in hydrogen production from dairy wastewater.
{"title":"Bioenergetics of lactate vs. acetate outside TCA enhanced the hydrogen evolution levels in two newly isolated strains of the photosynthetic bacterium Rhodopseudomonas","authors":"A. Danial, A. M. Abdel Wahab, Houssam H Arafat, R. Abdel-Basset","doi":"10.1515/znc-2016-0070","DOIUrl":"https://doi.org/10.1515/znc-2016-0070","url":null,"abstract":"Abstract Two local hydrogen-evolving strains of purple nonsulfur bacteria have been isolated, characterized, and identified as Rhodopseudomonas sp. TUT (strains Rh1 and Rh2). Lactate followed by succinate and malate supported the highest amounts of H2 production, growth (O.D.660nm, proteins and bacteriochlorphyll contents), nitrogenase activity, and uptake hydrogenase; the least of which was acetate. Alginate-immobilized cells evolved higher hydrogen amounts than free cell counterparts. Rh1 was more productive than Rh2 at all circumstances. Lactate-dependent hydrogen evolution was more than twice that of acetate, due to ATP productivity (2/–1, respectively), which is limiting to the nitrogenase activity. The preference of lactate over other acids indicates the feasibility of using these two strains in hydrogen production from dairy wastewater.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"96 1","pages":"99 - 105"},"PeriodicalIF":0.0,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76865144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Wińska, M. Grabarczyk, Wanda Mączka, B. Żarowska, G. Maciejewska, M. Anioł
Abstract The aim of this article is influence of the structure of lactones with the methylcyclohexene and dimethylcyclohexene ring on their biotransformation and antimicrobial activity. This work was based on the general remark that even the smallest change in the structure of a compound can affect its biological properties. The results of the biotransformation of four bicyclic unsaturated lactones with one or two methyl groups in the cyclohexene ring was tested using fifteen fungal strains (Fusarium species, Penicillium species, Absidia species, Cunninghamella japonica, and Pleurotus ostreatus) and five yeast strains (Yarrowia lipolytica, Rhodorula marina, Rhodorula rubra, Candida viswanathii, and Saccharomyces cerevisiae). During these transformations, new epoxylactone and hydroxylactone were obtained. The relationship between the substrate structure and the ability of the microorganisms to transform them were analysed. Only compounds with C–O bond of lactone ring in the equatorial position were transformed by fungus. All presented here lactones were examined also for their antimicrobial activity. It turned out that these compounds exhibited growth inhibition of bacteria and fungi, mainly Bacillus subtilis, Candida albicans, Aspergillus niger, and Penicillium expansum.
{"title":"Influence of structure of lactones with the methylcyclohexene and dimethylcyclohexene ring on their biotransformation and antimicrobial activity","authors":"Katarzyna Wińska, M. Grabarczyk, Wanda Mączka, B. Żarowska, G. Maciejewska, M. Anioł","doi":"10.1515/znc-2016-0188","DOIUrl":"https://doi.org/10.1515/znc-2016-0188","url":null,"abstract":"Abstract The aim of this article is influence of the structure of lactones with the methylcyclohexene and dimethylcyclohexene ring on their biotransformation and antimicrobial activity. This work was based on the general remark that even the smallest change in the structure of a compound can affect its biological properties. The results of the biotransformation of four bicyclic unsaturated lactones with one or two methyl groups in the cyclohexene ring was tested using fifteen fungal strains (Fusarium species, Penicillium species, Absidia species, Cunninghamella japonica, and Pleurotus ostreatus) and five yeast strains (Yarrowia lipolytica, Rhodorula marina, Rhodorula rubra, Candida viswanathii, and Saccharomyces cerevisiae). During these transformations, new epoxylactone and hydroxylactone were obtained. The relationship between the substrate structure and the ability of the microorganisms to transform them were analysed. Only compounds with C–O bond of lactone ring in the equatorial position were transformed by fungus. All presented here lactones were examined also for their antimicrobial activity. It turned out that these compounds exhibited growth inhibition of bacteria and fungi, mainly Bacillus subtilis, Candida albicans, Aspergillus niger, and Penicillium expansum.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"24 1","pages":"209 - 217"},"PeriodicalIF":0.0,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85743641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Quintans, R. S. Alves, D. A. Santos, M. Serafini, P. Alves, E. Costa, G. Zengin, L. Quintans-Júnior, A. Guimarães
Abstract Aristolochia trilobata L. is an aromatic plant, popularly known as “mil-homens”, and its essential oil (EO) is generally used to treat colic, diarrhea and dysentery disorders. We evaluated the antinociceptive effect of A. trilobata stem EO and of its major compound, the (R)-(-)-6-methyl-5-hepten-2-yl acetate (sulcatyl acetate: SA), using acetic acid (0.85%)-induced writhing response and formalin-induced (20 μL of 1%) nociceptive behavior in mice. We also evaluated the EO and SA effect on motor coordination, using the rota-rod apparatus. EO (25, 50 and 100 mg/kg) or SA (25 and 50 mg/kg) reduced nociceptive behavior in the writhing test (p<0.001). EO (100 mg/kg) and SA (25 and 50 mg/kg) decreased the nociception on the first phase of the formalin test (p<0.05). On the second phase, EO (25: p<0.01; 50: p<0.05 and 100 mg/kg: p<0.001) and SA (25 and 50 mg/kg; p<0.001) reduced the nociceptive response induced by formalin. EO and SA were not able to cause changes in the motor coordination of animals. Together, our results suggest that EO has an analgesic profile and SA seems to be one of the active compounds in this effect.
