Pub Date : 2024-01-25DOI: 10.1016/j.biochi.2024.01.011
Overexpression of recombinant Bacillus cereus TSPO (BcTSPO) in E. coli bacteria leads to its recovery with a bound hemin both in bacterial membrane (MB) and inclusion bodies (IB). Unlike mouse TSPO, BcTSPO purified in SDS detergent from IB is well structured and can bind various ligands such as high-affinity PK 11195, protoporphyrin IX (PPIX) and δ-aminolevulinic acid (ALA). For each of the three ligands, 1H–15N HSQC titration NMR experiments suggest that different amino acids of BcTSPO binding cavity are involved in the interaction. PPIX, an intermediate of heme biosynthesis, binds to the cavity of BcTSPO and its fluorescence can be significantly reduced in the presence of light and oxygen. The light irradiation leads to two products that have been isolated and characterized as photoporphyrins. They result from the addition of singlet oxygen to the two vinyl groups hence leading to the formation of hydroxyaldehydes. The involvement of water molecules, recently observed along with the binding of heme in Rhodobacter sphaeroides (RsTSPO) is highly probable. Altogether, these results raise the question of the role of TSPO in heme biosynthesis regulation as a possible scavenger of reactive intermediates.
{"title":"Among the recombinant TSPOs, the BcTSPO","authors":"","doi":"10.1016/j.biochi.2024.01.011","DOIUrl":"10.1016/j.biochi.2024.01.011","url":null,"abstract":"<div><p>Overexpression of recombinant <em>Bacillus cereus</em> TSPO (<em>Bc</em>TSPO) in <em>E. coli</em> bacteria leads to its recovery with a bound hemin both in bacterial membrane (MB) and inclusion bodies (IB). Unlike mouse TSPO, <em>Bc</em>TSPO purified in SDS detergent from IB is well structured and can bind various ligands such as high-affinity PK 11195, protoporphyrin IX (PPIX) and δ-aminolevulinic acid (ALA). For each of the three ligands, <sup>1</sup>H–<sup>15</sup>N HSQC titration NMR experiments suggest that different amino acids of <em>Bc</em>TSPO binding cavity are involved in the interaction. PPIX, an intermediate of heme biosynthesis, binds to the cavity of <em>Bc</em>TSPO and its fluorescence can be significantly reduced in the presence of light and oxygen. The light irradiation leads to two products that have been isolated and characterized as photoporphyrins. They result from the addition of singlet oxygen to the two vinyl groups hence leading to the formation of hydroxyaldehydes. The involvement of water molecules, recently observed along with the binding of heme in <em>Rhodobacter sphaeroides</em> (<em>Rs</em>TSPO) is highly probable. Altogether, these results raise the question of the role of TSPO in heme biosynthesis regulation as a possible scavenger of reactive intermediates.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"224 ","pages":"Pages 16-28"},"PeriodicalIF":3.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000294/pdfft?md5=f60dea544285655bf51b2d49d8344540&pid=1-s2.0-S0300908424000294-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1016/j.biochi.2024.01.005
Marie Sissler, Fabien Darfeuille
{"title":"The rise of RNA: From fundamental research to therapeutic applications","authors":"Marie Sissler, Fabien Darfeuille","doi":"10.1016/j.biochi.2024.01.005","DOIUrl":"https://doi.org/10.1016/j.biochi.2024.01.005","url":null,"abstract":"","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"217 ","pages":"Pages 1-2"},"PeriodicalIF":3.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139549785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-21DOI: 10.1016/j.biochi.2024.01.013
Matthew Pedlar , Matthew J. Emery , Philip J. Warburton
Since its inception in the 1980s, advancements in PCR technology using improved thermal cyclers, engineered DNA polymerases and commercial master mixes, have led to increased PCR productivity. Despite these advancements, PCR cycling protocols have largely remained unchanged over the same period. This study aimed to systemically evaluate the effect of reduced PCR cycling parameters on amplicon production. The 1466bp fragment from the 16S rRNA gene present in low-, medium- and high-CG bacteria was amplified using three commercially available PCR master mixes. The shortest cycling parameters required to successfully amplify the 16S fragment from all bacteria and master mixes comprised 30-cycles of 5 s denaturation, 25 s annealing, and 25 s extension. While all produced an amplicon with sufficient yield to enable downstream sequence analysis, the PCRBIO Ultra Mix in conjunction with the shortened parameters was found to achieve the highest amplicon yield across low-, medium- and high CG bacteria. Comparing the run times to that of a typical 16S PCR protocol, the shortened cycling parameters reduced the program duration by 46 % and consumed 50 % less electricity, translating into increased productivity and helping to improve laboratory environmental sustainability.
