Pub Date : 2025-02-01DOI: 10.1016/j.biochi.2024.10.006
Rūta Gruškienė, Jolanta Sereikaitė
The extremolytes ectoine and hydroxyectoine are osmolytes found in extremophilic microorganisms. They are stabilisers of proteins and other macromolecules, including DNA and lipids. The aim of the study was to investigate the effect of the additives on the heat-induced aggregation of mink growth hormone as a model protein. The first-order rate constants of protein aggregation were determined at 60 °C depending on the additive concentration and pH of the solution. The onset temperature of aggregation was also recorded using a circular dichroism spectropolarimeter. The study showed that the effect of the additives depended on the pH of the solution. The first-order rate constants of aggregation were lower when the protein molecule had a negative charge. The effect also depended on the structure of the extremolyte itself. When the protein molecule was positively charged, hydroxyectoine destabilised the mink growth hormone molecule and promoted the aggregation. The different effects of the additives were determined by the different interactions with the protein molecules, as shown by circular dichroism measurements and previously by fluorescence spectroscopy. Therefore, when using ectoine or hydroxyectoine for protein formulation, the effect of the additive should be carefully analysed for each protein individually.
嗜极微生物中的极性溶解物ectoine 和 hydroxyectoine 是渗透溶解物。它们是蛋白质和其他大分子(包括 DNA 和脂质)的稳定剂。本研究旨在探讨添加剂对作为模型蛋白质的水貂生长激素受热诱导聚集的影响。根据添加剂的浓度和溶液的 pH 值,测定了 60 °C 时蛋白质聚集的一阶速率常数。此外,还使用圆二色性分光光度计记录了聚集的起始温度。研究表明,添加剂的效果取决于溶液的 pH 值。当蛋白质分子带负电荷时,聚集的一阶速率常数较低。这种影响还取决于极溶解物本身的结构。当蛋白质分子带正电荷时,羟基环氧乙烷会破坏水貂生长激素分子的稳定性并促进聚集。添加剂的不同作用是由其与蛋白质分子的不同相互作用决定的,圆二色性测量和之前的荧光光谱法都证明了这一点。因此,在使用埃克托因或羟基埃克托因配制蛋白质时,应仔细分析添加剂对每种蛋白质的影响。
{"title":"The effect of extremolytes ectoine and hydroxyectoine on the heat-induced protein aggregation: The case of growth hormone","authors":"Rūta Gruškienė, Jolanta Sereikaitė","doi":"10.1016/j.biochi.2024.10.006","DOIUrl":"10.1016/j.biochi.2024.10.006","url":null,"abstract":"<div><div>The extremolytes ectoine and hydroxyectoine are osmolytes found in extremophilic microorganisms. They are stabilisers of proteins and other macromolecules, including DNA and lipids. The aim of the study was to investigate the effect of the additives on the heat-induced aggregation of mink growth hormone as a model protein. The first-order rate constants of protein aggregation were determined at 60 °C depending on the additive concentration and pH of the solution. The onset temperature of aggregation was also recorded using a circular dichroism spectropolarimeter. The study showed that the effect of the additives depended on the pH of the solution. The first-order rate constants of aggregation were lower when the protein molecule had a negative charge. The effect also depended on the structure of the extremolyte itself. When the protein molecule was positively charged, hydroxyectoine destabilised the mink growth hormone molecule and promoted the aggregation. The different effects of the additives were determined by the different interactions with the protein molecules, as shown by circular dichroism measurements and previously by fluorescence spectroscopy. Therefore, when using ectoine or hydroxyectoine for protein formulation, the effect of the additive should be carefully analysed for each protein individually.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"229 ","pages":"Pages 42-48"},"PeriodicalIF":3.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1016/j.biochi.2025.01.013
Cristina Trejo-Solís , Ángel Escamilla-Ramírez , Saúl Gómez-Manzo , Rosa Angélica Castillo-Rodriguez , Francisca Palomares-Alonso , Carlos Castillo-Pérez , Dolores Jiménez-Farfán , Aurora Sánchez-García , Juan Carlos Gallardo-Pérez
The glioma hallmark includes reprogramming metabolism to support biosynthetic and bioenergetic demands, as well as to maintain their redox equilibrium. It has been suggested that the pentose phosphate pathway (PPP) and glycolysis are directly involved in the dynamics and regulation of glioma cell proliferation and migration. The PPP is implicated in cellular redox homeostasis and the modulation of signaling pathways, which play a fundamental role in the progression of tumors to malignant grades, metastasis, and drug resistance. Several studies have shown that in glioblastoma cells, the activity, expression, and metabolic flux of some PPP enzymes increase, leading to heightened activity of the pathway. This generates higher levels of DNA, lipids, cholesterol, and amino acids, favoring rapid cell proliferation. Due to the crucial role played by the PPP in the development of glioma cells, enzymes from this pathway have been proposed as potential therapeutic targets. This review summarizes and highlights the role that the PPP plays in glioma cells and focuses on the key functions of the enzymes and metabolites generated by this pathway, as well as the regulation of the PPP. The studies described in this article enrich the understanding of the PPP as a therapeutic tool in the search for pharmacological targets for the development of a new generation of drugs to treat glioma.
