首页 > 最新文献

Cement and Concrete Research最新文献

英文 中文
Deciphering the initial hydration reaction of tricalcium aluminate based on Ab initio-accurate machine learning force field 基于从头算精确机器学习力场的铝酸三钙初始水化反应解译
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-22 DOI: 10.1016/j.cemconres.2025.108124
Weihuan Li , Chenchen Xiong , Yang Zhou , Yangzezhi Zheng , Jiarui Xing , Yanji Jin , Yulin Wang
Mineral dissolution is a critical phenomenon in various fields, particularly in the early hydration of Portland cement. Despite its importance, atomic-scale mechanisms remain elusive due to limitations in experimental and computational methods. Using an efficient sampling strategy that integrates metadynamics and targeted molecular dynamics, we developed a deep learning interatomic potential with quantum-level accuracy and scalable computational efficiency to reveal the dissolution mechanisms of tricalcium aluminate (C3A). The results uncover distinct dissociation pathways of calcium and aluminate ions. Specifically, Ca ions follow a ligand-exchange mechanism, preferentially transitioning to an unsaturated coordination state before bonding with water molecules. Conversely, Al ions first coordinate with water molecules to reach a supersaturated coordination state, which promotes the opening of six-membered rings and the cleavage of Al ions. This work elucidates the thermodynamics of C3A dissolution, deepening the understanding of mineral-water interfacial reactions, and provides an efficient, accurate approach for probing complex reaction pathways.
矿物溶解是各个领域的关键现象,特别是在硅酸盐水泥的早期水化过程中。尽管它很重要,但由于实验和计算方法的限制,原子尺度的机制仍然难以捉摸。利用整合元动力学和靶向分子动力学的高效采样策略,我们开发了具有量子级精度和可扩展计算效率的深度学习原子间势,以揭示铝酸三钙(C3A)的溶解机制。结果揭示了不同的解离途径的钙和铝酸盐离子。具体来说,钙离子遵循配体交换机制,在与水分子结合之前优先过渡到不饱和配位态。相反,Al离子首先与水分子配位,达到过饱和配位状态,促进六元环的打开和Al离子的裂解。这项工作阐明了C3A溶解的热力学,加深了对矿泉水界面反应的理解,并为探测复杂的反应途径提供了一种高效、准确的方法。
{"title":"Deciphering the initial hydration reaction of tricalcium aluminate based on Ab initio-accurate machine learning force field","authors":"Weihuan Li ,&nbsp;Chenchen Xiong ,&nbsp;Yang Zhou ,&nbsp;Yangzezhi Zheng ,&nbsp;Jiarui Xing ,&nbsp;Yanji Jin ,&nbsp;Yulin Wang","doi":"10.1016/j.cemconres.2025.108124","DOIUrl":"10.1016/j.cemconres.2025.108124","url":null,"abstract":"<div><div>Mineral dissolution is a critical phenomenon in various fields, particularly in the early hydration of Portland cement. Despite its importance, atomic-scale mechanisms remain elusive due to limitations in experimental and computational methods. Using an efficient sampling strategy that integrates metadynamics and targeted molecular dynamics, we developed a deep learning interatomic potential with quantum-level accuracy and scalable computational efficiency to reveal the dissolution mechanisms of tricalcium aluminate (C<sub>3</sub>A). The results uncover distinct dissociation pathways of calcium and aluminate ions. Specifically, Ca ions follow a ligand-exchange mechanism, preferentially transitioning to an unsaturated coordination state before bonding with water molecules. Conversely, Al ions first coordinate with water molecules to reach a supersaturated coordination state, which promotes the opening of six-membered rings and the cleavage of Al ions. This work elucidates the thermodynamics of C<sub>3</sub>A dissolution, deepening the understanding of mineral-water interfacial reactions, and provides an efficient, accurate approach for probing complex reaction pathways.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108124"},"PeriodicalIF":13.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145813726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative dependence of dynamic drying shrinkage of white cement pastes on pore-scale water removal kinetics 白水泥浆体动态干燥收缩对孔隙尺度脱水动力学的定量依赖
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-22 DOI: 10.1016/j.cemconres.2025.108117
Huaming Liang , Hanlin Zou , Huan Wang , Zhendi Wang , Chunsheng Zhou
To quantify the correlation between dynamic drying shrinkage and pore-scale water removal kinetics, the pore-scale water allocation and dynamic shrinkage of white cement pastes upon drying at 75%, 43%, and 11% RHs were monitored and analyzed. Experimental results show a bilinear dependence of dynamic shrinkage on the removals of interlayer and gel water within CSH gel irrespective of RHs. CSH gel behaves like flexible hydrous sponges skewered by a stiff skeleton. Although CSH sponges lose water and contract remarkably upon drying, the spatial constraint of skeleton limits the deformation of pastes. Consequently, only 0.72% to 4.23% of interlayer and gel water losses are translated into measurable shrinkage. The removal of gel water contributes to shrinkage more than that of interlayer water due to the larger size of gel pores, though both their contributions decrease with declining RH and become similar. Mitigating shrinkage necessitates reducing CSH contraction and enhancing skeleton stiffness.
