首页 > 最新文献

Cement and Concrete Research最新文献

英文 中文
Numerical investigation of mechanisms affecting alkali-silica reaction advancement by reactive transport simulations
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-03 DOI: 10.1016/j.cemconres.2025.107791
Lucie Gomez , Frédéric Perales , Stéphane Multon , Adrien Socié , Benoit Fournier , Matthieu Argouges
Alkali-Silica Reaction (ASR) is a long-term chemical degradation induced in concrete by the difference in pH between the aggregate and the cement paste. ASR advancement is thus driven by the combination of the ionic species diffusion and the dissolution of reactive silica. In this paper, the reactive transport model is based on the principal sequence of the ASR-mechanisms: hydroxide, alkali and calcium diffusion, silica dissolution and reaction products precipitation. First, the proposed model highlights the impact of the competition between diffusion and dissolution kinetic on the formation of products in the depth of the aggregate particles according to the calcium concentration. Secondly, the numerical study on the size effect of the aggregate particles highlights the efficacy of this approach to reproduce the dependence of the products type formed during precipitation, allowing for the competition between ASR and pozzolanic effect to be reproduced.
{"title":"Numerical investigation of mechanisms affecting alkali-silica reaction advancement by reactive transport simulations","authors":"Lucie Gomez ,&nbsp;Frédéric Perales ,&nbsp;Stéphane Multon ,&nbsp;Adrien Socié ,&nbsp;Benoit Fournier ,&nbsp;Matthieu Argouges","doi":"10.1016/j.cemconres.2025.107791","DOIUrl":"10.1016/j.cemconres.2025.107791","url":null,"abstract":"<div><div>Alkali-Silica Reaction (ASR) is a long-term chemical degradation induced in concrete by the difference in pH between the aggregate and the cement paste. ASR advancement is thus driven by the combination of the ionic species diffusion and the dissolution of reactive silica. In this paper, the reactive transport model is based on the principal sequence of the ASR-mechanisms: hydroxide, alkali and calcium diffusion, silica dissolution and reaction products precipitation. First, the proposed model highlights the impact of the competition between diffusion and dissolution kinetic on the formation of products in the depth of the aggregate particles according to the calcium concentration. Secondly, the numerical study on the size effect of the aggregate particles highlights the efficacy of this approach to reproduce the dependence of the products type formed during precipitation, allowing for the competition between ASR and pozzolanic effect to be reproduced.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107791"},"PeriodicalIF":10.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical modeling of unidirectional sulfate attack on tunnel lining concrete considering water evaporation at free face 考虑自由面水分蒸发的隧道衬砌混凝土单向硫酸盐侵蚀数值模拟
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-03 DOI: 10.1016/j.cemconres.2025.107813
Zirui Fan , Dujian Zou , Ming Zhang , Shanshan Qin , Tiejun Liu
Severe scaling and spalling are commonly observed on tunnel lining surfaces in sulfate-rich environments. Due to humidity gradients, sulfate solution in rock fissures migrates through capillary action to the concrete exposed face, leading to physical crystallization precipitation at free-face zone and chemical sulfate attack at soil-facing zone, resulting in concrete expansion and crack. Existing models focus on full immersion or wet-dry cycles, which have obvious errors in predicting concrete damage under similar partial immersion. Considering the time-varying characteristics of saturation, porosity, calcium leaching and crack, a transport-reaction-expansion model for lining concrete under dual sulfate attacks and water evaporation was established. The spatiotemporal distribution of phase composition and the influence of modeling parameters on concrete expansion were revealed. The expansion strain caused by dual sulfate attacks and changes in the water evaporation zone was discussed. These findings provide a theoretical foundation for the durability design of lining concrete in sulfate-rich environment.