{"title":"The pentose phosphate pathway (PPP) in the glioma metabolism: A potent enhancer of malignancy","authors":"Cristina Trejo-Solís , Ángel Escamilla-Ramírez , Saúl Gómez-Manzo , Rosa Angélica Castillo-Rodriguez , Francisca Palomares-Alonso , Carlos Castillo-Pérez , Dolores Jiménez-Farfán , Aurora Sánchez-García , Juan Carlos Gallardo-Pérez","doi":"10.1016/j.biochi.2025.01.013","DOIUrl":"10.1016/j.biochi.2025.01.013","url":null,"abstract":"<div><div>The glioma hallmark includes reprogramming metabolism to support biosynthetic and bioenergetic demands, as well as to maintain their redox equilibrium. It has been suggested that the pentose phosphate pathway (PPP) and glycolysis are directly involved in the dynamics and regulation of glioma cell proliferation and migration. The PPP is implicated in cellular redox homeostasis and the modulation of signaling pathways, which play a fundamental role in the progression of tumors to malignant grades, metastasis, and drug resistance. Several studies have shown that in glioblastoma cells, the activity, expression, and metabolic flux of some PPP enzymes increase, leading to heightened activity of the pathway. This generates higher levels of DNA, lipids, cholesterol, and amino acids, favoring rapid cell proliferation. Due to the crucial role played by the PPP in the development of glioma cells, enzymes from this pathway have been proposed as potential therapeutic targets. This review summarizes and highlights the role that the PPP plays in glioma cells and focuses on the key functions of the enzymes and metabolites generated by this pathway, as well as the regulation of the PPP. The studies described in this article enrich the understanding of the PPP as a therapeutic tool in the search for pharmacological targets for the development of a new generation of drugs to treat glioma.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 117-126"},"PeriodicalIF":3.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143082491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1016/j.biochi.2025.01.009
Alexander Yu. Starikov, Roman A. Sidorov, Georgy V. Kazakov, Pavel A. Leusenko, Dmitry A. Los
Fatty acid desaturases (FADs) belong to of the oxygenase superfamily. They play important roles in metabolic pathways and adaption mechanisms in a wide range of organisms, including bacteria and humans. These enzymes dehydrogenate a single bond in the acyl chain of fatty acids (FAs), forming a double bond. Multiple parameters influence the precise position of double bond formation and acyl chain docking in the catalytic pocket of various FADs, such as the length of an acyl chain, the position of previously generated double bonds, the location of the enzyme's metal catalytic site, and so on. The “counting” mode differs from one FAD to another. The cyanobacterium Synechocystis sp. strain PCC 6803 has four FADs (Δ9, Δ12, Δ6, and Δ15 or ω3) that synthesize mono-, di-, tri-, and tetraenoic FAs. The substrate preferences and “counting” modes for the first three FADs have been identified, but the substrate specificity for the terminal ω3-FAD remains uncertain. We used molecular cloning, heterologous expression with exogenous FAs, and molecular docking to explore the substrate selectivity and counting mode of ω3-FAD. Our results show that ω3-FAD “counts” from the carboxyl (Δ) end, introduces a double bond between 15 and 16 atoms, and requires a specific acyl substrate configuration with two pre-existing double bonds at Δ9 and Δ12 positions.
