首页 > 最新文献

Sakarya University Journal of Computer and Information Sciences最新文献

英文 中文
Deep Learning Performance on Medical Image, Data and Signals 医学图像、数据和信号的深度学习性能
Pub Date : 2019-04-30 DOI: 10.35377/SAUCIS.02.01.541366
P. Erdoğmuş
In this study, the recent medical studies with deep learning between 2009-2019 have been researched for observing the performance of deep learning on medical images, data and signal. Recent studies attained from Web of Science have been evaluated and selected according to the citation numbers. Studies have been listed as a table, according to the publication year, deep network structure, database used training and testing, evaluation metric and results. The studies have also been classified into the organs and the types of important diagnosis. The results have shown that the deep learning network structures, applied on fundus images, have attained nearly %99 percent accuracy. Although most of the studies between the range, made by Radiology and Nuclear Medicine Imaging, the accuracy of the results are 80-90% range. The current studies especially focus on automatic detection or classification of the tumor as benign or malign. Studies are mostly on medical CT, ultrasound, radiography and MRI images. This results show that computer aided medical diagnosis systems will be used in a very near future with fully performance.
本研究以2009-2019年深度学习医学研究为研究对象,观察深度学习在医学图像、数据和信号上的表现。根据引用数对Web of Science上获得的最新研究进行了评价和选择。已列出的研究成果按发表年份、深度网络结构、数据库使用的训练和测试、评价指标和结果分列。研究还将其分类为器官类型和重要诊断。结果表明,深度学习网络结构在眼底图像上的应用达到了近99%的准确率。虽然大多数研究的范围介于放射学和核医学成像之间,但结果的准确性都在80-90%的范围内。目前的研究主要集中在肿瘤的良性或恶性的自动检测或分类上。研究主要集中在医学CT、超声、x线摄影和MRI图像上。这一结果表明,计算机辅助医疗诊断系统将在不久的将来得到全面应用。
{"title":"Deep Learning Performance on Medical Image, Data and Signals","authors":"P. Erdoğmuş","doi":"10.35377/SAUCIS.02.01.541366","DOIUrl":"https://doi.org/10.35377/SAUCIS.02.01.541366","url":null,"abstract":"In this study, the recent medical studies with deep learning between 2009-2019 have been researched for observing the performance of deep learning on medical images, data and signal. Recent studies attained from Web of Science have been evaluated and selected according to the citation numbers. Studies have been listed as a table, according to the publication year, deep network structure, database used training and testing, evaluation metric and results. The studies have also been classified into the organs and the types of important diagnosis. The results have shown that the deep learning network structures, applied on fundus images, have attained nearly %99 percent accuracy. Although most of the studies between the range, made by Radiology and Nuclear Medicine Imaging, the accuracy of the results are 80-90% range. The current studies especially focus on automatic detection or classification of the tumor as benign or malign. Studies are mostly on medical CT, ultrasound, radiography and MRI images. This results show that computer aided medical diagnosis systems will be used in a very near future with fully performance.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121192526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Computer-Aided Detection of Lung Nodules in Chest X-Rays using Deep Convolutional Neural Networks 基于深度卷积神经网络的胸部x线肺结节计算机辅助检测
Pub Date : 2019-04-30 DOI: 10.35377/SAUCIS.02.01.538249
Murat Uçar, Emine Uçar
Chest X-Rays are most accessible medical imaging technique for diagnosing abnormalities in the heart and lung area. Automatically detecting these abnormalities with high accuracy could greatly enhance real world diagnosis processes. In this study we aim to improve the accuracy of convolutional deep learning by using Laplacian of Gaussian filtering. In this study, we have used the publicly available Japanese Society of Radiological Technology dataset including 247 radiograms. For improving the performance of convolutional neural networks we used LoG filter and also we used an advanced version of AlexNet and GoogleNet to compare our results. The results indicated that, convolutional neural network with Laplacian of Gaussian filter model produced the best results with 82.43% accuracy. Convolutional neural network with Laplacian of Gaussian filter model is followed by convolutional neural network with an accuracy of 72.97%, followed by GoogleNet model with an accuracy of 68.92%. Out of the four model types utilized, the AlexNet model produced the lowest accuracy with a value of 64.86%. The results obtained here demonstrate that the pre-processing technique like Laplacian of Gaussian filter can improve the accuracy.