为了量化动态干燥收缩与孔隙尺度脱水动力学之间的相关性,对75%、43%和11% RHs条件下白色水泥浆体干燥时的孔隙尺度水分配和动态收缩进行了监测和分析。实验结果表明,与RHs无关,动态收缩与CSH凝胶内层间水和凝胶水的去除率呈双线性关系。CSH凝胶的行为就像由坚硬骨架串在一起的柔性含水海绵。虽然CSH海绵在干燥时失水收缩明显,但骨架的空间约束限制了膏体的变形。因此,只有0.72%至4.23%的层间和凝胶水损失转化为可测量的收缩。凝胶水的去除比层间水的去除对收缩的贡献更大,因为凝胶孔的尺寸更大,但两者的贡献都随着相对湿度的降低而减小,并趋于相似。减少收缩需要减少CSH收缩和提高骨架刚度。
{"title":"Quantitative dependence of dynamic drying shrinkage of white cement pastes on pore-scale water removal kinetics","authors":"Huaming Liang ,&nbsp;Hanlin Zou ,&nbsp;Huan Wang ,&nbsp;Zhendi Wang ,&nbsp;Chunsheng Zhou","doi":"10.1016/j.cemconres.2025.108117","DOIUrl":"10.1016/j.cemconres.2025.108117","url":null,"abstract":"<div><div>To quantify the correlation between dynamic drying shrinkage and pore-scale water removal kinetics, the pore-scale water allocation and dynamic shrinkage of white cement pastes upon drying at 75%, 43%, and 11% RHs were monitored and analyzed. Experimental results show a bilinear dependence of dynamic shrinkage on the removals of interlayer and gel water within C<img>S<img>H gel irrespective of RHs. C<img>S<img>H gel behaves like flexible hydrous sponges skewered by a stiff skeleton. Although C<img>S<img>H sponges lose water and contract remarkably upon drying, the spatial constraint of skeleton limits the deformation of pastes. Consequently, only 0.72% to 4.23% of interlayer and gel water losses are translated into measurable shrinkage. The removal of gel water contributes to shrinkage more than that of interlayer water due to the larger size of gel pores, though both their contributions decrease with declining RH and become similar. Mitigating shrinkage necessitates reducing C<img>S<img>H contraction and enhancing skeleton stiffness.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108117"},"PeriodicalIF":13.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145812862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic simulation-assisted design of the electrolytic manganese residue-slag-Ca(OH)2 cementitious system: Reaction and Mn immobilization 电解锰渣-炉渣- ca (OH)2胶凝体系的热力学模拟辅助设计:反应与Mn固定化
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-22 DOI: 10.1016/j.cemconres.2025.108119
Lang Pang , Jianwei Sun , John L. Provis , Barbara Lothenbach , Bin Ma , Dengquan Wang
The disposal of electrolytic manganese residue (EMR) is a critical challenge. This study introduces an EMR-blast furnace slag-Ca(OH)2 cementitious system (EGCH), utilizing the gypsum in EMR to activate the slag to form a product resembling a supersulfated cement. With up to 40 % EMR incorporation, it achieves compressive strengths of 16.8 MPa at 3 d and 33.2 MPa at 28 days. The primary reaction products are AFt, C-A-S-H and hydrotalcite. A thermodynamic simulation-assisted iterative calculation was developed and validated by pore solution analysis, to accurately quantify phase evolution. EMR content significantly influences the reaction and results in distinct exothermic profiles. The optimal 40 % EMR content results in the densest microstructure due to the balanced formation of AFt and C-A-S-H. Mn is immobilized in EGCH with two barriers to its leaching and cannot leach out until the pH drops below 7. This binder offers a practical solution for the utilization of EMR.