{"title":"The substrate preferences and “counting” mode of the cyanobacterial ω3 (Δ15) acyl-lipid desaturase","authors":"Alexander Yu. Starikov, Roman A. Sidorov, Georgy V. Kazakov, Pavel A. Leusenko, Dmitry A. Los","doi":"10.1016/j.biochi.2025.01.009","DOIUrl":"10.1016/j.biochi.2025.01.009","url":null,"abstract":"<div><div>Fatty acid desaturases (FADs) belong to of the oxygenase superfamily. They play important roles in metabolic pathways and adaption mechanisms in a wide range of organisms, including bacteria and humans. These enzymes dehydrogenate a single bond in the acyl chain of fatty acids (FAs), forming a double bond. Multiple parameters influence the precise position of double bond formation and acyl chain docking in the catalytic pocket of various FADs, such as the length of an acyl chain, the position of previously generated double bonds, the location of the enzyme's metal catalytic site, and so on. The “counting” mode differs from one FAD to another. The cyanobacterium <em>Synechocystis</em> sp. strain PCC 6803 has four FADs (Δ9, Δ12, Δ6, and Δ15 or ω3) that synthesize mono-, di-, tri-, and tetraenoic FAs. The substrate preferences and “counting” modes for the first three FADs have been identified, but the substrate specificity for the terminal ω3-FAD remains uncertain. We used molecular cloning, heterologous expression with exogenous FAs, and molecular docking to explore the substrate selectivity and counting mode of ω3-FAD. Our results show that ω3-FAD “counts” from the carboxyl (Δ) end, introduces a double bond between 15 and 16 atoms, and requires a specific acyl substrate configuration with two pre-existing double bonds at Δ<sup>9</sup> and Δ<sup>12</sup> positions.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 74-82"},"PeriodicalIF":3.3,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.biochi.2025.01.012
Ylenia Marino , Francesca Inferrera , Tiziana Genovese , Salvatore Cuzzocrea , Roberta Fusco , Rosanna Di Paola
Endometriosis affects about 10 % of women of reproductive age, leading to a disabling gynecologic condition. Chronic pain, inflammation, and oxidative stress have been identified as the molecular pathways involved in the progression of this disease, although its precise etiology remains uncertain. Although mitochondria are considered crucial organelles for cellular activity, their dysfunction has been linked to the development of this disease. The purpose of this review is to examine the functioning of the mitochondrion in endometriosis: in particular, we focused on the mitochondrial dynamics of biogenesis, fusion, and fission. Since excessive mitochondrial activity is reported to affect cell proliferation, we also considered mitophagy as a mechanism involved in limiting disease development. To better understand mitochondrial activity, we also considered alterations in circadian rhythms, the gut microbiome, and estrogen receptors: indeed, these mechanisms are also involved in the development of endometriosis. In addition, we focused on recent research about the impact of numerous substances on mitochondrial activity; some of them may offer a future breakthrough in endometriosis treatment by acting on mitochondria and inhibiting cell proliferation.
{"title":"Mitochondrial dynamics: Molecular mechanism and implications in endometriosis","authors":"Ylenia Marino , Francesca Inferrera , Tiziana Genovese , Salvatore Cuzzocrea , Roberta Fusco , Rosanna Di Paola","doi":"10.1016/j.biochi.2025.01.012","DOIUrl":"10.1016/j.biochi.2025.01.012","url":null,"abstract":"<div><div>Endometriosis affects about 10 % of women of reproductive age, leading to a disabling gynecologic condition. Chronic pain, inflammation, and oxidative stress have been identified as the molecular pathways involved in the progression of this disease, although its precise etiology remains uncertain. Although mitochondria are considered crucial organelles for cellular activity, their dysfunction has been linked to the development of this disease. The purpose of this review is to examine the functioning of the mitochondrion in endometriosis: in particular, we focused on the mitochondrial dynamics of biogenesis, fusion, and fission. Since excessive mitochondrial activity is reported to affect cell proliferation, we also considered mitophagy as a mechanism involved in limiting disease development. To better understand mitochondrial activity, we also considered alterations in circadian rhythms, the gut microbiome, and estrogen receptors: indeed, these mechanisms are also involved in the development of endometriosis. In addition, we focused on recent research about the impact of numerous substances on mitochondrial activity; some of them may offer a future breakthrough in endometriosis treatment by acting on mitochondria and inhibiting cell proliferation.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"231 ","pages":"Pages 163-175"},"PeriodicalIF":3.3,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1016/j.biochi.2025.01.011
Maria Roxana Biricioiu , Mirela Sarbu , Raluca Ica , Željka Vukelić , David E. Clemmer , Alina D. Zamfir