{"title":"Antinociceptive effect of Aristolochia trilobata stem essential oil and 6-methyl-5-hepten-2yl acetate, its main compound, in rodents","authors":"J. Quintans, R. S. Alves, D. A. Santos, M. Serafini, P. Alves, E. Costa, G. Zengin, L. Quintans-Júnior, A. Guimarães","doi":"10.1515/znc-2016-0053","DOIUrl":"https://doi.org/10.1515/znc-2016-0053","url":null,"abstract":"Abstract Aristolochia trilobata L. is an aromatic plant, popularly known as “mil-homens”, and its essential oil (EO) is generally used to treat colic, diarrhea and dysentery disorders. We evaluated the antinociceptive effect of A. trilobata stem EO and of its major compound, the (R)-(-)-6-methyl-5-hepten-2-yl acetate (sulcatyl acetate: SA), using acetic acid (0.85%)-induced writhing response and formalin-induced (20 μL of 1%) nociceptive behavior in mice. We also evaluated the EO and SA effect on motor coordination, using the rota-rod apparatus. EO (25, 50 and 100 mg/kg) or SA (25 and 50 mg/kg) reduced nociceptive behavior in the writhing test (p<0.001). EO (100 mg/kg) and SA (25 and 50 mg/kg) decreased the nociception on the first phase of the formalin test (p<0.05). On the second phase, EO (25: p<0.01; 50: p<0.05 and 100 mg/kg: p<0.001) and SA (25 and 50 mg/kg; p<0.001) reduced the nociceptive response induced by formalin. EO and SA were not able to cause changes in the motor coordination of animals. Together, our results suggest that EO has an analgesic profile and SA seems to be one of the active compounds in this effect.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"16 1","pages":"93 - 97"},"PeriodicalIF":0.0,"publicationDate":"2017-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88497938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. K. Mkhwanazi, C. D. de Koning, W. V. van Otterlo, M. Ariatti, Moganavelli Singh
Abstract Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89–97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.
{"title":"PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor","authors":"N. K. Mkhwanazi, C. D. de Koning, W. V. van Otterlo, M. Ariatti, Moganavelli Singh","doi":"10.1515/znc-2016-0172","DOIUrl":"https://doi.org/10.1515/znc-2016-0172","url":null,"abstract":"Abstract Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89–97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"80 1","pages":"293 - 301"},"PeriodicalIF":0.0,"publicationDate":"2017-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89432029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Dawé, B. Talom, G. W. Kapche, Kauser Siddiqui, Fawai Yakai, E. Talla, M. A. Shaiq, Iqbal Lubna, B. T. Ngadjui
Abstract Termiglaucescin (1), a new triterpene glucoside, has been isolated from the ethyl acetate extract of the root bark of Terminalia glaucescens Planch. ex Benth, together with 11 known compounds, β-D-glucopyranosyl 2α,3β,6β-trihydroxy-23-galloylolean-12-en-28-oate (2), arjunglucoside I (3), sericoside (4), arjungenin (5), sericic acid (6), arjunetin (7), chebuloside II (8), 3,3′,4-tri-O-methylelagic acid (9), 3,3′-di-O-methylelagic acid (10), β-sitosterol (11) and stigmasterol (12). Compounds 2, 3, 7, 8 and 9 are reported from the plant for the first time. The structures of the isolated compounds were characterized by spectroscopic data interpretations, especially 1D and 2D NMR. The triterpenic isolates showed potent antioxidant and anti-inflammatory activities.
{"title":"Termiglaucescin, a new polyhydroxy triterpene glucoside from Terminalia glaucescens with antioxidant and anti-inflammatory potential","authors":"A. Dawé, B. Talom, G. W. Kapche, Kauser Siddiqui, Fawai Yakai, E. Talla, M. A. Shaiq, Iqbal Lubna, B. T. Ngadjui","doi":"10.1515/znc-2016-0178","DOIUrl":"https://doi.org/10.1515/znc-2016-0178","url":null,"abstract":"Abstract Termiglaucescin (1), a new triterpene glucoside, has been isolated from the ethyl acetate extract of the root bark of Terminalia glaucescens Planch. ex Benth, together with 11 known compounds, β-D-glucopyranosyl 2α,3β,6β-trihydroxy-23-galloylolean-12-en-28-oate (2), arjunglucoside I (3), sericoside (4), arjungenin (5), sericic acid (6), arjunetin (7), chebuloside II (8), 3,3′,4-tri-O-methylelagic acid (9), 3,3′-di-O-methylelagic acid (10), β-sitosterol (11) and stigmasterol (12). Compounds 2, 3, 7, 8 and 9 are reported from the plant for the first time. The structures of the isolated compounds were characterized by spectroscopic data interpretations, especially 1D and 2D NMR. The triterpenic isolates showed potent antioxidant and anti-inflammatory activities.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"165 1","pages":"203 - 208"},"PeriodicalIF":0.0,"publicationDate":"2016-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74898650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}