首页 > 最新文献

Sakarya University Journal of Computer and Information Sciences最新文献

英文 中文
Detection of Pneumonia with a Novel CNN-based Approach 基于cnn的新型肺炎检测方法
Pub Date : 2020-12-28 DOI: 10.35377/SAUCIS.04.01.787030
E. Erdem, Tolga Aydin
Pneumonia is a seasonal infectious lung tissue inflammatory disease. According to the World Health Organization (WHO), early diagnosis of the disease reduces the risk of its transmission and death. Various deep learning and machine learning algorithms were used for pneumonia detection. This study aims to analyze the lung images and diagnose pneumonia disease by employing deep learning approaches. We have suggested a novel deep learning framework for the detection of pneumonia in lung. A comparison was made between the proposed new deep learning model and pre-trained deep learning models. 88.62% accuracy rate has been obtained from the proposed deep learning structure. It was observed that by utilizing the new deep neural network developed, the accuracy results of VGG16 (88.78%) and VGG19 (88.30%), which are among the popular deep learning architectures, can be approximated. The test results show that our proposed model has a better recall value (97.43%) (VGG16 (93.33%) and VGG19 (96.92%)), and a better F1-Score (91.45%) (VGG16 (91.22%) and VGG19 (91.19%)).
肺炎是一种季节性的传染性肺组织炎症性疾病。根据世界卫生组织(世卫组织)的说法,这种疾病的早期诊断可以降低其传播和死亡的风险。各种深度学习和机器学习算法用于肺炎检测。本研究旨在利用深度学习方法分析肺部图像并诊断肺炎疾病。我们提出了一种新的用于肺部肺炎检测的深度学习框架。将提出的新深度学习模型与预训练的深度学习模型进行了比较。所提出的深度学习结构的准确率达到了88.62%。实验结果表明,利用所开发的深度神经网络,可以逼近当前流行的深度学习体系结构VGG16(88.78%)和VGG19(88.30%)的准确率。测试结果表明,我们提出的模型具有更好的召回值(97.43%)(VGG16(93.33%)和VGG19(96.92%))和更好的F1-Score (91.45%) (VGG16(91.22%)和VGG19(91.19%))。
{"title":"Detection of Pneumonia with a Novel CNN-based Approach","authors":"E. Erdem, Tolga Aydin","doi":"10.35377/SAUCIS.04.01.787030","DOIUrl":"https://doi.org/10.35377/SAUCIS.04.01.787030","url":null,"abstract":"Pneumonia is a seasonal infectious lung tissue inflammatory disease. According to the World Health Organization (WHO), early diagnosis of the disease reduces the risk of its transmission and death. Various deep learning and machine learning algorithms were used for pneumonia detection. This study aims to analyze the lung images and diagnose pneumonia disease by employing deep learning approaches. We have suggested a novel deep learning framework for the detection of pneumonia in lung. A comparison was made between the proposed new deep learning model and pre-trained deep learning models. 88.62% accuracy rate has been obtained from the proposed deep learning structure. It was observed that by utilizing the new deep neural network developed, the accuracy results of VGG16 (88.78%) and VGG19 (88.30%), which are among the popular deep learning architectures, can be approximated. The test results show that our proposed model has a better recall value (97.43%) (VGG16 (93.33%) and VGG19 (96.92%)), and a better F1-Score (91.45%) (VGG16 (91.22%) and VGG19 (91.19%)).","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124373755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Performance Evaluation of Manet Routing Protocols Using Network Simulator NS2 基于网络模拟器NS2的Manet路由协议性能评估
Pub Date : 2020-12-22 DOI: 10.35377/SAUCIS...780465
A. Mhmood, A. Zengin
{"title":"Performance Evaluation of Manet Routing Protocols Using Network Simulator NS2","authors":"A. Mhmood, A. Zengin","doi":"10.35377/SAUCIS...780465","DOIUrl":"https://doi.org/10.35377/SAUCIS...780465","url":null,"abstract":"","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"42 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123859761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A comparative study on the performance of classification algorithms for effective diagnosis of liver diseases 肝脏疾病有效诊断的分类算法性能比较研究
Pub Date : 2020-12-18 DOI: 10.35377/saucis.03.03.815556
Bihter Das
In recent years, different approaches and methods have been proposed to diagnose various diseases accurately. Since there are a variety of liver diseases, till late-stage liver disease and liver failure occur the symptoms tend to be specific for that illness. Therefore, early diagnosis can play a key role in preventing deaths from liver diseases. In this study, we compare the accuracy of different classification methods supported by the SAS software suite, such as Neural Network, Auto Neural, High Performance (HP) SVM, HP Forest, HP Tree (Decision Tree), and HP Neural for the diagnosis of liver diseases. In this study, the Indian Liver Patient Dataset (ILPD) provided by the University of California, Irvine (UCI) repository is used. Experimental results show that based on the metrics of our study, in the training phase while HP Forest achieves the highest accuracy rate, HP SVM and HP Tree do the lowest accuracy rates. However, in the validation phase, Neural Network achieves the highest accuracy rate and HP Forest does the lowest accuracy rate. Our experimental results may be useful for both researchers and practitioners working in related fields.