电解锰渣(EMR)的处理是一个严峻的挑战。本研究介绍了EMR-高炉矿渣- ca (OH)2胶凝体系(EGCH),利用EMR中的石膏活化矿渣,形成类似超硫酸盐水泥的产品。EMR掺入量高达40%,3d抗压强度为16.8 MPa, 28天抗压强度为33.2 MPa。主要反应产物为AFt、C-A-S-H和水滑石。建立了一种热力学模拟辅助迭代计算方法,并通过孔隙溶液分析验证了该方法的准确性。EMR含量显著影响反应并导致不同的放热曲线。最佳EMR含量为40%时,由于AFt和C-A-S-H的形成平衡,导致微观结构最致密。Mn被固定在EGCH中,有两种阻碍其浸出的障碍,直到pH降至7以下才会浸出。这种粘合剂为电子病历的利用提供了一种实用的解决方案。
{"title":"Thermodynamic simulation-assisted design of the electrolytic manganese residue-slag-Ca(OH)2 cementitious system: Reaction and Mn immobilization","authors":"Lang Pang ,&nbsp;Jianwei Sun ,&nbsp;John L. Provis ,&nbsp;Barbara Lothenbach ,&nbsp;Bin Ma ,&nbsp;Dengquan Wang","doi":"10.1016/j.cemconres.2025.108119","DOIUrl":"10.1016/j.cemconres.2025.108119","url":null,"abstract":"<div><div>The disposal of electrolytic manganese residue (EMR) is a critical challenge. This study introduces an EMR-blast furnace slag-Ca(OH)<sub>2</sub> cementitious system (EG<sup>CH</sup>), utilizing the gypsum in EMR to activate the slag to form a product resembling a supersulfated cement. With up to 40 % EMR incorporation, it achieves compressive strengths of 16.8 MPa at 3 d and 33.2 MPa at 28 days. The primary reaction products are AFt, C-A-S-H and hydrotalcite. A thermodynamic simulation-assisted iterative calculation was developed and validated by pore solution analysis, to accurately quantify phase evolution. EMR content significantly influences the reaction and results in distinct exothermic profiles. The optimal 40 % EMR content results in the densest microstructure due to the balanced formation of AFt and C-A-S-H. Mn is immobilized in EG<sup>CH</sup> with two barriers to its leaching and cannot leach out until the pH drops below 7. This binder offers a practical solution for the utilization of EMR.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108119"},"PeriodicalIF":13.1,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145812864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of carbonate anions and early-formed phases on the efficiency of PCE in alkali-activated slag 碱渣中碳酸盐阴离子和早期形成相对PCE效率的影响
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-20 DOI: 10.1016/j.cemconres.2025.108122
Yuliang Wang, Shengnan Sha, Hailong Ye
The mechanism responsible for the reduced dispersing efficiency of polycarboxylate ether (PCE) superplasticizers in carbonate-activated slag system (AAS) remains controversial and ambiguous, particularly regarding the roles of carbonate anions and early-formed phases. This study systematically evaluated the fluidity and adsorption behavior of PCE in K₂CO₃-activated slag with varying alkali modulus and in CaO-K₂CO₃-activated slag. Results show that in K₂CO₃-activated slag systems, the inefficiency of PCE at low dosages (≤ 1 mg/g binder) is primarily due to its preferential adsorption onto early-formed calcium carbonate phases. At higher dosages (> 1 mg/g), both competitive adsorption by CO₃2− ions and conformational collapse of PCE macromolecules dominate its reduced dispersing performance. In CaO–K₂CO₃-activated systems, early-formed calcium carbonate phases still consume part of the PCE at low dosages (≤ 4 mg/g). However, CaO reduces CO₃2− ion concentration, weakening competitive adsorption and improving PCE dispersing efficiency compared to K₂CO₃-activated systems.
聚羧酸酯醚(PCE)高效减水剂在碳酸盐-活性渣体系(AAS)中分散效率降低的机理仍然存在争议和不明确,特别是关于碳酸盐阴离子和早期形成相的作用。研究系统地评价了PCE在不同碱模量的K₂CO₃活性渣和CaO-K₂CO₃活性渣中的流动性和吸附行为。结果表明,在K₂CO₃活性渣体系中,低剂量(≤1 mg/g粘结剂)PCE的低效率主要是由于其优先吸附在早期形成的碳酸钙相上。在较高剂量(1 mg/g)下,CO₃2−离子的竞争性吸附和PCE大分子的构象崩溃是其分散性能降低的主要原因。在CaO-K₂CO₃活化的系统中,早期形成的碳酸钙相仍然以低剂量(≤4mg /g)消耗部分PCE。然而,与K₂CO₃活化体系相比,CaO降低了CO₃2−离子浓度,削弱了竞争吸附,提高了PCE的分散效率。
{"title":"The role of carbonate anions and early-formed phases on the efficiency of PCE in alkali-activated slag","authors":"Yuliang Wang,&nbsp;Shengnan Sha,&nbsp;Hailong Ye","doi":"10.1016/j.cemconres.2025.108122","DOIUrl":"10.1016/j.cemconres.2025.108122","url":null,"abstract":"<div><div>The mechanism responsible for the reduced dispersing efficiency of polycarboxylate ether (PCE) superplasticizers in carbonate-activated slag system (AAS) remains controversial and ambiguous, particularly regarding the roles of carbonate anions and early-formed phases. This study systematically evaluated the fluidity and adsorption behavior of PCE in K₂CO₃-activated slag with varying alkali modulus and in CaO-K₂CO₃-activated slag. Results show that in K₂CO₃-activated slag systems, the inefficiency of PCE at low dosages (≤ 1 mg/g binder) is primarily due to its preferential adsorption onto early-formed calcium carbonate phases. At higher dosages (&gt; 1 mg/g), both competitive adsorption by CO₃<sup>2−</sup> ions and conformational collapse of PCE macromolecules dominate its reduced dispersing performance. In CaO–K₂CO₃-activated systems, early-formed calcium carbonate phases still consume part of the PCE at low dosages (≤ 4 mg/g). However, CaO reduces CO₃<sup>2−</sup> ion concentration, weakening competitive adsorption and improving PCE dispersing efficiency compared to K₂CO₃-activated systems.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108122"},"PeriodicalIF":13.1,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance and electrical conductivity of C-S-H C-S-H的阻抗和电导率