胸部x光片是诊断心脏和肺部异常最容易获得的医学成像技术。高精度的自动检测这些异常可以大大提高现实世界的诊断过程。在这项研究中,我们的目标是通过使用拉普拉斯高斯滤波来提高卷积深度学习的准确性。在这项研究中,我们使用了公开可用的日本放射技术学会数据集,包括247张放射图。为了提高卷积神经网络的性能,我们使用了LoG过滤器,我们还使用了AlexNet和GoogleNet的高级版本来比较我们的结果。结果表明,采用拉普拉斯高斯滤波模型的卷积神经网络识别准确率最高,达到82.43%。拉普拉斯高斯滤波模型的卷积神经网络次之,准确率为72.97%,GoogleNet模型次之,准确率为68.92%。在使用的四种模型类型中,AlexNet模型的准确率最低,为64.86%。实验结果表明,采用拉普拉斯高斯滤波等预处理技术可以提高图像的精度。
{"title":"Computer-Aided Detection of Lung Nodules in Chest X-Rays using Deep Convolutional Neural Networks","authors":"Murat Uçar, Emine Uçar","doi":"10.35377/SAUCIS.02.01.538249","DOIUrl":"https://doi.org/10.35377/SAUCIS.02.01.538249","url":null,"abstract":"Chest X-Rays are most accessible medical imaging technique for diagnosing abnormalities in the heart and lung area. Automatically detecting these abnormalities with high accuracy could greatly enhance real world diagnosis processes. In this study we aim to improve the accuracy of convolutional deep learning by using Laplacian of Gaussian filtering. In this study, we have used the publicly available Japanese Society of Radiological Technology dataset including 247 radiograms. For improving the performance of convolutional neural networks we used LoG filter and also we used an advanced version of AlexNet and GoogleNet to compare our results. The results indicated that, convolutional neural network with Laplacian of Gaussian filter model produced the best results with 82.43% accuracy. Convolutional neural network with Laplacian of Gaussian filter model is followed by convolutional neural network with an accuracy of 72.97%, followed by GoogleNet model with an accuracy of 68.92%. Out of the four model types utilized, the AlexNet model produced the lowest accuracy with a value of 64.86%. The results obtained here demonstrate that the pre-processing technique like Laplacian of Gaussian filter can improve the accuracy.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127597038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Derin Öğrenme Algoritmalarını Kullanarak Görüntüden Cinsiyet Tahmini
Pub Date : 2019-04-30 DOI: 10.35377/SAUCIS.02.01.517930
G. Gündüz, İ. H. Cedimoğlu
Buyuk verilerin buyuk hizlarla islendigi cagimizda milyarlarca veriden farkli parametreler cikararak cesitli problemlerin cozumune kolaylik getirmek icin derin ogrenme algoritmalari kullanilmaktadir. Bu calismada, mevcut veri setlerinde bulunan kadin, erkek, yasli, genc, cocuk, bebek fotograflarinin derin ogrenme algoritmalari ile cinsiyetlerini tespit etmek amaclanmistir. Bu tahminleme algoritmasini gerceklestirmek icin cesitli derin ogrenme kutuphanelerinden faydalanilmis ve derin ogrenme modellerinden Alex Net ve VGG-16 ile yeni gelistirilen bir modelin diger modellerle kiyaslanmasi yapilmistir. Uygulamada kullanilan veri seti, kadin ve erkek fotograflarindan olusturulmustur ve her fotograf, kisi cinsiyetine ve yasina gore etiketlendirilmistir. Bu veri seti, 3170 egitim verisi ve 318 test verisi icermektedir. Calistirilan uc farkli model sonuclari karsilastirilmistir. Makalede, derin ogrenme algoritmalarini kullanarak cinsiyet tahmini yapilmasi ayrintili bir sekilde incelenmis ve yapilacak olan literatur calismalarina yol gosterilmesi, katki saglanmasi hedeflenmistir.