Anencephaly, the most severe type of neural tube defects (NTDs) in humans, occurs between the third and fourth gestational weeks (GW), involves the cranial part of the NT and results in the absence of the forebrain and skull. Exposed to amniotic fluid toxicity, neural tissue is degraded and prevented from development. Currently, little is known about the molecular bases of the disease and the possible involvement of glycans. In this context, considering the role played by gangliosides (GGs) in fetal brain development and the previous achievements of ion mobility separation (IMS) mass spectrometry (MS) in biomarker discovery, we report here on the introduction of this advanced analytical technique in NTD research, and its optimization for a comprehensive determination of anencephaly gangliosidome. Three native GG extracts from residual brains of anencephalic fetuses in 28, 35 and 37 GW were comparatively profiled by IMS MS, structurally analyzed by IMS MS/MS, and finally assessed against a native GG mixture from normal fetal brain. IMS MS provided data on 343 anencephaly gangliosides vs. only 157 known before and revealed for the first time the incidence of the entire penta-to octasialylated series. The comparative assay disclosed variations in GG expression with fetal age and a correlation of the pattern with the developmental stage. In contrast to the normal fetal brain, the neural tissue in anencephaly was found to contain an elevated number of polysialogangliosides and a lower expression of O-Ac- and GalNAc-modified glycoforms. These species worth further detailed investigation as new potential anencephaly markers.
{"title":"Advanced profiling and structural analysis of anencephaly gangliosides by ion mobility tandem mass spectrometry","authors":"Maria Roxana Biricioiu , Mirela Sarbu , Raluca Ica , Željka Vukelić , David E. Clemmer , Alina D. Zamfir","doi":"10.1016/j.biochi.2025.01.011","DOIUrl":"10.1016/j.biochi.2025.01.011","url":null,"abstract":"<div><div>Anencephaly, the most severe type of neural tube defects (NTDs) in humans, occurs between the third and fourth gestational weeks (GW), involves the cranial part of the NT and results in the absence of the forebrain and skull. Exposed to amniotic fluid toxicity, neural tissue is degraded and prevented from development. Currently, little is known about the molecular bases of the disease and the possible involvement of glycans. In this context, considering the role played by gangliosides (GGs) in fetal brain development and the previous achievements of ion mobility separation (IMS) mass spectrometry (MS) in biomarker discovery, we report here on the introduction of this advanced analytical technique in NTD research, and its optimization for a comprehensive determination of anencephaly gangliosidome. Three native GG extracts from residual brains of anencephalic fetuses in 28, 35 and 37 GW were comparatively profiled by IMS MS, structurally analyzed by IMS MS/MS, and finally assessed against a native GG mixture from normal fetal brain. IMS MS provided data on 343 anencephaly gangliosides <em>vs</em>. only 157 known before and revealed for the first time the incidence of the entire penta-to octasialylated series. The comparative assay disclosed variations in GG expression with fetal age and a correlation of the pattern with the developmental stage. In contrast to the normal fetal brain, the neural tissue in anencephaly was found to contain an elevated number of polysialogangliosides and a lower expression of <em>O</em>-Ac- and GalNAc-modified glycoforms. These species worth further detailed investigation as new potential anencephaly markers.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 91-104"},"PeriodicalIF":3.3,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1016/j.biochi.2025.01.006
Tácia Katiane Hall , Larissa Sander Magalhães , Mariana Parron Paim , Taís da Silva Teixeira Rech , Amanda Rebelo de Azevedo , Vanessa Nascimento , José Sebastião Santos Neto , César Augusto Brüning , Cristiani Folharini Bortolatto
Oxidative stress arises from an imbalance between reactive species (RS) production and the antioxidant defense, increasing the brain susceptibility to neurodegenerative and psychiatric diseases. Besides, changes in the expression or activity of neurotransmitter metabolism enzymes, such as monoamine oxidases (MAO), are also associated with mental disorders, including depression. Considering this, antioxidant and MAO-A activity inhibitory potential of six 2,3-chalcogenodihydrobenzofurans (2,3-DHBF) was investigated through in vitro and in silico tests. Compounds 1 to 5 incorporate sulfur (S) as chalcogen, whereas compound 6 integrates tellurium (Te). A screening (compounds 1–6) of cerebral MAO-A activity showed inhibitory activity for the compounds 2, 4, 5, and 6. Among sulfur compounds, compound 2 demonstrated superior scores in docking studies, yielding a value of - 9.9 kcal/mol. Selected for concentration-response curves, compounds 2 (with S) and 6 (with Te) inhibited MAO-A at concentrations equal to or higher than 25 μM. In a redox screening test, only compound 6 showed antioxidant effects. Concentration-response curves indicated that compound 6 reduced lipid peroxidation and protein carbonylation levels in mouse brain tissue (≥0.5 μM), as well as reduced RS levels (≥1 μM). Furthermore, the compound 6 (≥5 μM) was effective in reducing the ferric ion (FRAP). In radical scavenging tests such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), compound 6 showed significant results in concentrations from 50 μM and mimicked the enzyme glutathione S-transferase (GST) at 100 μM. In summary, this study demonstrated the cerebral antioxidant and/or MAO-A inhibition properties of 2,3-DHBF, presenting potential as neuroprotective candidates.