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-20 DOI: 10.1016/j.cemconres.2025.108123
Tulio Honorio , Walter Batista Bonfim , Oswaldo Cascudo
The impedance and complex electrical conductivity of C-S-H have not been directly measured, even though electromagnetic measurements are a key non-destructive technique for probing cement systems. Here, we evaluate the frequency-dependent electrical conductivity of C-S-H using molecular dynamics simulations for the first time. The effect of nanopore size is assessed for pores spanning the interlayer to the gel range, showing that interlayer conductivity is governed by subdiffusive ion dynamics while Fickean dynamics drives gel pores behavior. Ionic self-correlations dominate the conductivity, while water–ion and solid–ion contributions are smaller but non-negligible. By combining molecular dynamics with mean-field homogenization, we obtain gel-scale estimates consistent with available data (i.e., with ratio between gel conductivity and pore solution conductivity on the order of 1/100). As with other transport properties, accounting for anisotropy and associated dimensionality loss is critical for understanding electrical conductivity bottom-up. Our results provide direct evaluation of the frequency-dependent conductivity of C-S-H, offering valuable input for multiscale modeling and for interpreting electromagnetic measurements of cementitious materials.
尽管电磁测量是探测水泥体系的关键非破坏性技术,但C-S-H的阻抗和复杂电导率尚未直接测量。在这里,我们首次使用分子动力学模拟来评估C-S-H的频率依赖性电导率。纳米孔大小对层间至凝胶范围孔隙的影响进行了评估,表明层间电导率受亚扩散离子动力学控制,而Fickean动力学驱动凝胶孔隙行为。离子自相关性主导电导率,而水离子和固体离子的贡献较小,但不可忽略。通过将分子动力学与平均场均质化相结合,我们获得了与现有数据一致的凝胶尺度估计(即凝胶电导率与孔隙溶液电导率之比约为1/100)。与其他输运性质一样,考虑各向异性和相关的维度损失对于自下而上地理解电导率至关重要。我们的研究结果提供了C-S-H的频率相关电导率的直接评估,为多尺度建模和解释胶凝材料的电磁测量提供了有价值的输入。
{"title":"Impedance and electrical conductivity of C-S-H","authors":"Tulio Honorio ,&nbsp;Walter Batista Bonfim ,&nbsp;Oswaldo Cascudo","doi":"10.1016/j.cemconres.2025.108123","DOIUrl":"10.1016/j.cemconres.2025.108123","url":null,"abstract":"<div><div>The impedance and complex electrical conductivity of C-S-H have not been directly measured, even though electromagnetic measurements are a key non-destructive technique for probing cement systems. Here, we evaluate the frequency-dependent electrical conductivity of C-S-H using molecular dynamics simulations for the first time. The effect of nanopore size is assessed for pores spanning the interlayer to the gel range, showing that interlayer conductivity is governed by subdiffusive ion dynamics while Fickean dynamics drives gel pores behavior. Ionic self-correlations dominate the conductivity, while water–ion and solid–ion contributions are smaller but non-negligible. By combining molecular dynamics with mean-field homogenization, we obtain gel-scale estimates consistent with available data (i.e., with ratio between gel conductivity and pore solution conductivity on the order of 1/100). As with other transport properties, accounting for anisotropy and associated dimensionality loss is critical for understanding electrical conductivity bottom-up. Our results provide direct evaluation of the frequency-dependent conductivity of C-S-H, offering valuable input for multiscale modeling and for interpreting electromagnetic measurements of cementitious materials.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108123"},"PeriodicalIF":13.1,"publicationDate":"2025-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium aluminate activated BOF steel slag: Impact of Al(OH)4− on reaction mechanism 铝酸钠活化转炉钢渣:Al(OH)4−对反应机理的影响
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-19 DOI: 10.1016/j.cemconres.2025.108116
Mengyu Zhu , Yuxuan Chen , S.R. van der Laan , Tao Liu , Qingliang Yu
The limited hydraulic reactivity of Basic Oxygen Furnace (BOF) slag, caused by its low-aluminum and high-iron composition, restricts its high-value applications. This study employs sodium aluminate (NaAlO2, NA) as an activator, with a focus on the mechanistic role of Al(OH)4 in modulating the hydration pathways of belite in BOF slag. Systematic investigations of phase evolution, microstructural development, pore solution chemistry, and mechanical properties reveal that NA significantly enhances the early reactivity of belite and brownmillerite and promotes the formation of Si(Fe)-rich hydrogarnet and C(N)-A-S-H gels, enabling synergistic hydration between belite and brownmillerite at early ages. The NA-activated pastes develop a denser microstructure, exhibiting quadrupled early strength compared to the non-activated system. Crucially, the system demonstrates superior environmental performance, with heavy metal leaching concentrations consistently below regulatory thresholds. These findings elucidate the activation mechanisms of NA and propose a viable strategy for advanced BOF slag utilization.