{"title":"Derin Öğrenme Algoritmalarını Kullanarak Görüntüden Cinsiyet Tahmini","authors":"G. Gündüz, İ. H. Cedimoğlu","doi":"10.35377/SAUCIS.02.01.517930","DOIUrl":"https://doi.org/10.35377/SAUCIS.02.01.517930","url":null,"abstract":"Buyuk verilerin buyuk hizlarla islendigi cagimizda milyarlarca veriden farkli parametreler cikararak cesitli problemlerin cozumune kolaylik getirmek icin derin ogrenme algoritmalari kullanilmaktadir. Bu calismada, mevcut veri setlerinde bulunan kadin, erkek, yasli, genc, cocuk, bebek fotograflarinin derin ogrenme algoritmalari ile cinsiyetlerini tespit etmek amaclanmistir. Bu tahminleme algoritmasini gerceklestirmek icin cesitli derin ogrenme kutuphanelerinden faydalanilmis ve derin ogrenme modellerinden Alex Net ve VGG-16 ile yeni gelistirilen bir modelin diger modellerle kiyaslanmasi yapilmistir. Uygulamada kullanilan veri seti, kadin ve erkek fotograflarindan olusturulmustur ve her fotograf, kisi cinsiyetine ve yasina gore etiketlendirilmistir. Bu veri seti, 3170 egitim verisi ve 318 test verisi icermektedir. Calistirilan uc farkli model sonuclari karsilastirilmistir. Makalede, derin ogrenme algoritmalarini kullanarak cinsiyet tahmini yapilmasi ayrintili bir sekilde incelenmis ve yapilacak olan literatur calismalarina yol gosterilmesi, katki saglanmasi hedeflenmistir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121619184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
A New Solution Approach for Non-Linear Equation Systems with Grey Wolf Optimizer 用灰狼优化器求解非线性方程组的新方法
Pub Date : 2018-12-18 DOI: 10.35377/saucis.01.03.475565
P. Erdoğmuş
The aim of this study is to bring a new perspective for the solutions of non-linear equation systems. So this study handles the non-linear equation systems as a constrained optimization problem, while generally is handled unconstrained optimization problem or multi objective optimization problem. The object is to minimize the sum of the squares of nonlinear equations under the nonlinear equality constraints. A recently developed heuristic optimization algorithm called Grey Wolf Optimizer (GWO) is proposed for the solution of nonlinear equation systems. Two results were obtained. Firstly, it has been seen that GWO can be an alternative solution technique for the solution of nonlinear equation systems. Secondly, modelling the systems of nonlinear equations as constrained optimization gives better results.
本研究的目的是为非线性方程组的解提供一个新的视角。因此本研究将非线性方程组作为约束优化问题来处理,而一般是处理无约束优化问题或多目标优化问题。其目标是在非线性等式约束下求非线性方程平方和的最小值。提出了一种求解非线性方程组的启发式优化算法——灰狼优化器。得到了两个结果。首先,GWO可以作为求解非线性方程组的一种替代求解技术。其次,将非线性方程组建模为约束优化得到了较好的结果。
{"title":"A New Solution Approach for Non-Linear Equation Systems with Grey Wolf Optimizer","authors":"P. Erdoğmuş","doi":"10.35377/saucis.01.03.475565","DOIUrl":"https://doi.org/10.35377/saucis.01.03.475565","url":null,"abstract":"The aim of this study is to bring a new perspective for the solutions of non-linear equation systems. So this study handles the non-linear equation systems as a constrained optimization problem, while generally is handled unconstrained optimization problem or multi objective optimization problem. The object is to minimize the sum of the squares of nonlinear equations under the nonlinear equality constraints. A recently developed heuristic optimization algorithm called Grey Wolf Optimizer (GWO) is proposed for the solution of nonlinear equation systems. Two results were obtained. Firstly, it has been seen that GWO can be an alternative solution technique for the solution of nonlinear equation systems. Secondly, modelling the systems of nonlinear equations as constrained optimization gives better results.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127693665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
The Impact of Capital Subsidy Incentive on Renewable Energy Deployment in Long-Term Power Generation Expansion Planning 长期发电扩张规划中资本补贴激励对可再生能源配置的影响
Pub Date : 2018-12-18 DOI: 10.35377/saucis.01.03.468380
M. Ozcan, Mehmet Yildirim
Capital investment cost is the major obstacle to the increasing share of electricity from renewable energy sources (RES-E). Therefore, RES-E incentive mechanisms are incorporated into markets to compensate cost-related barriers and to increase RES-E deployment rate. In this study, t he impact of direct capital investment subsidy on RES-E in generation expansion planning (GEP) has been analyzed and deployment rates of renewable power plants have been defined. The effect of current subsidy mechanisms on the installed power capacity of various sources has also been analyzed and policy recommendations have been put forth in the light of the characteristics of Turkey’s current subsidization mechanism and its outcomes. Genetic algorithm was applied to solve the GEP problem. The share of non-hydro renewable power plants for future additions in overall installed power was determined as 9.45% without the proposed incentive, while it was estimated to rise to 13.65% when it was promoted by direct capital investment subsidy of 50%. The deployment rates of renewable power plants are expected to grow as the imported coal share in total installed power is expected to decline after applying the proposed subsidy.