{"title":"Numerical modeling of unidirectional sulfate attack on tunnel lining concrete considering water evaporation at free face","authors":"Zirui Fan ,&nbsp;Dujian Zou ,&nbsp;Ming Zhang ,&nbsp;Shanshan Qin ,&nbsp;Tiejun Liu","doi":"10.1016/j.cemconres.2025.107813","DOIUrl":"10.1016/j.cemconres.2025.107813","url":null,"abstract":"<div><div>Severe scaling and spalling are commonly observed on tunnel lining surfaces in sulfate-rich environments. Due to humidity gradients, sulfate solution in rock fissures migrates through capillary action to the concrete exposed face, leading to physical crystallization precipitation at free-face zone and chemical sulfate attack at soil-facing zone, resulting in concrete expansion and crack. Existing models focus on full immersion or wet-dry cycles, which have obvious errors in predicting concrete damage under similar partial immersion. Considering the time-varying characteristics of saturation, porosity, calcium leaching and crack, a transport-reaction-expansion model for lining concrete under dual sulfate attacks and water evaporation was established. The spatiotemporal distribution of phase composition and the influence of modeling parameters on concrete expansion were revealed. The expansion strain caused by dual sulfate attacks and changes in the water evaporation zone was discussed. These findings provide a theoretical foundation for the durability design of lining concrete in sulfate-rich environment.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107813"},"PeriodicalIF":10.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insight into self-antifoaming effect of entrained CO2 bubbles in fresh cement paste 对新拌水泥浆中夹带的二氧化碳气泡的自消泡效应的新认识
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-03 DOI: 10.1016/j.cemconres.2025.107815
Suhui Zhang , Min Liu , Keren Zheng , Lou Chen , Caijun Shi , Qiang Yuan
A new insight into self-antifoaming effect of CO2 bubble was proposed by exploring the evolution of entrained CO2 bubbles in fresh cement paste. The disappearance process of CO2 bubbles was observed, resulting in the reduction of air content. The evolution of CO2 bubbles eventually formed two kinds of pore structures: hollow spherical shell structure (HSS) and interior filled spherical shell structure (IFSS). It was evidenced by the rich area of CaCO3 at the outline of CO2 bubble and the interior formation of hydration products. Meanwhile, self-antifoaming effect of CO2 bubble promoted the microstructural build-up of fresh cement paste and enhanced the mechanical property of hardened cement paste. Fresh cement paste with CO2 bubbles had stronger elasticity and higher volume resistance, corresponding to the faster rise of storage modulus. The compressive strength of hardened cement paste was increased from 29.6 MPa to 37.3 MPa with a porosity reduction of 6%.
{"title":"New insight into self-antifoaming effect of entrained CO2 bubbles in fresh cement paste","authors":"Suhui Zhang ,&nbsp;Min Liu ,&nbsp;Keren Zheng ,&nbsp;Lou Chen ,&nbsp;Caijun Shi ,&nbsp;Qiang Yuan","doi":"10.1016/j.cemconres.2025.107815","DOIUrl":"10.1016/j.cemconres.2025.107815","url":null,"abstract":"<div><div>A new insight into self-antifoaming effect of CO<sub>2</sub> bubble was proposed by exploring the evolution of entrained CO<sub>2</sub> bubbles in fresh cement paste. The disappearance process of CO<sub>2</sub> bubbles was observed, resulting in the reduction of air content. The evolution of CO<sub>2</sub> bubbles eventually formed two kinds of pore structures: hollow spherical shell structure (HSS) and interior filled spherical shell structure (IFSS). It was evidenced by the rich area of CaCO<sub>3</sub> at the outline of CO<sub>2</sub> bubble and the interior formation of hydration products. Meanwhile, self-antifoaming effect of CO<sub>2</sub> bubble promoted the microstructural build-up of fresh cement paste and enhanced the mechanical property of hardened cement paste. Fresh cement paste with CO<sub>2</sub> bubbles had stronger elasticity and higher volume resistance, corresponding to the faster rise of storage modulus. The compressive strength of hardened cement paste was increased from 29.6 MPa to 37.3 MPa with a porosity reduction of 6%.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107815"},"PeriodicalIF":10.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporation of boron into metakaolin-based geopolymers for radionuclide immobilisation and neutron capture potential
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.cemconres.2025.107814
Xiaobo Niu , Yogarajah Elakneswaran , Ang Li , Sivasubramaniam Seralathan , Ryosuke Kikuchi , Yoshihisa Hiraki , Junya Sato , Takeshi Osugi , Brant Walkley