近年来,人们提出了不同的方法和方法来准确诊断各种疾病。由于肝脏疾病的种类繁多,直到出现晚期肝病和肝功能衰竭时,症状往往是针对该疾病的。因此,早期诊断可以在预防肝脏疾病死亡方面发挥关键作用。在本研究中,我们比较了SAS软件套件支持的神经网络、自动神经、高性能(HP) SVM、HP森林、HP树(决策树)和HP神经等不同分类方法在肝脏疾病诊断中的准确性。在这项研究中,使用了由加州大学欧文分校(UCI)知识库提供的印度肝脏患者数据集(ILPD)。实验结果表明,在训练阶段,HP Forest的准确率最高,HP SVM和HP Tree的准确率最低。但在验证阶段,Neural Network的准确率最高,HP Forest的准确率最低。我们的实验结果对相关领域的研究人员和从业人员都有一定的参考价值。
{"title":"A comparative study on the performance of classification algorithms for effective diagnosis of liver diseases","authors":"Bihter Das","doi":"10.35377/saucis.03.03.815556","DOIUrl":"https://doi.org/10.35377/saucis.03.03.815556","url":null,"abstract":"In recent years, different approaches and methods have been proposed to diagnose various diseases accurately. Since there are a variety of liver diseases, till late-stage liver disease and liver failure occur the symptoms tend to be specific for that illness. Therefore, early diagnosis can play a key role in preventing deaths from liver diseases. In this study, we compare the accuracy of different classification methods supported by the SAS software suite, such as Neural Network, Auto Neural, High Performance (HP) SVM, HP Forest, HP Tree (Decision Tree), and HP Neural for the diagnosis of liver diseases. In this study, the Indian Liver Patient Dataset (ILPD) provided by the University of California, Irvine (UCI) repository is used. Experimental results show that based on the metrics of our study, in the training phase while HP Forest achieves the highest accuracy rate, HP SVM and HP Tree do the lowest accuracy rates. However, in the validation phase, Neural Network achieves the highest accuracy rate and HP Forest does the lowest accuracy rate. Our experimental results may be useful for both researchers and practitioners working in related fields.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126085744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Estimation of constant speed time for railway vehicles by stochastic gradient descent algorithm 基于随机梯度下降算法的轨道车辆等速时间估计
Pub Date : 2020-12-17 DOI: 10.35377/saucis.03.03.805598
M. Akçay
While the investments in rail transportation systems continue without slowing down, various optimization issues come to the fore in order for the systems to work more efficiently. One of the most important of these issues is the optimization of the vehicle speed profile. Improvement in vehicle speed profile increases efficiency in operating traffic. Vehicle speed profile varies depending on the electrical-characteristic features of the vehicle, the distance between the stations and the line geometry. The vehicle's speed profile consists of several parts, such as acceleration, constant speed travel and braking zones. The constant speed in the constant velocity zone refers to the max operating speed, which is recommended for operation in the restricted area and remains within the limits. This part is critical in creating the speed profile of the vehicle. In this study, the estimation of the value of the constant speed time in the speed profile of the vehicles used in the city metro systems was made by using the Stochastic Gradient Descent method, which is one of the machine learning methods, and compared with various well-known methods. Coefficient of determination (R 2 ) values were calculated as 0.9955 and 0.9951, respectively, with random sampling hold out and cross validation methods.