{"title":"Amplifying PCR productivity and environmental sustainability through shortened cycling protocols","authors":"Matthew Pedlar , Matthew J. Emery , Philip J. Warburton","doi":"10.1016/j.biochi.2024.01.013","DOIUrl":"10.1016/j.biochi.2024.01.013","url":null,"abstract":"<div><p>Since its inception in the 1980s, advancements in PCR technology using improved thermal cyclers, engineered DNA polymerases and commercial master mixes, have led to increased PCR productivity. Despite these advancements, PCR cycling protocols have largely remained unchanged over the same period. This study aimed to systemically evaluate the effect of reduced PCR cycling parameters on amplicon production. The 1466bp fragment from the 16S rRNA gene present in low-, medium- and high-CG bacteria was amplified using three commercially available PCR master mixes. The shortest cycling parameters required to successfully amplify the 16S fragment from all bacteria and master mixes comprised 30-cycles of 5 s denaturation, 25 s annealing, and 25 s extension. While all produced an amplicon with sufficient yield to enable downstream sequence analysis, the PCRBIO Ultra Mix in conjunction with the shortened parameters was found to achieve the highest amplicon yield across low-, medium- and high CG bacteria. Comparing the run times to that of a typical 16S PCR protocol, the shortened cycling parameters reduced the program duration by 46 % and consumed 50 % less electricity, translating into increased productivity and helping to improve laboratory environmental sustainability.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 60-64"},"PeriodicalIF":3.9,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000312/pdfft?md5=611751bcc2e6e2f9ae6166201d625756&pid=1-s2.0-S0300908424000312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139518569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The RNA-binding protein HuD/ELAVL4 is essential for neuronal development and synaptic plasticity by governing various post-transcriptional processes of target mRNAs, including stability, translation, and localization. We previously showed that the linker region and poly(A)-binding domain of HuD play a pivotal role in promoting translation and inducing neurite outgrowth. In addition, we found that HuD interacts exclusively with the active form of Akt1, through the linker region. Although this interaction is essential for neurite outgrowth, HuD is not a substrate for Akt1, raising questions about the dynamics between HuD-mediated translational stimulation and its association with active Akt1.
Here, we demonstrate that active Akt1 interacts with the cap-binding complex via HuD. We identify key amino acids in linker region of HuD responsible for Akt1 interaction, leading to the generation of two point-mutated HuD variants: one that is incapable of binding to Akt1 and another that can interact with Akt1 regardless of its phosphorylation status. In vitro translation assays using these mutants reveal that HuD-mediated translation stimulation is independent of its binding to Akt1. In addition, it is evident that the interaction between HuD and active Akt1 is essential for HuD-induced neurite outgrowth, whereas a HuD mutant capable of binding to any form of Akt1 leads to aberrant neurite development.
Collectively, our results revisit the understanding of the HuD-Akt1 interaction in translation and suggest that this interaction contributes to HuD-mediated neurite outgrowth via a unique molecular mechanism distinct from translation regulation.