Metakaolin-based geopolymers have attracted significant interest in decontaminating radioactive debris from the Fukushima nuclear accident. This study explored the incorporation of boron (B) into geopolymers using boric acid as the source, with the goal of developing B-enriched geopolymers for enhanced radionuclide immobilisation and neutron capture potential. The addition of boric acid lowered the pH of the alkali activator, reducing metakaolin solubility and impeding alkali-activated geopolymerisation. B formed an unstable BO4(xB, 4-xSi) structure with extra short-range Si tetrahedra in low-temperature curing conditions, making it prone to be leached out. High-temperature curing facilitated alkali-activated geopolymerisation, mitigating some negative effects of boric acid. It also promoted partial incorporation of BO4 into the framework, reducing leaching. Additionally, in acid-activated geopolymers, boric acid absorbed substantial reaction heat during the initial dealumination phase by reacting with PO4, thereby enhancing the overall geopolymerisation degree and increasing the relative content of near-Si terminal P and Al6 units. B could be incorporated into the framework by bonding with numerous Al-unsaturated Si tetrahedra to form a stable BO4(0B, 4Si) structure. Although B introduction slightly reduced the positive charge of the acid-activated geopolymer's structure, decreasing its capacity to immobilise anionic SeO32− through electrostatic adsorption, the decrease was negligible. Conversely, B introduction increased structural compactness, which improved Cs+ immobilisation through physical entrapment. Overall, the B-containing acid-activated geopolymer effectively incorporated B into the main matrix while maintaining radionuclide immobilisation capacity. This study provides valuable insights into the selection and incorporation mechanisms of the B-containing geopolymer matrix, contributing to effective strategies for radioactive waste disposal.
{"title":"Incorporation of boron into metakaolin-based geopolymers for radionuclide immobilisation and neutron capture potential","authors":"Xiaobo Niu ,&nbsp;Yogarajah Elakneswaran ,&nbsp;Ang Li ,&nbsp;Sivasubramaniam Seralathan ,&nbsp;Ryosuke Kikuchi ,&nbsp;Yoshihisa Hiraki ,&nbsp;Junya Sato ,&nbsp;Takeshi Osugi ,&nbsp;Brant Walkley","doi":"10.1016/j.cemconres.2025.107814","DOIUrl":"10.1016/j.cemconres.2025.107814","url":null,"abstract":"<div><div>Metakaolin-based geopolymers have attracted significant interest in decontaminating radioactive debris from the Fukushima nuclear accident. This study explored the incorporation of boron (B) into geopolymers using boric acid as the source, with the goal of developing B-enriched geopolymers for enhanced radionuclide immobilisation and neutron capture potential. The addition of boric acid lowered the pH of the alkali activator, reducing metakaolin solubility and impeding alkali-activated geopolymerisation. B formed an unstable BO<sub>4</sub>(xB, 4-xSi) structure with extra short-range Si tetrahedra in low-temperature curing conditions, making it prone to be leached out. High-temperature curing facilitated alkali-activated geopolymerisation, mitigating some negative effects of boric acid. It also promoted partial incorporation of BO<sub>4</sub> into the framework, reducing leaching. Additionally, in acid-activated geopolymers, boric acid absorbed substantial reaction heat during the initial dealumination phase by reacting with PO<sub>4</sub>, thereby enhancing the overall geopolymerisation degree and increasing the relative content of near-Si terminal P and Al<sub>6</sub> units. B could be incorporated into the framework by bonding with numerous Al-unsaturated Si tetrahedra to form a stable BO<sub>4</sub>(0B, 4Si) structure. Although B introduction slightly reduced the positive charge of the acid-activated geopolymer's structure, decreasing its capacity to immobilise anionic SeO<sub>3</sub><sup>2−</sup> through electrostatic adsorption, the decrease was negligible. Conversely, B introduction increased structural compactness, which improved Cs<sup>+</sup> immobilisation through physical entrapment. Overall, the B-containing acid-activated geopolymer effectively incorporated B into the main matrix while maintaining radionuclide immobilisation capacity. This study provides valuable insights into the selection and incorporation mechanisms of the B-containing geopolymer matrix, contributing to effective strategies for radioactive waste disposal.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107814"},"PeriodicalIF":10.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of temperature on the solubility of xonotlite 温度对硅钙石溶解度的影响
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.cemconres.2024.107732
S. Mingione , D. Jansen , F. Winnefeld , S.V. Churakov , B. Lothenbach
Xonotlite forms under hydrothermal conditions and it dehydrates to β-wollastonite between 770 and 800 °C under atmospheric pressure. The solubility of xonotlite is poorly known, as the experimental datasets reported in literature differ by as much as 10 log units. This study investigates the impact of temperature (7, 20, 50 and 80 °C) on the solubility of xonotlite by dissolution experiments from undersaturation. The derived solubility data are comparable to those reported in literature at 25 °C for synthesized xonotlite, while the much higher solubility reported in literature for natural xonotlite seems to describe the solubility of amorphous C-S-H. The solubility of xonotlite increases moderately at lower temperature. At 7 °C, xonotlite was found to co-exist with tobermorite.