虽然对铁路运输系统的投资仍在继续,但为了使系统更有效地工作,各种优化问题浮出水面。其中最重要的问题之一是车辆速度剖面的优化。车辆速度剖面的改善提高了运营交通的效率。车辆的速度分布取决于车辆的电气特性、车站之间的距离和线路的几何形状。车辆的速度剖面由几个部分组成,如加速、匀速行驶和制动区。等速区域内的等速是指最大运行速度,建议在限制区内运行,并保持在限定范围内。这部分对于创建车辆的速度轮廓至关重要。本研究采用机器学习方法之一的随机梯度下降法对城市地铁车辆速度剖面中匀速时间的值进行估计,并与各种已知方法进行比较。采用随机抽样法和交叉验证法,计算出决定系数(r2)值分别为0.9955和0.9951。
{"title":"Estimation of constant speed time for railway vehicles by stochastic gradient descent algorithm","authors":"M. Akçay","doi":"10.35377/saucis.03.03.805598","DOIUrl":"https://doi.org/10.35377/saucis.03.03.805598","url":null,"abstract":"While the investments in rail transportation systems continue without slowing down, various optimization issues come to the fore in order for the systems to work more efficiently. One of the most important of these issues is the optimization of the vehicle speed profile. Improvement in vehicle speed profile increases efficiency in operating traffic. Vehicle speed profile varies depending on the electrical-characteristic features of the vehicle, the distance between the stations and the line geometry. The vehicle's speed profile consists of several parts, such as acceleration, constant speed travel and braking zones. The constant speed in the constant velocity zone refers to the max operating speed, which is recommended for operation in the restricted area and remains within the limits. This part is critical in creating the speed profile of the vehicle. In this study, the estimation of the value of the constant speed time in the speed profile of the vehicles used in the city metro systems was made by using the Stochastic Gradient Descent method, which is one of the machine learning methods, and compared with various well-known methods. Coefficient of determination (R 2 ) values were calculated as 0.9955 and 0.9951, respectively, with random sampling hold out and cross validation methods.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125674584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Identification of Plant Species by Deep Learning and Providing as A Mobile Application 植物物种识别的深度学习和提供作为一个移动应用
Pub Date : 2020-11-04 DOI: 10.35377/saucis.vi.773465
M. F. Adak
Image processing techniques give highly successful results when used deep learning in classification studies. Applications benefit from this kind of work to make life easier. In this study, a mobile application is developed that takes photo of a plant and makes image processing on it to provide information about its name, the time to change the soil, the amount of sun light and nutrition it needs. The model is trained using the Convolutional Neural Networks, and dataset is successfully applied to the network. Currently, the application is capable to classify 43 different plants in mobile environment, and its classification capacity is planned to be expanded with new plant species as a future study. Up to 90% accuracy is reached in this study with the current version of the application.
图像处理技术在分类研究中使用深度学习获得了非常成功的结果。应用程序从这种工作中受益,使生活更轻松。在这项研究中,开发了一个移动应用程序,可以拍摄植物的照片并对其进行图像处理,以提供有关其名称,更换土壤的时间,阳光照射量和所需营养的信息。利用卷积神经网络对模型进行训练,并成功地将数据集应用到网络中。目前,该应用程序能够在移动环境中对43种不同的植物进行分类,并计划在未来的研究中扩大其分类能力,增加新的植物物种。在本研究中,使用当前版本的应用程序可达到90%的准确性。
{"title":"Identification of Plant Species by Deep Learning and Providing as A Mobile Application","authors":"M. F. Adak","doi":"10.35377/saucis.vi.773465","DOIUrl":"https://doi.org/10.35377/saucis.vi.773465","url":null,"abstract":"Image processing techniques give highly successful results when used deep learning in classification studies. Applications benefit from this kind of work to make life easier. In this study, a mobile application is developed that takes photo of a plant and makes image processing on it to provide information about its name, the time to change the soil, the amount of sun light and nutrition it needs. The model is trained using the Convolutional Neural Networks, and dataset is successfully applied to the network. Currently, the application is capable to classify 43 different plants in mobile environment, and its classification capacity is planned to be expanded with new plant species as a future study. Up to 90% accuracy is reached in this study with the current version of the application.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116604899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Analysis of The Covid-19 Impact on Electricity Consumption and Production 新冠肺炎疫情对电力消费和生产的影响分析
Pub Date : 2020-10-16 DOI: 10.20944/preprints202010.0348.v1
Mehmet Bulut
With the year 2020, the world faced a new threat that affects all areas of life, negatively affects production in all areas, and paralyzes social life. The measures and restrictions taken by the country's governments to prevent the epidemic from spreading rapidly in the society with the effect of the Covid-19 virus, which first appeared in China and spread all over the world, brought a new lifestyle. Covid-19 has been much the impact on electricity use and electricity production in the period in Turkey as in other countries. There was a sharp decline in commercial and industrial electricity use. The coronavirus effect has also been reflected in the electricity demand and the consumption amount has undergone a great negative change. Due to the enactment of measures against the new type of coronavirus (COVID-19) epidemic and the partial or full-time curfews, electricity consumption was moved to homes, supermarkets, and hospitals in April 2020 from places where mass consumption is intense, such as industry, workplaces, and educational institutions. In this study, Covid-19 period, the first cases were examined electricity production and consumption in Turkey as of the date it is seen throughout, in comparison with electricity consumption data in the same month of the previous years corresponding to this period, the effects on electricity generation and consumption habits of this period were examined.