{"title":"Chalcogen dihydrobenzofuran compounds as potential neuroprotective agents: An in vitro and in silico biological investigation","authors":"Tácia Katiane Hall , Larissa Sander Magalhães , Mariana Parron Paim , Taís da Silva Teixeira Rech , Amanda Rebelo de Azevedo , Vanessa Nascimento , José Sebastião Santos Neto , César Augusto Brüning , Cristiani Folharini Bortolatto","doi":"10.1016/j.biochi.2025.01.006","DOIUrl":"10.1016/j.biochi.2025.01.006","url":null,"abstract":"<div><div>Oxidative stress arises from an imbalance between reactive species (RS) production and the antioxidant defense, increasing the brain susceptibility to neurodegenerative and psychiatric diseases. Besides, changes in the expression or activity of neurotransmitter metabolism enzymes, such as monoamine oxidases (MAO), are also associated with mental disorders, including depression. Considering this, antioxidant and MAO-A activity inhibitory potential of six 2,3-chalcogenodihydrobenzofurans (2,3-DHBF) was investigated through <em>in vitro</em> and <em>in silico</em> tests. Compounds <strong>1</strong> to <strong>5</strong> incorporate sulfur (S) as chalcogen, whereas compound <strong>6</strong> integrates tellurium (Te). A screening (compounds <strong>1</strong>–<strong>6</strong>) of cerebral MAO-A activity showed inhibitory activity for the compounds <strong>2</strong>, <strong>4</strong>, <strong>5</strong>, and <strong>6</strong>. Among sulfur compounds, compound <strong>2</strong> demonstrated superior scores in docking studies, yielding a value of - 9.9 kcal/mol. Selected for concentration-response curves, compounds <strong>2</strong> (with S) and <strong>6</strong> (with Te) inhibited MAO-A at concentrations equal to or higher than 25 μM. In a redox screening test, only compound <strong>6</strong> showed antioxidant effects. Concentration-response curves indicated that compound <strong>6</strong> reduced lipid peroxidation and protein carbonylation levels in mouse brain tissue (≥0.5 μM), as well as reduced RS levels (≥1 μM). Furthermore, the compound <strong>6</strong> (≥5 μM) was effective in reducing the ferric ion (FRAP). In radical scavenging tests such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), compound <strong>6</strong> showed significant results in concentrations from 50 μM and mimicked the enzyme glutathione S-transferase (GST) at 100 μM. In summary, this study demonstrated the cerebral antioxidant and/or MAO-A inhibition properties of 2,3-DHBF, presenting potential as neuroprotective candidates.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 54-65"},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PA-BJ is a serine protease present in Bothrops jararaca venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins in vitro, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin. Antithrombin, factors XI and XIII and protein S were not cleaved by PA-BJ. Moreover, using surface plasmon resonance PA-BJ was demonstrated to bind to actin, EPCR, fibrinogen, PAR-1, and thrombomodulin, with dissociation constants (KD) in the micromolar range. Considering that these proteins play critical roles in pathways of blood coagulation and maintenance of endothelium integrity, their binding and cleavage by PA-BJ could contribute to the alterations in hemostasis and cell permeability observed in B. jararaca envenomation process.