硅灰石在水热条件下形成,在770 ~ 800℃大气压下脱水成β-硅灰石。硅钙石的溶解度鲜为人知,因为文献中报道的实验数据集相差多达10个对数单位。通过欠饱和溶解实验,研究了温度(7、20、50和80℃)对硬硅橄榄石溶解度的影响。导出的溶解度数据与文献中报道的合成硬硅钙石在25°C下的溶解度数据相当,而文献中报道的天然硬硅钙石更高的溶解度似乎描述了无定形C- s - h的溶解度。硅钙石的溶解度在较低温度下适度提高。在7℃时,发现硅钙石与托贝莫来石共存。
{"title":"Effect of temperature on the solubility of xonotlite","authors":"S. Mingione ,&nbsp;D. Jansen ,&nbsp;F. Winnefeld ,&nbsp;S.V. Churakov ,&nbsp;B. Lothenbach","doi":"10.1016/j.cemconres.2024.107732","DOIUrl":"10.1016/j.cemconres.2024.107732","url":null,"abstract":"<div><div>Xonotlite forms under hydrothermal conditions and it dehydrates to β-wollastonite between 770 and 800 °C under atmospheric pressure. The solubility of xonotlite is poorly known, as the experimental datasets reported in literature differ by as much as 10 log units. This study investigates the impact of temperature (7, 20, 50 and 80 °C) on the solubility of xonotlite by dissolution experiments from undersaturation. The derived solubility data are comparable to those reported in literature at 25 °C for synthesized xonotlite, while the much higher solubility reported in literature for natural xonotlite seems to describe the solubility of amorphous C-S-H. The solubility of xonotlite increases moderately at lower temperature. At 7 °C, xonotlite was found to co-exist with tobermorite.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"188 ","pages":"Article 107732"},"PeriodicalIF":10.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the surface coverage dependences of rheological properties of cement paste: Measurement and scaling analysis
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.cemconres.2025.107816
Xiaohan Yu , Le Teng , Xin Shu , Xin Liu , Xiaoxian Wang , Jiang Zhu , Jiaping Liu
Recent findings indicate that the effect of superplasticizers on decreasing the yield stress of cementitious suspensions is attributed to the modification of percolation threshold in addition to interparticle force. These dual effects complicate the assessment of yield stress dependence on the superplasticizer type and dosage, as yield stress can no longer be expressed as a separable function of interparticle forces and the number of interacting particles. To address this challenge, our study proposed scaling laws that directly linked yield stress to the surface coverage of superplasticizer by incorporating the percolation threshold into the interparticle force function. The scaling relation between surface coverage and viscosity was moreover established. At low surface coverages, the combined contributions of interparticle force and percolation threshold to the yield stress were characterized using the square of polymer devoid contact frequency. Furthermore, the viscosity varied linearly with the square root of this frequency, scaling with the quarter power of yield stress. In the high surface coverage regime, the yield stress was linearly dependent on the polymer devoid contact frequency given the limited variation of interparticle force. The proposed scaling laws can account well for the rheological property dependences on superplasticizer adsorption over a wide range of cement suspensions, holding significant values for controlling the yield stress and viscosity of cement-based materials in industrial practice.