资本投资成本是增加可再生能源电力份额(RES-E)的主要障碍。因此,将RES-E激励机制纳入市场,以补偿与成本相关的障碍,提高RES-E的部署率。本研究分析了直接资本投资补贴对可再生能源发电扩展规划(GEP)中RES-E的影响,并定义了可再生能源发电厂的部署率。本文还分析了现行补贴机制对各种来源装机容量的影响,并针对土耳其现行补贴机制的特点及其结果提出了政策建议。采用遗传算法求解GEP问题。在没有补贴的情况下,未来新增非水电可再生能源电厂占总装机容量的比例确定为9.45%,而在有50%直接资本投资补贴的情况下,这一比例预计将上升至13.65%。在实施补贴政策后,预计进口煤炭占总装机容量的比重将有所下降,可再生能源的部署率将有所上升。
{"title":"The Impact of Capital Subsidy Incentive on Renewable Energy Deployment in Long-Term Power Generation Expansion Planning","authors":"M. Ozcan, Mehmet Yildirim","doi":"10.35377/saucis.01.03.468380","DOIUrl":"https://doi.org/10.35377/saucis.01.03.468380","url":null,"abstract":"Capital investment cost is the major obstacle to the increasing share of electricity from renewable energy sources (RES-E). Therefore, RES-E incentive mechanisms are incorporated into markets to compensate cost-related barriers and to increase RES-E deployment rate. In this study, t he impact of direct capital investment subsidy on RES-E in generation expansion planning (GEP) has been analyzed and deployment rates of renewable power plants have been defined. The effect of current subsidy mechanisms on the installed power capacity of various sources has also been analyzed and policy recommendations have been put forth in the light of the characteristics of Turkey’s current subsidization mechanism and its outcomes. Genetic algorithm was applied to solve the GEP problem. The share of non-hydro renewable power plants for future additions in overall installed power was determined as 9.45% without the proposed incentive, while it was estimated to rise to 13.65% when it was promoted by direct capital investment subsidy of 50%. The deployment rates of renewable power plants are expected to grow as the imported coal share in total installed power is expected to decline after applying the proposed subsidy.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121915916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
EEG Verileri Kullanılarak Fiziksel El Hareketleri ve Bu Hareketlerin Hayalinin Yapay Sinir Ağları İle Sınıflandırılması
Pub Date : 2018-08-01 DOI: 10.35377/SAUCIS.01.02.443999
M. Tosun, Mustafa Erginli, Ömer Kasim, Burak Uğraş, Şems Tanrıverdi, Tayfun Kavak
Son yillarda teknolojinin gelismesi sonucunda beyin bilgisayar arayuzu ile ilgili calismalar artmistir. Beyin Bilgisayar Arayuzu (Brain Computer Interface-BCI) yontemlerinde Elektroansefalogram (Electroencephalogram-EEG) isaretleri yaygin olarak kullanilmaktadir. EEG verileri kullanilarak fiziksel hareketle hareketin hayali siniflandirilabilmektedir. Bu calismada sag elini kullanan ve hastalik durumu olmayan 21 yasindaki bir erkege ait EEG verileri kullanilmistir. Bu verilerin bir kismi sol ve sag elin ileri-geri hareketi esnasinda kaydedilen EEG verileridir. Diger veriler ise herhangi bir fiziksel hareket yapilmadan, hareketin hayal edilmesi durumu ile ilgili kayitlardir. Welch metodu kullanilarak EEG verilerinin 1-48 Hz arasindaki frekanslarinin guc yogunluklari hesaplanmistir. Elde edilen veri setleri tasarlanan Geri Yayilimli Sinir Agi (Backpropagation Neural Network- BPNN) ‘ na uygulanmistir. Agin egitimi sonunda 4.6731x10-23 ortalama karesel hata (Mean Squared Error -MSE) degerine ulasilmistir. Hayal ile hareket verilerinden olusan test veri seti egitilen aga uygulandiginda, hayal ile hareket verileri % 99.9975 dogrulukla siniflandirilmistir.