碱性氧炉(BOF)炉渣由于其低铝高铁的成分,导致其水力反应性有限,制约了其高价值应用。本研究采用铝酸钠(NaAlO2, NA)作为活化剂,重点研究了Al(OH)4−在转炉炉渣中调节白石水化途径的机理。系统的相演化、微观结构发育、孔隙溶液化学和力学性能研究表明,NA显著增强了白橄榄石和褐粒石的早期反应活性,促进了富Si(Fe)水榴石和C(N) a - s - h凝胶的形成,使白橄榄石和褐粒石在早期发生协同水化作用。与未激活的体系相比,na激活的膏体具有更致密的微观结构,表现出四倍的早期强度。至关重要的是,该系统表现出优越的环保性能,重金属浸出浓度始终低于监管阈值。这些发现阐明了NA的活化机理,并为转炉炉渣的高级利用提出了可行的策略。
{"title":"Sodium aluminate activated BOF steel slag: Impact of Al(OH)4− on reaction mechanism","authors":"Mengyu Zhu ,&nbsp;Yuxuan Chen ,&nbsp;S.R. van der Laan ,&nbsp;Tao Liu ,&nbsp;Qingliang Yu","doi":"10.1016/j.cemconres.2025.108116","DOIUrl":"10.1016/j.cemconres.2025.108116","url":null,"abstract":"<div><div>The limited hydraulic reactivity of Basic Oxygen Furnace (BOF) slag, caused by its low-aluminum and high-iron composition, restricts its high-value applications. This study employs sodium aluminate (NaAlO<sub>2</sub>, NA) as an activator, with a focus on the mechanistic role of Al(OH)<sub>4</sub><sup>−</sup> in modulating the hydration pathways of belite in BOF slag. Systematic investigations of phase evolution, microstructural development, pore solution chemistry, and mechanical properties reveal that NA significantly enhances the early reactivity of belite and brownmillerite and promotes the formation of Si(Fe)-rich hydrogarnet and C(N)-A-S-H gels, enabling synergistic hydration between belite and brownmillerite at early ages. The NA-activated pastes develop a denser microstructure, exhibiting quadrupled early strength compared to the non-activated system. Crucially, the system demonstrates superior environmental performance, with heavy metal leaching concentrations consistently below regulatory thresholds. These findings elucidate the activation mechanisms of NA and propose a viable strategy for advanced BOF slag utilization.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108116"},"PeriodicalIF":13.1,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic sulfate-alkaline activation of one-part volcanic pumice–cement binders: Mechanisms and microstructural evolution 单组分火山浮石-水泥粘结剂硫酸盐-碱协同活化:机理与微观结构演化
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-18 DOI: 10.1016/j.cemconres.2025.108103
Jesus López-Salas, J. Ivan Escalante-García
The synergistic activation of a novel one-part volcanic pumice-PC hybrid binder with a Na₂SO₄-Al₂(SO₄)₃-Ca(OH)₂ (NŜ-AŜ-CH) ternary system was elucidated using a suite of advanced characterization techniques. The reaction proceeds via two distinct pathways: a rapid sulfatic pathway, where Al₂(SO₄)₃ promotes ettringite (AFt) formation for early strength, and a primary alkaline pathway, where the Na₂SO₄-Ca(OH)₂ synergy generates in-situ NaOH, driving VP dissolution and C-(N)-A-S-H formation. This resulted in a nearly threefold increase in 1-day strength, with optimized binders reaching over 70 MPa at 90 days. Long-term analysis reveals the “dual role” of AS, as its persistent AFt provides microstructural reinforcement. This leads to a “composite strength mechanism,” a key finding where high strength is achieved even in systems with a less polymerized silicate network (low Mean Chain Length). The NS-CH synergy, in contrast, is the primary driver for high polymerization, informing a new model for designing sustainable binders.