{"title":"New insights into the surface coverage dependences of rheological properties of cement paste: Measurement and scaling analysis","authors":"Xiaohan Yu ,&nbsp;Le Teng ,&nbsp;Xin Shu ,&nbsp;Xin Liu ,&nbsp;Xiaoxian Wang ,&nbsp;Jiang Zhu ,&nbsp;Jiaping Liu","doi":"10.1016/j.cemconres.2025.107816","DOIUrl":"10.1016/j.cemconres.2025.107816","url":null,"abstract":"<div><div>Recent findings indicate that the effect of superplasticizers on decreasing the yield stress of cementitious suspensions is attributed to the modification of percolation threshold in addition to interparticle force. These dual effects complicate the assessment of yield stress dependence on the superplasticizer type and dosage, as yield stress can no longer be expressed as a separable function of interparticle forces and the number of interacting particles. To address this challenge, our study proposed scaling laws that directly linked yield stress to the surface coverage of superplasticizer by incorporating the percolation threshold into the interparticle force function. The scaling relation between surface coverage and viscosity was moreover established. At low surface coverages, the combined contributions of interparticle force and percolation threshold to the yield stress were characterized using the square of polymer devoid contact frequency. Furthermore, the viscosity varied linearly with the square root of this frequency, scaling with the quarter power of yield stress. In the high surface coverage regime, the yield stress was linearly dependent on the polymer devoid contact frequency given the limited variation of interparticle force. The proposed scaling laws can account well for the rheological property dependences on superplasticizer adsorption over a wide range of cement suspensions, holding significant values for controlling the yield stress and viscosity of cement-based materials in industrial practice.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107816"},"PeriodicalIF":10.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in cement paste during accelerated mortar bar testing for pyrrhotite containing aggregate 含磁黄铁矿骨料的加速砂浆棒试验中水泥浆体的变化
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-02-01 DOI: 10.1016/j.cemconres.2024.107730
K. De Weerdt , M. Bagheri , J. Lindgård , H. Lindstad , A. Rodrigues , J. Duchesne , P.-L. Fecteau , M.K. Haugen , T. Danner , B.J. Wigum , N. Oberhardt , K. Aasly , B. Lothenbach
The accelerated mortar bar test (AMBT) for pyrrhotite (Fe1-xS) containing aggregates accelerates expansion using two regimes: Phase I, during which Fe1-xS oxidation to iron hydroxide is accelerated by bleach and storage at 80 °C; Phase II that promotes thaumasite formation with continued bleach soaking and storage at 4 °C. Two bleach concentrations and one aggregate containing 0.5 wt% Fe1-xS are tested. SEM-EDX data indicate that the oxidized iron precipitates as iron hydroxide at the place of the Fe1-xS, leading to significant expansion (0.22%) during Phase I. The released S distributes in the cement paste but leads only to limited amount of additional ettringite and thaumasite and thus only to limited expansion (0.07%). The NaOCl bleach reduced during the test resulting in chloride and thus to Friedel's salt formation and ettringite stabilization at 80 °C. Only during the prolongation of Phase II, the formation of thaumasite and additional expansion was observed.