{"title":"Deciphering the Akt1-HuD interaction in HuD-mediated neuronal differentiation","authors":"Hikari Nishisaka , Takumi Tomohiro , Kako Fukuzumi, Akira Fukao, Yoshinori Funakami, Toshinobu Fujiwara","doi":"10.1016/j.biochi.2024.01.010","DOIUrl":"10.1016/j.biochi.2024.01.010","url":null,"abstract":"<div><p>The RNA-binding protein HuD/ELAVL4 is essential for neuronal development and synaptic plasticity by governing various post-transcriptional processes of target mRNAs, including stability, translation, and localization. We previously showed that the linker region and poly(A)-binding domain of HuD play a pivotal role in promoting translation and inducing neurite outgrowth. In addition, we found that HuD interacts exclusively with the active form of Akt1, through the linker region. Although this interaction is essential for neurite outgrowth, HuD is not a substrate for Akt1, raising questions about the dynamics between HuD-mediated translational stimulation and its association with active Akt1.</p><p><span>Here, we demonstrate that active Akt1 interacts with the cap-binding complex via HuD. We identify key amino acids in linker region of HuD responsible for Akt1 interaction, leading to the generation of two point-mutated HuD variants: one that is incapable of binding to Akt1 and another that can interact with Akt1 regardless of its phosphorylation status. </span><em>In vitro</em> translation assays using these mutants reveal that HuD-mediated translation stimulation is independent of its binding to Akt1. In addition, it is evident that the interaction between HuD and active Akt1 is essential for HuD-induced neurite outgrowth, whereas a HuD mutant capable of binding to any form of Akt1 leads to aberrant neurite development.</p><p>Collectively, our results revisit the understanding of the HuD-Akt1 interaction in translation and suggest that this interaction contributes to HuD-mediated neurite outgrowth via a unique molecular mechanism distinct from translation regulation.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 20-26"},"PeriodicalIF":3.9,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1016/j.biochi.2024.01.008
Łukasz Gajda, Agata Daszkowska-Golec, Piotr Świątek
Although enchytraeids have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes responsible for hydrolyzing starch and similar polysaccharides into sugars, in Enchytraeus albidus. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of E. albidus, we used classical “gene fishing” and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that E. albidus possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm Eisenia fetida Ef-Amy genes. Different strains of E. albidus possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified “Enchytraeus-Eisenia type” α-amylase homologs in other clitellates and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores phylogenetic implications.
尽管虾夷鱼在科学研究中越来越受欢迎,但有关其摄食生态学和生物学的基本问题在很大程度上仍未得到探讨。本研究调查了白尾 Enchytraeus 中负责将淀粉和类似多糖水解为糖的主要消化酶 α-淀粉酶。目前,不仅 Enchytraeidae 科,而且整个无脊椎动物都缺乏与 α 淀粉酶有关的遗传数据。为了检测和鉴定白栉水母 COI 单倍型培养物(PL-A 株系)中表达的 α 淀粉酶基因的编码序列,我们采用了经典的 "基因捕捞 "和转录组学方法。我们还比较了从与耐冻菌株相关的转录组数据中检索到的α-淀粉酶编码序列变体。我们的研究结果表明,白垩藻拥有两个不同的α-淀粉酶基因(Amy I和Amy II),它们与蚯蚓Eisenia fetida的Ef-Amy基因同源。白蚯蚓的不同菌株拥有不同的α-淀粉酶等位基因,具有特定菌株特有的 SNP 模式。与 Amy II 不同,Amy I 似乎是一个高度多态和多拷贝的基因。推测的 Amy 蛋白的结构域与具有 ABC 结构域的经典动物 α 淀粉酶相同。与许多昆虫淀粉酶类似,Amy II 的一个特征是在柔性环区域缺乏 GHGA 基序。我们在其他有节类动物和多毛目动物中发现了 "Enchytraeus-Eisenia型 "α-淀粉酶同源物,这表明Amy I/II蛋白的祖先起源于有节类动物。这项研究首次揭示了锅虫的内源性非蛋白酶消化酶基因,讨论了无针虫中艾米α-淀粉酶的进化,并探讨了其系统发育意义。
{"title":"Discovery and characterization of the α-amylases cDNAs from Enchytraeus albidus shed light on the evolution of “Enchytraeus-Eisenia type” Amy homologs in Annelida","authors":"Łukasz Gajda, Agata Daszkowska-Golec, Piotr Świątek","doi":"10.1016/j.biochi.2024.01.008","DOIUrl":"10.1016/j.biochi.2024.01.008","url":null,"abstract":"<div><p><span>Although enchytraeids<span> have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes<span> responsible for hydrolyzing starch and similar polysaccharides into sugars, in </span></span></span><span><em>Enchytraeus albidus</em></span><span>. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of </span><em>E</em>. <em>albidus</em><span>, we used classical “gene fishing” and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that </span><em>E</em>. <em>albidus</em> possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm <span><em>Eisenia fetida</em></span> Ef-Amy genes. Different strains of <em>E</em>. <em>albidus</em><span> possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified “</span><em>Enchytraeus</em>-<em>Eisenia</em><span> type” α-amylase homologs in other clitellates<span><span> and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores </span>phylogenetic implications.</span></span></p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 38-59"},"PeriodicalIF":3.9,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139502049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1016/j.biochi.2024.01.007
Hui Lyu, Yong-Song Zuo
The light-induced transthylakoid membrane potential (ΔΨm) can function as a driving force to help catalyzing the formation of ATP molecules, proving a tight connection between ΔΨm and the ATP synthase. Naturally, a question can be raised on the effects of altered functioning of ATP synthases on regulating ΔΨm, which is attractive in the area of photosynthetic research. Lots of findings, when making efforts of solving this difficulty, can offer an in-depth understanding into the mechanism behind. However, the functional network on modulating ΔΨm is highly interdependent. It is difficult to comprehend the consequences of altered activity of ATP synthases on adjusting ΔΨm because parameters that have influences on ΔΨm would themselves be affected by ΔΨm. In this work, a computer model was applied to check the kinetic changes in polarization/depolarization across the thylakoid membrane (TM) regulated by the modified action of ATP synthases. The computing data revealed that under the extreme condition by numerically “switching off” the action of the ATP synthase, the complete inactivation of ATP synthase would markedly impede proton translocation at the cytb6f complex. Concurrently, the KEA3 (CLCe) porter, actively pumping protons into the stroma, further contributes to achieving a sustained low level of ΔΨm. Besides, the quantitative consequences on every particular component of ΔΨm adjusted by the modified functioning of ATP synthases were also explored. By employing the model, we bring evidence from the theoretical perspective that the ATP synthase is a key factor in forming a transmembrane proton loop thereby maintaining a propriate steady-state ΔΨm to meet variable environmental conditions.