随着2020年的到来,世界面临着一种新的威胁,它影响到生活的各个领域,对所有领域的生产产生负面影响,并使社会生活陷入瘫痪。中国政府采取措施和限制措施,防止疫情在社会上迅速蔓延,这种病毒首先出现在中国并蔓延到世界各地,带来了一种新的生活方式。与其他国家一样,在此期间,新冠肺炎对土耳其的用电量和电力生产产生了很大影响。商业和工业用电量急剧下降。冠状病毒的影响也反映在电力需求上,用电量发生了很大的负变化。由于新型冠状病毒(COVID-19)疫情防控措施的实施和部分或全时的宵禁,2020年4月,电力消费从工业、工作场所、教育机构等大众消费密集的地方转移到了家庭、超市和医院。在本研究中,在2019冠状病毒病期间,对土耳其截至整个日期的第一批病例进行了检查,并与同期前几年同月的电力消耗数据进行了比较,检查了这一时期对发电和消费习惯的影响。
{"title":"Analysis of The Covid-19 Impact on Electricity Consumption and Production","authors":"Mehmet Bulut","doi":"10.20944/preprints202010.0348.v1","DOIUrl":"https://doi.org/10.20944/preprints202010.0348.v1","url":null,"abstract":"With the year 2020, the world faced a new threat that affects all areas of life, negatively affects production in all areas, and paralyzes social life. The measures and restrictions taken by the country's governments to prevent the epidemic from spreading rapidly in the society with the effect of the Covid-19 virus, which first appeared in China and spread all over the world, brought a new lifestyle. Covid-19 has been much the impact on electricity use and electricity production in the period in Turkey as in other countries. There was a sharp decline in commercial and industrial electricity use. The coronavirus effect has also been reflected in the electricity demand and the consumption amount has undergone a great negative change. Due to the enactment of measures against the new type of coronavirus (COVID-19) epidemic and the partial or full-time curfews, electricity consumption was moved to homes, supermarkets, and hospitals in April 2020 from places where mass consumption is intense, such as industry, workplaces, and educational institutions. In this study, Covid-19 period, the first cases were examined electricity production and consumption in Turkey as of the date it is seen throughout, in comparison with electricity consumption data in the same month of the previous years corresponding to this period, the effects on electricity generation and consumption habits of this period were examined.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130703295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Automatic Olive Peacock Spot Disease Recognition System Development by Using Single Shot Detector 基于单次检测的橄榄孔雀斑疹病自动识别系统的开发
Pub Date : 2020-09-09 DOI: 10.35377/saucis.vi.755269
S. Uğuz
Tarim alaninda gerceklestirilen yapay zekâ temelli calismalar arasinda, derin ogrenmeye dayanan hastalik tespiti uygulamalarinin giderek yayginlastigi gorulmektedir. Bitki turleri arasindaki cesitlilik ve cogu bitki turunun belirli cografyalarda yetismesi bu alanda gerceklestirilen calismalarin sayisinin istenen duzeyde olmadigini gostermektedir. Dunyada sadece belirli bolgelerde yetisen zeytin bitkisine ait halkali leke hastaligi ozellikle Turkiye’de yaygin olarak gorulmektedir. Bu calismada halkali leke hastaligina ait semptomlarin populer derin ogrenme mimarilerinden olan Single Shot Detector ile tespitine donuk bir uygulama gerceklestirilmistir. Kontrollu kosullar altinda olusturulan veri seti, Single Shot Detector mimarisi uzerinde farkli IoU treshold degerleri ile egitilmistir. IoU=0.5 icin %96 duzeyinde Average Precision degeri elde edilmistir. Ayrica, gerek zeytin yetistiricileri gerekse de konu ile ilgili olan kisiler icin calismanin masaustu uygulamasi gelistirilmistir.