采用一系列先进的表征技术,研究了一种新型的单组分火山浮石- pc复合粘结剂与Na₂SO₄-Al₂(SO₄)₃-Ca(OH)₂(NŜ-AŜ-CH)三元体系的协同活化作用。反应通过两种不同的途径进行:快速硫酸途径,其中Al₂(SO₄)₃促进钙矾石(AFt)的形成以获得早期强度;初级碱性途径,其中Na₂SO₄- ca (OH) 2协同作用产生原位NaOH,驱动VP溶解和C-(N) a -s - h的形成。这使得1天的强度增加了近3倍,优化后的粘合剂在90天的强度超过70 MPa。长期分析揭示了AS的“双重作用”,因为其持久的AFt提供了微观结构的强化。这导致了“复合强度机制”,这是一个关键的发现,即使在具有较少聚合硅酸盐网络(低平均链长)的系统中也能实现高强度。相比之下,NS-CH协同作用是高聚合的主要驱动因素,为设计可持续粘合剂提供了新的模型。
{"title":"Synergistic sulfate-alkaline activation of one-part volcanic pumice–cement binders: Mechanisms and microstructural evolution","authors":"Jesus López-Salas,&nbsp;J. Ivan Escalante-García","doi":"10.1016/j.cemconres.2025.108103","DOIUrl":"10.1016/j.cemconres.2025.108103","url":null,"abstract":"<div><div>The synergistic activation of a novel one-part volcanic pumice-PC hybrid binder with a Na₂SO₄-Al₂(SO₄)₃-Ca(OH)₂ (NŜ-AŜ-CH) ternary system was elucidated using a suite of advanced characterization techniques. The reaction proceeds via two distinct pathways: a rapid sulfatic pathway, where Al₂(SO₄)₃ promotes ettringite (AFt) formation for early strength, and a primary alkaline pathway, where the Na₂SO₄-Ca(OH)₂ synergy generates in-situ NaOH, driving VP dissolution and C-(N)-A-S-H formation. This resulted in a nearly threefold increase in 1-day strength, with optimized binders reaching over 70 MPa at 90 days. Long-term analysis reveals the “dual role” of AS, as its persistent AFt provides microstructural reinforcement. This leads to a “composite strength mechanism,” a key finding where high strength is achieved even in systems with a less polymerized silicate network (low Mean Chain Length). The NS-CH synergy, in contrast, is the primary driver for high polymerization, informing a new model for designing sustainable binders.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108103"},"PeriodicalIF":13.1,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into dynamic evolution of colloidal network structure during early-age hardening of cementitious materials 胶凝材料早期硬化过程中胶体网络结构动态演化的新认识
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-18 DOI: 10.1016/j.cemconres.2025.108120
Hengrui Liu , Kaiyin Zhao , Shipeng Zhang , Hanghua Zhang , Shuangshuang Liu , Lucen Hao , Hongyan Ma , Kamal Khayat , Chi Sun Poon
The evolution of microstructure in cementitious materials during their transition from fluid to solid state plays a critical role in determining their ultimate mechanical strength and overall performance. This hydration stage primarily involves a dynamic densification process occurring within the colloidal network. However, the field of cement-based materials currently lacks a comprehensive theoretical framework and associated parameters capable of effectively characterizing the specific structural regions within this network. In this study, we propose an Improved Particle Linkage (IPL) theory for describing the strength, types, and quantities of particle linkages within colloidal network. The IPL theory classifies the internal network structure into three distinct regions, namely the αweak, βstrong and γinherent. The γinherent and βstrong region predominantly influence the strength of the colloidal network at the initial and later hydration stages, respectively, whereas the αweak region contributes steadily to the network strength across all hydration stages. Furthermore, the progressive intensification of the βstrong region during hydration is identified as the principal driving factor for microstructural evolution, leading to a critical transition point in fresh properties. Additionally, a novel parameter, termed the network hydration index (ξ), to quantitatively characterize the overall degree of hydration within the colloidal network is establishment.