光诱导的跨类囊体膜电位(ΔΨm)可作为一种驱动力,帮助催化 ATP 分子的形成,这证明了ΔΨm 与 ATP 合成酶之间的紧密联系。自然而然,人们会提出 ATP 合成酶功能改变对调节ΔΨm 的影响问题,这在光合作用研究领域很有吸引力。在努力解决这一难题的过程中,许多研究成果都能让人深入了解其背后的机制。然而,调节ΔΨm 的功能网络是高度相互依存的。由于对ΔΨm有影响的参数本身也会受到ΔΨm的影响,因此很难理解ATP合成酶活性的改变对调节ΔΨm的影响。在这项工作中,应用计算机模型检验了在 ATP 合成酶作用改变的调节下,整个类囊体膜(TM)极化/去极化的动力学变化。计算数据显示,在数值 "关闭 "ATP合成酶作用的极端条件下,ATP合成酶的完全失活将明显阻碍质子在细胞b6f复合物上的转运。与此同时,KEA3(CLCe)搬运工积极地将质子泵入基质,进一步促进了ΔΨm水平的持续降低。此外,我们还探讨了 ATP 合成酶的功能改变对ΔΨm 各特定成分的定量影响。通过运用该模型,我们从理论上证明了ATP合成酶是形成跨膜质子环从而维持适当稳态ΔΨm以适应多变环境条件的关键因素。
{"title":"Dynamic modulation of transthylakoid electric potential by chloroplast ATP synthases","authors":"Hui Lyu, Yong-Song Zuo","doi":"10.1016/j.biochi.2024.01.007","DOIUrl":"10.1016/j.biochi.2024.01.007","url":null,"abstract":"<div><p>The light-induced transthylakoid membrane potential (ΔΨ<sub>m</sub>) can function as a driving force to help catalyzing the formation of ATP molecules, proving a tight connection between ΔΨ<sub>m</sub><span> and the ATP synthase. Naturally, a question can be raised on the effects of altered functioning of ATP synthases on regulating ΔΨ</span><sub>m</sub>, which is attractive in the area of photosynthetic research. Lots of findings, when making efforts of solving this difficulty, can offer an in-depth understanding into the mechanism behind. However, the functional network on modulating ΔΨ<sub>m</sub> is highly interdependent. It is difficult to comprehend the consequences of altered activity of ATP synthases on adjusting ΔΨ<sub>m</sub> because parameters that have influences on ΔΨ<sub>m</sub> would themselves be affected by ΔΨ<sub>m</sub><span>. In this work, a computer model was applied to check the kinetic changes in polarization/depolarization across the thylakoid membrane<span> (TM) regulated by the modified action of ATP synthases. The computing data revealed that under the extreme condition by numerically “switching off” the action of the ATP synthase, the complete inactivation of ATP synthase would markedly impede proton translocation at the cytb</span></span><sub>6</sub>f complex. Concurrently, the KEA3 (CLCe) porter, actively pumping protons into the stroma, further contributes to achieving a sustained low level of ΔΨ<sub>m</sub>. Besides, the quantitative consequences on every particular component of ΔΨ<sub>m</sub> adjusted by the modified functioning of ATP synthases were also explored. By employing the model, we bring evidence from the theoretical perspective that the ATP synthase is a key factor in forming a transmembrane proton loop thereby maintaining a propriate steady-state ΔΨ<sub>m</sub> to meet variable environmental conditions.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 27-37"},"PeriodicalIF":3.9,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.1016/j.biochi.2024.01.006
Vera Vysochinskaya , Yana Zabrodskaya , Olesya Dovbysh , Anton Emelyanov , Vladimir Klimenko , Nikolay Knyazev , Ivan Terterov , Marya Egorova , Alexey Bogdanov , Michael Maslov , Andrey Vasin , Michael Dubina
Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against BCR-ABL1, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model.