近年来,随着科技的发展,有关脑计算机接口的研究日益增多。脑电图(EEG)信号被广泛应用于脑计算机接口(BCI)方法中。脑电图数据可用于对物理运动的幻觉运动进行分类。本研究使用了一名 21 岁右撇子男性的脑电图数据,该男性无任何疾病。其中一些数据是左右手前后运动时记录的脑电图数据。其他数据是没有任何身体动作的想象动作记录。使用韦尔奇方法计算了脑电图数据中 1-48 Hz 频率的功率密度。获得的数据集被应用于设计的反向传播神经网络(BPNN)。网络训练结束时,平均平方误差(MSE)值为 4.6731x10-23。当将由想象和运动数据组成的测试数据集应用于训练好的网络时,想象和运动数据的分类准确率达到了 99.9975%。
{"title":"EEG Verileri Kullanılarak Fiziksel El Hareketleri ve Bu Hareketlerin Hayalinin Yapay Sinir Ağları İle Sınıflandırılması","authors":"M. Tosun, Mustafa Erginli, Ömer Kasim, Burak Uğraş, Şems Tanrıverdi, Tayfun Kavak","doi":"10.35377/SAUCIS.01.02.443999","DOIUrl":"https://doi.org/10.35377/SAUCIS.01.02.443999","url":null,"abstract":"Son yillarda teknolojinin gelismesi sonucunda beyin bilgisayar arayuzu ile ilgili calismalar artmistir. Beyin Bilgisayar Arayuzu (Brain Computer Interface-BCI) yontemlerinde Elektroansefalogram (Electroencephalogram-EEG) isaretleri yaygin olarak kullanilmaktadir. EEG verileri kullanilarak fiziksel hareketle hareketin hayali siniflandirilabilmektedir. Bu calismada sag elini kullanan ve hastalik durumu olmayan 21 yasindaki bir erkege ait EEG verileri kullanilmistir. Bu verilerin bir kismi sol ve sag elin ileri-geri hareketi esnasinda kaydedilen EEG verileridir. Diger veriler ise herhangi bir fiziksel hareket yapilmadan, hareketin hayal edilmesi durumu ile ilgili kayitlardir. Welch metodu kullanilarak EEG verilerinin 1-48 Hz arasindaki frekanslarinin guc yogunluklari hesaplanmistir. Elde edilen veri setleri tasarlanan Geri Yayilimli Sinir Agi (Backpropagation Neural Network- BPNN) ‘ na uygulanmistir. Agin egitimi sonunda 4.6731x10-23 ortalama karesel hata (Mean Squared Error -MSE) degerine ulasilmistir. Hayal ile hareket verilerinden olusan test veri seti egitilen aga uygulandiginda, hayal ile hareket verileri % 99.9975 dogrulukla siniflandirilmistir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133175644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
İnsansız Hava Araçlarının (İHA) Sanal Gerçeklik Yazılımı ile Modellenmesi ve Farklı Kullanıcılar için Performans Analizleri
Pub Date : 2018-08-01 DOI: 10.35377/SAUCIS.01.02.447931
Orhan Er, Cemil Altin
Gunumuzde bircok arac otonom olarak kontrol edilmek istenmektedir. Bu calismalarin en onemli uygulama alanlarinin basinda askeri ve saglik alanlari olmasi munasebeti oncelik arz etmektedir. Bunun amac icin simulasyon ortamlarinin gelistirilmesi hem zaman hem de ekonomik olarak daha elverisli araclar ve imkanlar sunmaktadir. Buradan hareketle gelistirilen bir 3D sanal gerceklik yazilimi sayesinde farkli kullanicidan alinan hem EEG hem de EMG sinyalleri paralel olarak MATLAB ortamina aktarilmis olup bu sinyaller siniflandirilarak sanal oyuna komut olarak aktarilmis ve insansiz hava araci uzaktan yonlendirile bilinmistir. Sistemin basarisini test etmek icin farkli denekler uzerinde olusturulan farkli rotalar kullanilarak performans analizleri yapilmistir. Bu sayede donanimdan bagimsiz olarak insandan elde edilen sinyaller ile sanal gerceklik ortami butunlestirilmis ve yapilan deneyler sonucunda basarili bir sekilde kullanilabilecegi sonucuna varilmistir.