在农业领域开展的人工智能研究中,基于深度学习的病害检测应用越来越广泛。植物物种的多样性和大多数植物物种在某些地区生长的事实表明,在这一领域开展的研究数量还没有达到理想水平。橄榄树的环斑病只在世界上某些地区种植,在土耳其尤其常见。在这项研究中,利用流行的深度学习架构之一 "单次检测器"(Single Shot Detector)开展了一项检测环斑病症状的应用。在受控条件下生成的数据集在不同 IoU 门限值的 Single Shot Detector 架构上进行了训练。当 IoU=0.5 时,平均精确度达到 96%。此外,还为橄榄种植者和对此感兴趣的人开发了该研究的桌面应用程序。
{"title":"Automatic Olive Peacock Spot Disease Recognition System Development by Using Single Shot Detector","authors":"S. Uğuz","doi":"10.35377/saucis.vi.755269","DOIUrl":"https://doi.org/10.35377/saucis.vi.755269","url":null,"abstract":"Tarim alaninda gerceklestirilen yapay zekâ temelli calismalar arasinda, derin ogrenmeye dayanan hastalik tespiti uygulamalarinin giderek yayginlastigi gorulmektedir. Bitki turleri arasindaki cesitlilik ve cogu bitki turunun belirli cografyalarda yetismesi bu alanda gerceklestirilen calismalarin sayisinin istenen duzeyde olmadigini gostermektedir. Dunyada sadece belirli bolgelerde yetisen zeytin bitkisine ait halkali leke hastaligi ozellikle Turkiye’de yaygin olarak gorulmektedir. Bu calismada halkali leke hastaligina ait semptomlarin populer derin ogrenme mimarilerinden olan Single Shot Detector ile tespitine donuk bir uygulama gerceklestirilmistir. Kontrollu kosullar altinda olusturulan veri seti, Single Shot Detector mimarisi uzerinde farkli IoU treshold degerleri ile egitilmistir. IoU=0.5 icin %96 duzeyinde Average Precision degeri elde edilmistir. Ayrica, gerek zeytin yetistiricileri gerekse de konu ile ilgili olan kisiler icin calismanin masaustu uygulamasi gelistirilmistir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125749142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Simulation Modeling of An IoT Based Cold Chain Logistics Management System 基于物联网的冷链物流管理系统仿真建模
Pub Date : 2019-08-29 DOI: 10.35377/saucis.02.02.598963
C. Çeken, Dini Abdurahman
Dunya ekonomisinde gorulen carpici buyume, lojistik hizmetin cevik, esnek ve duyarli olmasini isteyen tedarik zinciri endustrisinide hizlandirmaktadir. Internet teknolojileri, musteri ve lojistik saglayici arasindaki bilgi aktarimi konusunda oldukca basarilidirlar. Bununla birlikte, lojistik hizmetindeki mal akisi ile bilgi akisi arasindaki mevcut bosluk, sicakliga duyarli urunler hakkinda gercek zamanli bilgi edinme konusunda bir sorun teskil etmektedir ve bu da lojistik yonetimini karar vericiler acisindan daha zorlu hale getirmektedir. Nesnelerin Interneti teknolojisi, soguk zincir endustrisinde ortam goruntuleme, yonetim ve karar alma surecleri acisindan umut verici bir cozum gibi gorunmektedir. Bu calisma, soguk zincirin gercek zamanli ortam sicakligini yoneterek, izleyerek ve sicaga duyarli urunlerin raf omrunu tahmin ederek tum aktorlerin karar destegini gelistirmeye yardimci olan Nesnelerin Interneti tabanli bir soguk zincir lojistigi onermektedir. Bu on calismada, ortam parametrelerinin gercek zamanli verileri IEEE 802.15.4 tabanli kablosuz algilayici aglari kullanilarak toplanmis ve bir ag gecidi uzerinden uzak sunucuya aktarilarak urunlerin raf omrunun karar destek sistemi tarafindan tahmin edilebilmesi saglanmistir. Gelistirilen uygulama cerisinde, soguk zincirde bulunan bozulabilir urunlerin tanimlanmasiyla amaciyla radyo frekansli tanimlama (RFID) sistemi de modellenmistir.