对于含有骨料的磁黄铁矿(Fe1-xS),加速砂浆棒试验(AMBT)采用两种方式加速膨胀:第一阶段,通过漂白剂和80℃的储存加速Fe1-xS氧化成氢氧化铁;第二阶段,通过持续的漂白剂浸泡和在4°C下储存来促进膨润土的形成。测试了两种漂白剂浓度和一种含0.5 wt% Fe1-xS的骨料。SEM-EDX数据表明,氧化后的铁在Fe1-xS的位置以氢氧化铁的形式析出,导致了第一阶段的显著膨胀(0.22%)。释放的S分布在水泥浆中,但只导致了少量的钙矾石和硫马石的额外膨胀(0.07%)。NaOCl漂白剂在测试过程中减少,导致氯化物,从而形成弗里德尔盐和钙矾石在80°C下稳定。只有在第二阶段的延长期间,才观察到梭马石的形成和额外的膨胀。
{"title":"Changes in cement paste during accelerated mortar bar testing for pyrrhotite containing aggregate","authors":"K. De Weerdt ,&nbsp;M. Bagheri ,&nbsp;J. Lindgård ,&nbsp;H. Lindstad ,&nbsp;A. Rodrigues ,&nbsp;J. Duchesne ,&nbsp;P.-L. Fecteau ,&nbsp;M.K. Haugen ,&nbsp;T. Danner ,&nbsp;B.J. Wigum ,&nbsp;N. Oberhardt ,&nbsp;K. Aasly ,&nbsp;B. Lothenbach","doi":"10.1016/j.cemconres.2024.107730","DOIUrl":"10.1016/j.cemconres.2024.107730","url":null,"abstract":"<div><div>The accelerated mortar bar test (AMBT) for pyrrhotite (Fe<sub>1-x</sub>S) containing aggregates accelerates expansion using two regimes: Phase I, during which Fe<sub>1-x</sub>S oxidation to iron hydroxide is accelerated by bleach and storage at 80 °C; Phase II that promotes thaumasite formation with continued bleach soaking and storage at 4 °C. Two bleach concentrations and one aggregate containing 0.5 wt% Fe<sub>1-x</sub>S are tested. SEM-EDX data indicate that the oxidized iron precipitates as iron hydroxide at the place of the Fe<sub>1-x</sub>S, leading to significant expansion (0.22%) during Phase I. The released S distributes in the cement paste but leads only to limited amount of additional ettringite and thaumasite and thus only to limited expansion (0.07%). The NaOCl bleach reduced during the test resulting in chloride and thus to Friedel's salt formation and ettringite stabilization at 80 °C. Only during the prolongation of Phase II, the formation of thaumasite and additional expansion was observed.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"188 ","pages":"Article 107730"},"PeriodicalIF":10.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into autogenous shrinkage of alkali-activated slag under elevated curing temperature
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-01-31 DOI: 10.1016/j.cemconres.2025.107803
Weiwei Chen , Xinyan Liu , Xinyu Shen , Shu Liu , Hedong Li , Bo Li
This paper investigates the autogenous shrinkage of alkali-activated slag (AAS) under thermal curing using a tailored corrugated tube system. The results reveal that thermal curing decreases the total deformation of AAS mortar due to thermal expansion while increasing autogenous shrinkage. This enhanced autogenous shrinkage results from the interaction of multiple factors, with the dominant influences evolving over time. At early ages, thermal curing enhances autogenous shrinkage without intensifying internal humidity reduction, ascribed to improved silicate polymerisation. Afterwards, self-desiccation governs the autogenous shrinkage, initially constrained by increased early-age stiffness, reduced mesopore volume, and weakened viscous characteristics of AAS under thermal curing. However, the self-desiccation-induced autogenous shrinkage is intensified at later ages due to rapid pore refinement at elevated temperature, shifting the dominant shrinkage driving force from capillary pressure to surface-free energy. The findings of this study provide a foundation for improving the volumetric stability of AAS-based materials at elevated temperature.