The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG2000-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Х3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Х3-DOPE-DSPE-PEG2000 (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (BCR-ABL1) and cancer cell proliferation. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.
{"title":"Cell-penetrating peptide and cationic liposomes mediated siRNA delivery to arrest growth of chronic myeloid leukemia cells in vitro","authors":"Vera Vysochinskaya , Yana Zabrodskaya , Olesya Dovbysh , Anton Emelyanov , Vladimir Klimenko , Nikolay Knyazev , Ivan Terterov , Marya Egorova , Alexey Bogdanov , Michael Maslov , Andrey Vasin , Michael Dubina","doi":"10.1016/j.biochi.2024.01.006","DOIUrl":"10.1016/j.biochi.2024.01.006","url":null,"abstract":"<div><p>Gene silencing through RNA interference (RNAi) is a promising therapeutic approach for a wide range of disorders, including cancer. Non-viral gene therapy, using specific siRNAs against <em>BCR-ABL1</em><span>, can be a supportive or alternative measure to traditional chronic myeloid leukemia (CML) tyrosine kinase inhibitor (TKIs) therapies, given the prevalence of clinical TKI resistance. The main challenge for such approaches remains the development of the effective delivery system for siRNA tailored to the specific disease model.</span></p><p><span>The purpose of this study was to examine and compare the efficiency of endosomolytic cell penetrating peptide (CPP) EB1 and PEG</span><sub>2000</sub><span>-decorated cationic liposomes composed of polycationic lipid 1,26-bis(cholest-5-en-3-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2Х3) and helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for anti-bcr-abl siRNA delivery into the K562 human CML cell line. We show that both EB1 and 2Х3-DOPE-DSPE-PEG</span><sub>2000</sub> (0.62 % mol.) liposomes effectively deliver siRNA into K562 cells by endocytic mechanisms, and the use of liposomes leads to more effective inhibition of expression of the targeted gene (<em>BCR-ABL1</em><span>) and cancer cell proliferation<span>. Taken together, these findings suggest that PEG-decorated cationic liposomes mediated siRNA delivery allows an effective antisense suppression of certain oncogenes, and represents a promising new class of therapies for CML.</span></span></p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 1-12"},"PeriodicalIF":3.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139412347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.1016/j.biochi.2024.01.004
Marine Goux , Marie Demonceaux , Johann Hendrickx , Claude Solleux , Emilie Lormeau , Folmer Fredslund , David Tezé , Bernard Offmann , Corinne André-Miral
Sucrose phosphorylases, through transglycosylation reactions, are interesting enzymes that can transfer regioselectively glucose from sucrose, the donor substrate, onto acceptors like flavonoids to form glycoconjugates and hence modulate their solubility and bioactivity. Here, we report for the first time the structure of sucrose phosphorylase from the marine bacteria Alteromonas mediterranea (AmSP) and its enzymatic properties. Kinetics of sucrose hydrolysis and transglucosylation capacities on (+)-catechin were investigated. Wild-type enzyme (AmSP-WT) displayed high hydrolytic activity on sucrose and was devoid of transglucosylation activity on (+)-catechin. Two variants, AmSP-Q353F and AmSP-P140D catalysed the regiospecific transglucosylation of (+)-catechin: 89 % of a novel compound (+)-catechin-4′-O-α-d-glucopyranoside (CAT-4′) for AmSP-P140D and 92 % of (+)-catechin-3′-O-α-d-glucopyranoside (CAT-3′) for AmSP-Q353F. The compound CAT-4′ was fully characterized by NMR and mass spectrometry. An explanation for this difference in regiospecificity was provided at atomic level by molecular docking simulations: AmSP-P140D was found to preferentially bind (+)-catechin in a mode that favours glucosylation on its hydroxyl group in position 4′ while the binding mode in AmSP-Q353F favoured glucosylation on its hydroxyl group in position 3’.