{"title":"Simulation Modeling of An IoT Based Cold Chain Logistics Management System","authors":"C. Çeken, Dini Abdurahman","doi":"10.35377/saucis.02.02.598963","DOIUrl":"https://doi.org/10.35377/saucis.02.02.598963","url":null,"abstract":"Dunya ekonomisinde gorulen carpici buyume, lojistik hizmetin cevik, esnek ve duyarli olmasini isteyen tedarik zinciri endustrisinide hizlandirmaktadir. Internet teknolojileri, musteri ve lojistik saglayici arasindaki bilgi aktarimi konusunda oldukca basarilidirlar. Bununla birlikte, lojistik hizmetindeki mal akisi ile bilgi akisi arasindaki mevcut bosluk, sicakliga duyarli urunler hakkinda gercek zamanli bilgi edinme konusunda bir sorun teskil etmektedir ve bu da lojistik yonetimini karar vericiler acisindan daha zorlu hale getirmektedir. Nesnelerin Interneti teknolojisi, soguk zincir endustrisinde ortam goruntuleme, yonetim ve karar alma surecleri acisindan umut verici bir cozum gibi gorunmektedir. Bu calisma, soguk zincirin gercek zamanli ortam sicakligini yoneterek, izleyerek ve sicaga duyarli urunlerin raf omrunu tahmin ederek tum aktorlerin karar destegini gelistirmeye yardimci olan Nesnelerin Interneti tabanli bir soguk zincir lojistigi onermektedir. Bu on calismada, ortam parametrelerinin gercek zamanli verileri IEEE 802.15.4 tabanli kablosuz algilayici aglari kullanilarak toplanmis ve bir ag gecidi uzerinden uzak sunucuya aktarilarak urunlerin raf omrunun karar destek sistemi tarafindan tahmin edilebilmesi saglanmistir. Gelistirilen uygulama cerisinde, soguk zincirde bulunan bozulabilir urunlerin tanimlanmasiyla amaciyla radyo frekansli tanimlama (RFID) sistemi de modellenmistir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116709776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Traffic Education for Inexperienced Drivers with Virtual Driving Simulator 利用虚拟驾驶模拟器对无经验驾驶员进行交通教育
Pub Date : 2019-08-29 DOI: 10.35377/saucis.02.02.593888
İ. Öztel, Cemil Öz
Trafikteki arac sayisi ve sehirlerdeki nufus yogunlugu refah seviyesindeki yukselis ile birlikte artmaktadir. Bu durumunun yaninda insanlar trafik ile ilgili yeterince bilgi sahibi degildir. Karayollari Genel Mudurlugu’ne gore Turkiye’deki trafik kazalarinin 2017 yilindaki sayisi 1.202.716’dir. Dunya Saglik Orgutu’nun verilerine gore dunya capindaki trafik kazalarindaki olum sayilari her yil yaklasik olarak 1.35 milyondur. Bu bilgiler goz onunde tutuldugunda trafik egitiminin onemi on plana cikmaktadir. Bu amacla, bu calisma kapsaminda teorik ve pratik olmak uzere bir trafik egitim sistemi gelistirilmistir. Sistemin teorik ayaginda trafik, motor ve ilkyardim bilgisi olmak uzere uc konu baslikli testler yer almaktir. Teorik asama her kullanici icin 10 adet test icermektedir. Sistemin diger bir parcasi ise sistemin donanimsal ayagi ve simulasyon yazilimindan olusmaktadir. Sistemin genel olarak kullaniminda, bir kullanici ilk olarak uc konu basliginda girdigi test sinavinda %70 oraninda basarili olmalidir. Bu sarti sagladiktan sonra kullanici simulator egitimine gecebilir. Simulator direksiyon, pedal sistemi, vites kolu, surucu koltugu, simulasyon ekrani ve sanal ortam yazilimlarindan olusmaktadir. Bu sistem sayesinde acemi suruculer gercek hayatin risklerinden uzak olarak tecrube kazanmalari mumkun olacaktir.