胶凝材料从流体状态向固体状态转变过程中微观结构的演变对其极限力学强度和综合性能起着至关重要的作用。这个水化阶段主要涉及发生在胶体网络内的动态致密化过程。然而,水泥基材料领域目前缺乏能够有效表征该网络中特定结构区域的综合理论框架和相关参数。在这项研究中,我们提出了一种改进的粒子连接(IPL)理论来描述胶体网络中粒子连接的强度、类型和数量。IPL理论将内部网络结构分为三个不同的区域,即α弱、β强和γ固有。γ固有区和β强区分别主要影响水化初期和后期的胶体网络强度,而α弱区则稳定影响所有水化阶段的胶体网络强度。此外,在水化过程中β强区逐渐增强被认为是微观结构演变的主要驱动因素,导致了新鲜性能的关键转变点。此外,建立了一个新的参数,称为网络水化指数(ξ),以定量表征胶体网络内的水化总体程度。
{"title":"New insights into dynamic evolution of colloidal network structure during early-age hardening of cementitious materials","authors":"Hengrui Liu ,&nbsp;Kaiyin Zhao ,&nbsp;Shipeng Zhang ,&nbsp;Hanghua Zhang ,&nbsp;Shuangshuang Liu ,&nbsp;Lucen Hao ,&nbsp;Hongyan Ma ,&nbsp;Kamal Khayat ,&nbsp;Chi Sun Poon","doi":"10.1016/j.cemconres.2025.108120","DOIUrl":"10.1016/j.cemconres.2025.108120","url":null,"abstract":"<div><div>The evolution of microstructure in cementitious materials during their transition from fluid to solid state plays a critical role in determining their ultimate mechanical strength and overall performance. This hydration stage primarily involves a dynamic densification process occurring within the colloidal network. However, the field of cement-based materials currently lacks a comprehensive theoretical framework and associated parameters capable of effectively characterizing the specific structural regions within this network. In this study, we propose an Improved Particle Linkage (IPL) theory for describing the strength, types, and quantities of particle linkages within colloidal network. The IPL theory classifies the internal network structure into three distinct regions, namely the α<sub>weak</sub>, β<sub>strong</sub> and γ<sub>inherent</sub>. The γ<sub>inherent</sub> and β<sub>strong</sub> region predominantly influence the strength of the colloidal network at the initial and later hydration stages, respectively, whereas the α<sub>weak</sub> region contributes steadily to the network strength across all hydration stages. Furthermore, the progressive intensification of the β<sub>strong</sub> region during hydration is identified as the principal driving factor for microstructural evolution, leading to a critical transition point in fresh properties. Additionally, a novel parameter, termed the network hydration index (ξ), to quantitatively characterize the overall degree of hydration within the colloidal network is establishment.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108120"},"PeriodicalIF":13.1,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145785132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of clinker mineralogy in cement properties: An analysis using statistical mixture design 熟料矿物学在水泥性能中的作用:使用统计混合料设计的分析
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-17 DOI: 10.1016/j.cemconres.2025.108102
José S. Andrade Neto , Ivo C. Carvalho , Henrique A. Santana , Paulo Matos , Ana Paula Kirchheim
This study applied a statistical mixture design to assess the influence of clinker composition and mineralogy on early hydration and strength. Twenty-one mixtures were prepared using six industrial clinkers with distinct mineralogical characteristics. Hydration was assessed using isothermal calorimetry, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Compressive strength was measured at 1 and 28 days. The results revealed that alkali content (Na2Oeq) was the most influential parameter controlling cumulative heat release up to 72 h. Interestingly, no clear correlation was observed between bulk phase content and early strength, emphasizing that mineralogical composition alone is not a reliable predictor of performance. These findings underscore the complexity of hydration mechanisms and highlight the importance of controlling clinker chemistry and mineralogy. Moreover, statistical mixture design proved an effective tool for exploring multivariate interactions governing hydration and strength development.