{"title":"Sucrose phosphorylase from Alteromonas mediterranea: Structural insight into the regioselective α-glucosylation of (+)-catechin","authors":"Marine Goux , Marie Demonceaux , Johann Hendrickx , Claude Solleux , Emilie Lormeau , Folmer Fredslund , David Tezé , Bernard Offmann , Corinne André-Miral","doi":"10.1016/j.biochi.2024.01.004","DOIUrl":"10.1016/j.biochi.2024.01.004","url":null,"abstract":"<div><p>Sucrose phosphorylases, through transglycosylation reactions, are interesting enzymes that can transfer regioselectively glucose from sucrose, the donor substrate, onto acceptors like flavonoids to form glycoconjugates and hence modulate their solubility and bioactivity. Here, we report for the first time the structure of sucrose phosphorylase from the marine bacteria <em>Alteromonas mediterranea</em> (<em>Am</em>SP) and its enzymatic properties. Kinetics of sucrose hydrolysis and transglucosylation capacities on (+)-catechin were investigated. Wild-type enzyme (AmSP-WT) displayed high hydrolytic activity on sucrose and was devoid of transglucosylation activity on (+)-catechin. Two variants, <em>Am</em>SP-Q353F and <em>Am</em>SP-P140D catalysed the regiospecific transglucosylation of (+)-catechin: 89 % of a novel compound (+)-catechin-4′-<em>O</em>-α-<span>d</span>-glucopyranoside (CAT-4′) for AmSP-P140D and 92 % of (+)-catechin-3′-<em>O</em>-α-<span>d</span>-glucopyranoside (CAT-3′) for AmSP-Q353F. The compound CAT-4′ was fully characterized by NMR and mass spectrometry. An explanation for this difference in regiospecificity was provided at atomic level by molecular docking simulations: <em>Am</em>SP-P140D was found to preferentially bind (+)-catechin in a mode that favours glucosylation on its hydroxyl group in position 4′ while the binding mode in AmSP-Q353F favoured glucosylation on its hydroxyl group in position 3’.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"221 ","pages":"Pages 13-19"},"PeriodicalIF":3.9,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030090842400004X/pdfft?md5=42e43335b2df48c3f434f3f13832e47b&pid=1-s2.0-S030090842400004X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139412343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.
有氧糖酵解的改变是支持癌细胞生存和增殖的强大机制,而不仅仅是维持细胞的能量代谢。一些研究人员描绘了糖酵解失调在不同癌症(包括乳腺癌)中的重要作用。乳腺癌是最普遍的癌症形式,也是全球女性癌症死亡的主要原因。糖酵解通量增加的乳腺癌难以通过现有疗法根除,并可能导致肿瘤复发。尽管糖酵解产生 ATP 的效率很低,但癌细胞对糖酵解的依赖性很强。癌细胞对糖酵解的依赖性提供了潜在的治疗策略,通过使用抗糖酵解药物抑制糖酵解来优先杀死癌细胞。本综述强调了有关糖酵解酶(包括葡萄糖转运体 (GLUTs)、己糖激酶 (HK)、磷酸果糖激酶 (PFK)、丙酮酸激酶 (PK)、乳酸脱氢酶-A (LDHA))、相关信号通路和转录因子以及针对乳腺癌关键糖酵解酶的抗糖酵解药物的最新研究进展。即使在缺氧等较差的生理条件下,糖酵解抑制剂的潜在活性也会影响癌症的发病率和细胞对传统药物的耐药性。作为一种单药或与其他化疗药物联合使用,它为针对多种人类癌症的新疗法提供了可行性。
{"title":"The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment","authors":"Ajeesh Babu Littleflower, Sulfath Thottungal Parambil, Gisha Rose Antony, Lakshmi Subhadradevi","doi":"10.1016/j.biochi.2024.01.003","DOIUrl":"10.1016/j.biochi.2024.01.003","url":null,"abstract":"<div><p><span><span><span>Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic </span>enzymes<span>, including glucose transporters (GLUTs), hexokinase (HK), </span></span>phosphofructokinase<span> (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated </span></span>signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"220 ","pages":"Pages 107-121"},"PeriodicalIF":3.9,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139096584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}