{"title":"Interaction and cleavage of cell and plasma proteins by the platelet-aggregating serine protease PA-BJ of Bothrops jararaca venom","authors":"Daniela Cajado-Carvalho, Mariana S.L.C. Morone, Nancy da Rós, Solange M.T. Serrano","doi":"10.1016/j.biochi.2025.01.007","DOIUrl":"10.1016/j.biochi.2025.01.007","url":null,"abstract":"<div><div>PA-BJ is a serine protease present in <em>Bothrops jararaca</em> venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins <em>in vitro</em>, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin. Antithrombin, factors XI and XIII and protein S were not cleaved by PA-BJ. Moreover, using surface plasmon resonance PA-BJ was demonstrated to bind to actin, EPCR, fibrinogen, PAR-1, and thrombomodulin, with dissociation constants (K<sub>D</sub>) in the micromolar range. Considering that these proteins play critical roles in pathways of blood coagulation and maintenance of endothelium integrity, their binding and cleavage by PA-BJ could contribute to the alterations in hemostasis and cell permeability observed in <em>B. jararaca</em> envenomation process.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 127-132"},"PeriodicalIF":3.3,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (H2S) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.
This study investigates the impact of a high-fat diet (HFD) on low molecular weight sulfur compounds in the visceral adipose tissue (VAT) of C57BL/6 and TLR2-deficient mice. It focuses on key enzymes involved in H2S metabolism: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CGL), 3-mercaptopyruvate sulfurtransferase (MPST), and thiosulfate sulfurtransferase (TST).
In C57BL/6 mice on HFD, MPST activity decreased, while CBS level increased, potentially compensating for H2S production. In contrast, TLR2-deficient mice on HFD exhibited higher MPST activity but reduced level of CBS and CGL activity, suggesting that TLR2 deficiency mitigates HFD-induced changes in sulfur metabolism. TST activity was lower in TLR2-deficient mice, indicating an independent regulatory role of TLR2 in TST activity. Elevated oxidative stress, reflected by increased glutathione levels, was observed in wild-type mice. Interestingly, cysteine and cystine were detectable only in the VAT of the C57BL/6 ND group and were absent in all other groups. The capacity for hydrogen sulfide production in tissues from TLR2−/−B6 HFD group was significantly lower than in the C57BL/6 HFD group.
In conclusion, TLR2 modulates sulfur metabolism, oxidative stress, and inflammation in obesity. TLR2 deficiency disrupts H2S production and redox balance, potentially contributing to metabolic dysfunction, highlighting TLR2 as a potential therapeutic target for obesity-related metabolic disorders.
{"title":"The modulation of low molecular weight sulfur compounds levels in visceral adipose tissue of TLR2-deficient mice on a high-fat diet","authors":"Patrycja Bronowicka-Adamska , Dominika Szlęzak , Anna Bentke-Imiolek , Kinga Kaszuba , Monika Majewska-Szczepanik","doi":"10.1016/j.biochi.2025.01.008","DOIUrl":"10.1016/j.biochi.2025.01.008","url":null,"abstract":"<div><div>Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (H<sub>2</sub>S) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.</div><div>This study investigates the impact of a high-fat diet (HFD) on low molecular weight sulfur compounds in the visceral adipose tissue (VAT) of C57BL/6 and TLR2-deficient mice. It focuses on key enzymes involved in H<sub>2</sub>S metabolism: cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CGL), 3-mercaptopyruvate sulfurtransferase (MPST), and thiosulfate sulfurtransferase (TST).</div><div>In C57BL/6 mice on HFD, MPST activity decreased, while CBS level increased, potentially compensating for H<sub>2</sub>S production. In contrast, TLR2-deficient mice on HFD exhibited higher MPST activity but reduced level of CBS and CGL activity, suggesting that TLR2 deficiency mitigates HFD-induced changes in sulfur metabolism. TST activity was lower in TLR2-deficient mice, indicating an independent regulatory role of TLR2 in TST activity. Elevated oxidative stress, reflected by increased glutathione levels, was observed in wild-type mice. Interestingly, cysteine and cystine were detectable only in the VAT of the C57BL/6 ND group and were absent in all other groups. The capacity for hydrogen sulfide production in tissues from TLR2−/−B6 HFD group was significantly lower than in the C57BL/6 HFD group.</div><div>In conclusion, TLR2 modulates sulfur metabolism, oxidative stress, and inflammation in obesity. TLR2 deficiency disrupts H<sub>2</sub>S production and redox balance, potentially contributing to metabolic dysfunction, highlighting TLR2 as a potential therapeutic target for obesity-related metabolic disorders.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 66-73"},"PeriodicalIF":3.3,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-23DOI: 10.1016/j.biochi.2025.01.004
Mariana M. Chaves
The parasite of the genus Leishmania is the causative agent of diseases that affect humans called leishmaniasis. These diseases affect millions of people worldwide and the currently existing drugs are either very toxic or the parasites acquire resistance. Therefore, new elimination mechanisms need to be elucidated so that new therapeutic strategies can be developed. Much has already been discussed about the role of neutrophils in Leishmania infection, and their participation is still controversial. A recent study showed that receptors present in the neutrophil membrane, the purinergic receptors, can control the infection when activated, but the triggering mechanism has not been elucidated. In this review, we will address the possible participation of purinergic receptors expressed in the neutrophil extracellular membrane that may be participating in the detection of Leishmania infection and their possible effects during parasitism.