{"title":"Insights into autogenous shrinkage of alkali-activated slag under elevated curing temperature","authors":"Weiwei Chen ,&nbsp;Xinyan Liu ,&nbsp;Xinyu Shen ,&nbsp;Shu Liu ,&nbsp;Hedong Li ,&nbsp;Bo Li","doi":"10.1016/j.cemconres.2025.107803","DOIUrl":"10.1016/j.cemconres.2025.107803","url":null,"abstract":"<div><div>This paper investigates the autogenous shrinkage of alkali-activated slag (AAS) under thermal curing using a tailored corrugated tube system. The results reveal that thermal curing decreases the total deformation of AAS mortar due to thermal expansion while increasing autogenous shrinkage. This enhanced autogenous shrinkage results from the interaction of multiple factors, with the dominant influences evolving over time. At early ages, thermal curing enhances autogenous shrinkage without intensifying internal humidity reduction, ascribed to improved silicate polymerisation. Afterwards, self-desiccation governs the autogenous shrinkage, initially constrained by increased early-age stiffness, reduced mesopore volume, and weakened viscous characteristics of AAS under thermal curing. However, the self-desiccation-induced autogenous shrinkage is intensified at later ages due to rapid pore refinement at elevated temperature, shifting the dominant shrinkage driving force from capillary pressure to surface-free energy. The findings of this study provide a foundation for improving the volumetric stability of AAS-based materials at elevated temperature.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107803"},"PeriodicalIF":10.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Underlying mechanisms of the effect of microfines of manufactured sand on non-linear structural build-up of cement paste
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-01-31 DOI: 10.1016/j.cemconres.2025.107812
Jiang Zhu , Jiaping Liu , Kamal H. Khayat , Xin Cheng , Wei Zhao , Zhen Li , Xin Shu , Yongbo Huang
The rheological properties of cement-based materials made with manufactured sand vary with the content and physio-chemical properties of microfines in the sand. However, the evaluation of rheological properties regarding the structural build-up at early-age hydration remains challenging for the cementitious materials prepared with different manufactured sands, due to complicated underlying structuration mechanisms. This paper studies the effect of disparate microfines of different manufactured sands on the non-linear growth of static yield stress of cement pastes at rest. The paste mixtures were prepared with 0.40 and 0.275 water-to-cement mass ratio (W/C) and had a fixed mini-slump flow of 240 ± 5 mm. Test results show that the additional microfines facilitate the rapid early increase of static yield stress over 10 min rest, due to the intensified flocculation between total solid particles and simultaneously the greater strengthening of the agglomerating network by rapid cement hydration. Besides, the microfines promote the exponential growth of static yield stress over 10 to 120 min rest, given the accelerated particle network densification by the continuous cement hydration. Qualitative approaches describing the enhancement of flocculation by rapid early hydrates and the particle network densification during the succeeding early-age hydration are proposed to evaluate the rapid increase and exponential growth of static yield stress, by taking into account the evolving ratio of solid particles to excess interstitial solutions and the degree of cement hydration.
{"title":"Underlying mechanisms of the effect of microfines of manufactured sand on non-linear structural build-up of cement paste","authors":"Jiang Zhu ,&nbsp;Jiaping Liu ,&nbsp;Kamal H. Khayat ,&nbsp;Xin Cheng ,&nbsp;Wei Zhao ,&nbsp;Zhen Li ,&nbsp;Xin Shu ,&nbsp;Yongbo Huang","doi":"10.1016/j.cemconres.2025.107812","DOIUrl":"10.1016/j.cemconres.2025.107812","url":null,"abstract":"<div><div>The rheological properties of cement-based materials made with manufactured sand vary with the content and physio-chemical properties of microfines in the sand. However, the evaluation of rheological properties regarding the structural build-up at early-age hydration remains challenging for the cementitious materials prepared with different manufactured sands, due to complicated underlying structuration mechanisms. This paper studies the effect of disparate microfines of different manufactured sands on the non-linear growth of static yield stress of cement pastes at rest. The paste mixtures were prepared with 0.40 and 0.275 water-to-cement mass ratio (W/C) and had a fixed mini-slump flow of 240 ± 5 mm. Test results show that the additional microfines facilitate the rapid early increase of static yield stress over 10 min rest, due to the intensified flocculation between total solid particles and simultaneously the greater strengthening of the agglomerating network by rapid cement hydration. Besides, the microfines promote the exponential growth of static yield stress over 10 to 120 min rest, given the accelerated particle network densification by the continuous cement hydration. Qualitative approaches describing the enhancement of flocculation by rapid early hydrates and the particle network densification during the succeeding early-age hydration are proposed to evaluate the rapid increase and exponential growth of static yield stress, by taking into account the evolving ratio of solid particles to excess interstitial solutions and the degree of cement hydration.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107812"},"PeriodicalIF":10.9,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early hydration and viscoelastic properties of tricalcium aluminate pastes influenced by soluble sodium salts
IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2025-01-30 DOI: 10.1016/j.cemconres.2025.107788
Daniel Axthammer , Tobias Lange , Joachim Dengler , Torben Gädt
During the early hydration of ordinary Portland cement (OPC), tricalcium aluminate (C3A) exhibits the highest reactivity among the clinker phases. Consequently, C3A significantly influences the early rheological properties of OPC-based materials, thereby linking rheology with C3A reactivity. The reactivity of C3A is affected by temperature, calcium sulfates, admixtures, and ionic strength. Calcium sulfate phases such as gypsum, bassanite, or anhydrite are used in technical Portland cement to control the early reactivity of C3A.