{"title":"Traffic Education for Inexperienced Drivers with Virtual Driving Simulator","authors":"İ. Öztel, Cemil Öz","doi":"10.35377/saucis.02.02.593888","DOIUrl":"https://doi.org/10.35377/saucis.02.02.593888","url":null,"abstract":"Trafikteki arac sayisi ve sehirlerdeki nufus yogunlugu refah seviyesindeki yukselis ile birlikte artmaktadir. Bu durumunun yaninda insanlar trafik ile ilgili yeterince bilgi sahibi degildir. Karayollari Genel Mudurlugu’ne gore Turkiye’deki trafik kazalarinin 2017 yilindaki sayisi 1.202.716’dir. Dunya Saglik Orgutu’nun verilerine gore dunya capindaki trafik kazalarindaki olum sayilari her yil yaklasik olarak 1.35 milyondur. Bu bilgiler goz onunde tutuldugunda trafik egitiminin onemi on plana cikmaktadir. Bu amacla, bu calisma kapsaminda teorik ve pratik olmak uzere bir trafik egitim sistemi gelistirilmistir. Sistemin teorik ayaginda trafik, motor ve ilkyardim bilgisi olmak uzere uc konu baslikli testler yer almaktir. Teorik asama her kullanici icin 10 adet test icermektedir. Sistemin diger bir parcasi ise sistemin donanimsal ayagi ve simulasyon yazilimindan olusmaktadir. Sistemin genel olarak kullaniminda, bir kullanici ilk olarak uc konu basliginda girdigi test sinavinda %70 oraninda basarili olmalidir. Bu sarti sagladiktan sonra kullanici simulator egitimine gecebilir. Simulator direksiyon, pedal sistemi, vites kolu, surucu koltugu, simulasyon ekrani ve sanal ortam yazilimlarindan olusmaktadir. Bu sistem sayesinde acemi suruculer gercek hayatin risklerinden uzak olarak tecrube kazanmalari mumkun olacaktir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115732708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Controlling of Virtual Mirror with Voice and Hand Motion 基于语音和手势的虚拟镜子控制
Pub Date : 2019-08-29 DOI: 10.35377/saucis.02.02.596400
Gözde Yolcu Öztel, Serap Kazan
Online alisveris son zamanlarda populer olmasina ragmen bu alisveris turunde urun deneyememe gibi bazi dezavantajlar mevcuttur. Son zamanlardaki teknolojik gelismeler ile birlikte sanal aynalar araciligi ile insanlar satin almak istedikleri urunleri deneyebilmektedir. Bu yaklasimdan esinlenilerek, kullanicilarin el cantalarini sanal olarak deneyebildikleri ve farkli pozlarini bir ekran uzerinde gorebildikleri bir sistem gelistirilmistir. Ayrica, kullanicilar ses komutlari ile cantalarin farkli renklerini de deneyebilmektedir. Bu calismada, kullanici hareketlerinin ve el iskelet bagantilarinin takibi icin Kinect Sensor kullanilmistir. Ses komutlarini tanimak icin korelasyon yonteminden faydalanilmistir.
虽然网上购物最近很流行,但这种购物方式也有一些缺点,比如无法试用产品。随着最新技术的发展,人们可以通过虚拟镜子试用他们想要购买的产品。受这种方法的启发,我们开发了一个系统,用户可以虚拟试穿手袋,并在屏幕上看到不同的姿势。用户还可以通过语音指令试穿不同颜色的手袋。在这项研究中,Kinect 传感器用于跟踪用户的动作和手部骨骼连接。语音指令的识别采用了相关方法。
{"title":"Controlling of Virtual Mirror with Voice and Hand Motion","authors":"Gözde Yolcu Öztel, Serap Kazan","doi":"10.35377/saucis.02.02.596400","DOIUrl":"https://doi.org/10.35377/saucis.02.02.596400","url":null,"abstract":"Online alisveris son zamanlarda populer olmasina ragmen bu alisveris turunde urun deneyememe gibi bazi dezavantajlar mevcuttur. Son zamanlardaki teknolojik gelismeler ile birlikte sanal aynalar araciligi ile insanlar satin almak istedikleri urunleri deneyebilmektedir. Bu yaklasimdan esinlenilerek, kullanicilarin el cantalarini sanal olarak deneyebildikleri ve farkli pozlarini bir ekran uzerinde gorebildikleri bir sistem gelistirilmistir. Ayrica, kullanicilar ses komutlari ile cantalarin farkli renklerini de deneyebilmektedir. Bu calismada, kullanici hareketlerinin ve el iskelet bagantilarinin takibi icin Kinect Sensor kullanilmistir. Ses komutlarini tanimak icin korelasyon yonteminden faydalanilmistir.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126022663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sakarya University Journal of Computer and Information Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1