如今,许多车辆都希望实现自动控制。这些研究最重要的应用领域是军事和健康领域。为此,模拟环境的开发在时间和经济上都提供了更有利的工具和机会。在三维虚拟现实软件的帮助下,从不同用户接收到的脑电图和肌电图信号被并行传输到 MATLAB 环境中,这些信号被分类并作为指令传输到虚拟游戏中,无人驾驶飞行器就可以被远程控制。为了测试该系统的成功与否,我们使用在不同对象身上创建的不同路线进行了性能分析。通过这种方式,虚拟现实环境与从人身上获得的信号融为一体,与硬件无关。
{"title":"İnsansız Hava Araçlarının (İHA) Sanal Gerçeklik Yazılımı ile Modellenmesi ve Farklı Kullanıcılar için Performans Analizleri","authors":"Orhan Er, Cemil Altin","doi":"10.35377/SAUCIS.01.02.447931","DOIUrl":"https://doi.org/10.35377/SAUCIS.01.02.447931","url":null,"abstract":"Gunumuzde bircok arac otonom olarak kontrol edilmek istenmektedir. Bu calismalarin en onemli uygulama alanlarinin basinda askeri ve saglik alanlari olmasi munasebeti oncelik arz etmektedir. Bunun amac icin simulasyon ortamlarinin gelistirilmesi hem zaman hem de ekonomik olarak daha elverisli araclar ve imkanlar sunmaktadir. Buradan hareketle gelistirilen bir 3D sanal gerceklik yazilimi sayesinde farkli kullanicidan alinan hem EEG hem de EMG sinyalleri paralel olarak MATLAB ortamina aktarilmis olup bu sinyaller siniflandirilarak sanal oyuna komut olarak aktarilmis ve insansiz hava araci uzaktan yonlendirile bilinmistir. Sistemin basarisini test etmek icin farkli denekler uzerinde olusturulan farkli rotalar kullanilarak performans analizleri yapilmistir. Bu sayede donanimdan bagimsiz olarak insandan elde edilen sinyaller ile sanal gerceklik ortami butunlestirilmis ve yapilan deneyler sonucunda basarili bir sekilde kullanilabilecegi sonucuna varilmistir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132047001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Prediction of the Force on a Projectile in an Electromagnetic Launcher Coil with Multilayer Neural Network 基于多层神经网络的电磁发射线圈弹丸受力预测
Pub Date : 1900-01-01 DOI: 10.35377/saucis.01.03.496233
A. Dalcalı, Onursal Çetin, C. Ocak, Feyzullah Temurtaş
The force on the projectile in the electromagnetic launchers varies according to the the excitation value and the position of the projectile in the winding. In this study, 3D model of coil and projectile used in electromagnetic launchers have been created and analyzed by finite element method. The force characteristic on the projectile has been obtained by changing the excitation value of the winding and the position of the projectile using parametric solution method. In finite element analysis, more accurate analysis can be performed by defining smaller solution steps. However, the analysis time is prolonged due to the increase in the number of variables. Taking into consideration the duration of analysis, the force prediction has been carried out using multilayer neural network models consisting of one hidden layer and two hidden layers. Successful results have been obtained in the force prediction studies with multilayer neural networks.
电磁发射器中弹丸所受的力根据激发值和弹丸在线圈中的位置而变化。本文建立了电磁发射器线圈和弹丸的三维模型,并用有限元方法对其进行了分析。通过改变线圈的激励值和弹丸的位置,采用参数解的方法得到了弹丸的受力特性。在有限元分析中,通过定义更小的解步,可以进行更精确的分析。但是,由于变量数量的增加,分析时间会延长。考虑到分析的持续时间,采用由一隐层和两隐层组成的多层神经网络模型进行力预测。在多层神经网络的力预测研究中取得了成功的结果。
{"title":"Prediction of the Force on a Projectile in an Electromagnetic Launcher Coil with Multilayer Neural Network","authors":"A. Dalcalı, Onursal Çetin, C. Ocak, Feyzullah Temurtaş","doi":"10.35377/saucis.01.03.496233","DOIUrl":"https://doi.org/10.35377/saucis.01.03.496233","url":null,"abstract":"The force on the projectile in the electromagnetic launchers varies according to the the excitation value and the position of the projectile in the winding. In this study, 3D model of coil and projectile used in electromagnetic launchers have been created and analyzed by finite element method. The force characteristic on the projectile has been obtained by changing the excitation value of the winding and the position of the projectile using parametric solution method. In finite element analysis, more accurate analysis can be performed by defining smaller solution steps. However, the analysis time is prolonged due to the increase in the number of variables. Taking into consideration the duration of analysis, the force prediction has been carried out using multilayer neural network models consisting of one hidden layer and two hidden layers. Successful results have been obtained in the force prediction studies with multilayer neural networks.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129522095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Sakarya University Journal of Computer and Information Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1