This work investigates the impact of three sodium salts — sodium chloride (NaCl), sodium nitrate (NaNO3), and sodium sulfate (Na2SO4) — on the hydration of C3A. We study model suspensions composed of 10% cubic C3A and 90% quartz by weight with in-situ isothermal calorimetry. The C3A suspensions were mixed inside the calorimeter with a water-to-solid ratio of 0.8. Increasing concentrations, i.e., 400, 1000, and 2000 µmol g−1, of the sodium salts mentioned above lead to characteristically decreased C3A reactivities. Combined with small amplitude oscillatory shear (SAOS) rheology experiments, we show that the addition of Na2SO4 significantly reduces the heat flow and the initial storage modulus. In contrast, NaNO3 and NaCl had less pronounced effects on both storage modulus and reaction heat.
The differences in structure development are attributed to the formation of different hydrate phases. Specifically, Na2SO4 leads to ettringite formation, whereas the presence of nitrate and chloride ions favors the precipitation of AFm phases. The study concludes that introducing various sodium salts can modulate the kinetics of C3A hydration and alter the reaction pathway, forming different hydrate phases.
{"title":"Early hydration and viscoelastic properties of tricalcium aluminate pastes influenced by soluble sodium salts","authors":"Daniel Axthammer ,&nbsp;Tobias Lange ,&nbsp;Joachim Dengler ,&nbsp;Torben Gädt","doi":"10.1016/j.cemconres.2025.107788","DOIUrl":"10.1016/j.cemconres.2025.107788","url":null,"abstract":"<div><div>During the early hydration of ordinary Portland cement (OPC), tricalcium aluminate (C<sub>3</sub>A) exhibits the highest reactivity among the clinker phases. Consequently, C<sub>3</sub>A significantly influences the early rheological properties of OPC-based materials, thereby linking rheology with C<sub>3</sub>A reactivity. The reactivity of C<sub>3</sub>A is affected by temperature, calcium sulfates, admixtures, and ionic strength. Calcium sulfate phases such as gypsum, bassanite, or anhydrite are used in technical Portland cement to control the early reactivity of C<sub>3</sub>A.</div><div>This work investigates the impact of three sodium salts — sodium chloride (NaCl), sodium nitrate (NaNO<sub>3</sub>), and sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) — on the hydration of C<sub>3</sub>A. We study model suspensions composed of 10% cubic C<sub>3</sub>A and 90% quartz by weight with in-situ isothermal calorimetry. The C<sub>3</sub>A suspensions were mixed inside the calorimeter with a water-to-solid ratio of 0.8. Increasing concentrations, i.e., 400, 1000, and 2000<!--> <!-->µmol<!--> <!-->g<sup>−1</sup>, of the sodium salts mentioned above lead to characteristically decreased C<sub>3</sub>A reactivities. Combined with small amplitude oscillatory shear (SAOS) rheology experiments, we show that the addition of Na<sub>2</sub>SO<sub>4</sub> significantly reduces the heat flow and the initial storage modulus. In contrast, NaNO<sub>3</sub> and NaCl had less pronounced effects on both storage modulus and reaction heat.</div><div>The differences in structure development are attributed to the formation of different hydrate phases. Specifically, Na<sub>2</sub>SO<sub>4</sub> leads to ettringite formation, whereas the presence of nitrate and chloride ions favors the precipitation of AFm phases. The study concludes that introducing various sodium salts can modulate the kinetics of C<sub>3</sub>A hydration and alter the reaction pathway, forming different hydrate phases.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"190 ","pages":"Article 107788"},"PeriodicalIF":10.9,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cement and Concrete Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1