{"title":"Neutrophils and purinergic signaling: Partners in the crime against Leishmania parasites?","authors":"Mariana M. Chaves","doi":"10.1016/j.biochi.2025.01.004","DOIUrl":"10.1016/j.biochi.2025.01.004","url":null,"abstract":"<div><div>The parasite of the genus <em>Leishmania</em> is the causative agent of diseases that affect humans called leishmaniasis. These diseases affect millions of people worldwide and the currently existing drugs are either very toxic or the parasites acquire resistance. Therefore, new elimination mechanisms need to be elucidated so that new therapeutic strategies can be developed. Much has already been discussed about the role of neutrophils in <em>Leishmania</em> infection, and their participation is still controversial. A recent study showed that receptors present in the neutrophil membrane, the purinergic receptors, can control the infection when activated, but the triggering mechanism has not been elucidated. In this review, we will address the possible participation of purinergic receptors expressed in the neutrophil extracellular membrane that may be participating in the detection of <em>Leishmania</em> infection and their possible effects during parasitism.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"232 ","pages":"Pages 43-53"},"PeriodicalIF":3.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1016/j.biochi.2025.01.005
Jiaqi Li , Huanhuan Sun , Huasheng Wang , Fengqiu Zhou , Wenyu Wu , Dan Chen , Zhenning Zhou , Hai Yan
Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear. This study investigates MlrD from Sphingopyxis sp. USTB-05, utilizing bioinformatics tools for analysis and prediction, conducting homology analysis, and constructing the molecular structure of MlrD. Bioinformatics analysis suggests that MlrD is an alkaline, hydrophobic protein with good thermal stability and is likely located in the cell membrane as a membrane protein without a signal peptide. Homology analysis indicates that MlrD belongs to the PTR2 protein family and contains a PTR2 domain. Phylogenetic analysis reveals that MlrD follows both vertical and horizontal genetic transfer patterns during evolution. Homology modeling demonstrates that the three-dimensional structure of MlrD is primarily composed of 12 α-helices, with conserved residues between the N-terminal and C-terminal domains forming a large reaction cavity. This research broadens current knowledge of MC biodegradation and offers a promising foundation for future studies.
{"title":"Structure and function analysis of microcystin transport protein MlrD","authors":"Jiaqi Li , Huanhuan Sun , Huasheng Wang , Fengqiu Zhou , Wenyu Wu , Dan Chen , Zhenning Zhou , Hai Yan","doi":"10.1016/j.biochi.2025.01.005","DOIUrl":"10.1016/j.biochi.2025.01.005","url":null,"abstract":"<div><div>Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the <em>mlr</em> gene cluster (<em>mlrABCD</em>) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear. This study investigates MlrD from <em>Sphingopyxis</em> sp. USTB-05, utilizing bioinformatics tools for analysis and prediction, conducting homology analysis, and constructing the molecular structure of MlrD. Bioinformatics analysis suggests that MlrD is an alkaline, hydrophobic protein with good thermal stability and is likely located in the cell membrane as a membrane protein without a signal peptide. Homology analysis indicates that MlrD belongs to the PTR2 protein family and contains a PTR2 domain. Phylogenetic analysis reveals that MlrD follows both vertical and horizontal genetic transfer patterns during evolution. Homology modeling demonstrates that the three-dimensional structure of MlrD is primarily composed of 12 α-helices, with conserved residues between the <em>N</em>-terminal and <em>C</em>-terminal domains forming a large reaction cavity. This research broadens current knowledge of MC biodegradation and offers a promising foundation for future studies.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"231 ","pages":"Pages 155-162"},"PeriodicalIF":3.3,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}