本研究采用统计混合设计来评估熟料组成和矿物学对早期水化和强度的影响。采用矿物学特征不同的6种工业熟料配制了21种混合料。采用等温量热法、x射线衍射(XRD)和热重分析(TGA)对水合作用进行了评价。在第1天和第28天测量抗压强度。结果表明,碱含量(Na2Oeq)是控制72 h累积放热的最重要参数。有趣的是,体相含量与早期强度之间没有明显的相关性,强调矿物成分本身并不是性能的可靠预测因子。这些发现强调了水化机制的复杂性,并强调了控制熟料化学和矿物学的重要性。此外,统计混合设计被证明是探索控制水化和强度发展的多元相互作用的有效工具。
{"title":"The role of clinker mineralogy in cement properties: An analysis using statistical mixture design","authors":"José S. Andrade Neto ,&nbsp;Ivo C. Carvalho ,&nbsp;Henrique A. Santana ,&nbsp;Paulo Matos ,&nbsp;Ana Paula Kirchheim","doi":"10.1016/j.cemconres.2025.108102","DOIUrl":"10.1016/j.cemconres.2025.108102","url":null,"abstract":"<div><div>This study applied a statistical mixture design to assess the influence of clinker composition and mineralogy on early hydration and strength. Twenty-one mixtures were prepared using six industrial clinkers with distinct mineralogical characteristics. Hydration was assessed using isothermal calorimetry, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Compressive strength was measured at 1 and 28 days. The results revealed that alkali content (Na<sub>2</sub>Oeq) was the most influential parameter controlling cumulative heat release up to 72 h. Interestingly, no clear correlation was observed between bulk phase content and early strength, emphasizing that mineralogical composition alone is not a reliable predictor of performance. These findings underscore the complexity of hydration mechanisms and highlight the importance of controlling clinker chemistry and mineralogy. Moreover, statistical mixture design proved an effective tool for exploring multivariate interactions governing hydration and strength development.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108102"},"PeriodicalIF":13.1,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative characterization of interfacial enhancement in microfiber-reinforced recycled cementitious composites after carbonation using nanoindentation combined with 4D CT 纳米压痕结合4D CT定量表征微纤维增强再生胶凝复合材料碳化后界面增强
IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-12-17 DOI: 10.1016/j.cemconres.2025.108115
Changqing Wang , Yuelan Lu , Zhiming Ma
This study systematically explores the interfacial transition zone (ITZ) strengthening mechanisms in microfiber-reinforced recycled cementitious composites (MF-RCC) under carbonation treatment, primarily through quantitative nanoindentation mapping combined with supportive 4D CT imaging. Nanoindentation was innovatively adopted to quantify ITZ enhancement, revealing significant increases of approximately 42 % in local hardness and 48 % in elastic modulus after carbonation. A statistical deconvolution model was established to interpret the nanoindentation data, clearly showing a shift toward higher hardness and reduced variability (homogeneity improved by approximately 35 %) in the carbonated specimens. Complementary 4D CT characterization validated these findings, indicating a noticeable reduction of porosity by approximately 40 %, thus supporting the mechanical densification of the ITZ. The integrated nanoindentation and statistical modeling results highlight carbonation combined with microfiber reinforcement as an effective approach to optimize interfacial properties and mechanical stability, providing quantitative insights for the sustainable design of recycled cementitious materials.
本研究系统探讨了碳化处理下微纤维增强再生胶凝复合材料(MF-RCC)的界面过渡区(ITZ)强化机制,主要通过定量纳米压痕成像结合支持性4D CT成像。创新地采用纳米压痕来量化ITZ增强,显示碳化后局部硬度显著提高约42%,弹性模量显著提高48%。建立了一个统计反褶积模型来解释纳米压痕数据,清楚地显示碳化样品向更高的硬度和更少的可变性(均匀性提高了约35%)转变。补充4D CT表征证实了这些发现,表明孔隙度显著降低了约40%,从而支持了ITZ的机械致密化。综合纳米压痕和统计建模结果表明,碳化结合超细纤维增强是优化界面性能和机械稳定性的有效方法,为再生胶凝材料的可持续设计提供了定量见解。
{"title":"Quantitative characterization of interfacial enhancement in microfiber-reinforced recycled cementitious composites after carbonation using nanoindentation combined with 4D CT","authors":"Changqing Wang ,&nbsp;Yuelan Lu ,&nbsp;Zhiming Ma","doi":"10.1016/j.cemconres.2025.108115","DOIUrl":"10.1016/j.cemconres.2025.108115","url":null,"abstract":"<div><div>This study systematically explores the interfacial transition zone (ITZ) strengthening mechanisms in microfiber-reinforced recycled cementitious composites (MF-RCC) under carbonation treatment, primarily through quantitative nanoindentation mapping combined with supportive 4D CT imaging. Nanoindentation was innovatively adopted to quantify ITZ enhancement, revealing significant increases of approximately 42 % in local hardness and 48 % in elastic modulus after carbonation. A statistical deconvolution model was established to interpret the nanoindentation data, clearly showing a shift toward higher hardness and reduced variability (homogeneity improved by approximately 35 %) in the carbonated specimens. Complementary 4D CT characterization validated these findings, indicating a noticeable reduction of porosity by approximately 40 %, thus supporting the mechanical densification of the ITZ. The integrated nanoindentation and statistical modeling results highlight carbonation combined with microfiber reinforcement as an effective approach to optimize interfacial properties and mechanical stability, providing quantitative insights for the sustainable design of recycled cementitious materials.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"201 ","pages":"Article 108115"},"PeriodicalIF":13.1,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145797701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cement and Concrete Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1