The continuous growth of CNN complexity not only intensifies the need for hardware acceleration but also presents a huge challenge. That is, the solution space for CNN hardware design and dataflow mapping becomes enormously large besides the fact that it is discrete and lacks a well behaved structure. Most previous works either are stochastic metaheuristics, such as genetic algorithm, which are typically very slow for solving large problems, or rely on expensive sampling, e.g., Gumbel Softmax-based differentiable optimization and Bayesian optimization. We propose an analytical model for evaluating power and performance of CNN hardware design and dataflow solutions. Based on this model, we introduce a co-optimization method consisting of nonlinear programming and parallel local search. A key innovation in this model is its matrix form, which enables the use of deep learning toolkit for highly efficient computations of power/performance values and gradients in the optimization. In handling power-performance tradeoff, our method can lead to better solutions than minimizing a weighted sum of power and latency. The average relative error of our model compared with Timeloop is as small as 1%. Compared to state-of-the-art methods, our approach achieves solutions with up to 1.7 × shorter inference latency, 37.5% less power consumption, and 3 × less area on ResNet 18. Moreover, it provides a 6.2 × speedup of optimization runtime.
{"title":"Deep Learning Toolkit-Accelerated Analytical Co-optimization of CNN Hardware and Dataflow","authors":"Rongjian Liang, Jianfeng Song, Yuan Bo, Jiang Hu","doi":"10.1145/3508352.3549402","DOIUrl":"https://doi.org/10.1145/3508352.3549402","url":null,"abstract":"The continuous growth of CNN complexity not only intensifies the need for hardware acceleration but also presents a huge challenge. That is, the solution space for CNN hardware design and dataflow mapping becomes enormously large besides the fact that it is discrete and lacks a well behaved structure. Most previous works either are stochastic metaheuristics, such as genetic algorithm, which are typically very slow for solving large problems, or rely on expensive sampling, e.g., Gumbel Softmax-based differentiable optimization and Bayesian optimization. We propose an analytical model for evaluating power and performance of CNN hardware design and dataflow solutions. Based on this model, we introduce a co-optimization method consisting of nonlinear programming and parallel local search. A key innovation in this model is its matrix form, which enables the use of deep learning toolkit for highly efficient computations of power/performance values and gradients in the optimization. In handling power-performance tradeoff, our method can lead to better solutions than minimizing a weighted sum of power and latency. The average relative error of our model compared with Timeloop is as small as 1%. Compared to state-of-the-art methods, our approach achieves solutions with up to 1.7 × shorter inference latency, 37.5% less power consumption, and 3 × less area on ResNet 18. Moreover, it provides a 6.2 × speedup of optimization runtime.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"58 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127237960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Motion planning aims to find a collision-free trajectory from the start to goal configurations of a robot. As a key cognition task for all the autonomous machines, motion planning is fundamentally required in various real-world robotic applications, such as 2-D/3-D autonomous navigation of unmanned mobile and aerial vehicles and high degree-of-freedom (DoF) autonomous manipulation of industry/medical robot arms and graspers.Motion planning can be performed using either non-learning- based classical algorithms or learning-based neural approaches. Most recently, the powerful capabilities of deep neural networks (DNNs) make neural planners become very attractive because of their superior planning performance over the classical methods. In particular, graph neural network (GNN)-enabled motion planner has demonstrated the state-of-the-art performance across a set of challenging high-dimensional planning tasks, motivating the efficient hardware acceleration to fully unleash its potential and promote its widespread deployment in practical applications.To that end, in this paper we perform preliminary study of the efficient accelerator design of the GNN-based neural planner, especially for the neural explorer as the key component of the entire planning pipeline. By performing in-depth analysis on the different design choices, we identify that the hybrid architecture, instead of the uniform sparse matrix multiplication (SpMM)-based solution that is popularly adopted in the existing GNN hardware, is more suitable for our target neural explorer. With a set of optimization on microarchitecture and dataflow, several design challenges incurred by using hybrid architecture, such as extensive memory access and imbalanced workload, can be efficiently mitigated. Evaluation results show that our proposed customized hardware architecture achieves order-of-magnitude performance improvement over the CPU/GPU-based implementation with respect to area and energy efficiency in various working environments.
{"title":"Hardware Architecture of Graph Neural Network-enabled Motion Planner (Invited Paper)","authors":"Lingyi Huang, Xiao Zang, Yu Gong, Bo Yuan","doi":"10.1145/3508352.3561113","DOIUrl":"https://doi.org/10.1145/3508352.3561113","url":null,"abstract":"Motion planning aims to find a collision-free trajectory from the start to goal configurations of a robot. As a key cognition task for all the autonomous machines, motion planning is fundamentally required in various real-world robotic applications, such as 2-D/3-D autonomous navigation of unmanned mobile and aerial vehicles and high degree-of-freedom (DoF) autonomous manipulation of industry/medical robot arms and graspers.Motion planning can be performed using either non-learning- based classical algorithms or learning-based neural approaches. Most recently, the powerful capabilities of deep neural networks (DNNs) make neural planners become very attractive because of their superior planning performance over the classical methods. In particular, graph neural network (GNN)-enabled motion planner has demonstrated the state-of-the-art performance across a set of challenging high-dimensional planning tasks, motivating the efficient hardware acceleration to fully unleash its potential and promote its widespread deployment in practical applications.To that end, in this paper we perform preliminary study of the efficient accelerator design of the GNN-based neural planner, especially for the neural explorer as the key component of the entire planning pipeline. By performing in-depth analysis on the different design choices, we identify that the hybrid architecture, instead of the uniform sparse matrix multiplication (SpMM)-based solution that is popularly adopted in the existing GNN hardware, is more suitable for our target neural explorer. With a set of optimization on microarchitecture and dataflow, several design challenges incurred by using hybrid architecture, such as extensive memory access and imbalanced workload, can be efficiently mitigated. Evaluation results show that our proposed customized hardware architecture achieves order-of-magnitude performance improvement over the CPU/GPU-based implementation with respect to area and energy efficiency in various working environments.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116647261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Language equations are a powerful tool for compositional synthesis, modeled as the unknown component problem. Given a (sequential) system specification S and a fixed component F, we are asked to synthesize an unknown component X such that whose composition with F fulfills S. The synthesis of X can be formulated with language equation solving. Although prior work exploits partitioned representation for effective finite automata manipulation, it remains challenging to solve language equations involving a large number of states. In this work, we propose variants of Boolean automata as the underlying succinct representation for regular languages. They admit logic circuit manipulation and extend the scalability for solving language equations. Experimental results demonstrate the superiority of our method to the state-of-the-art in solving nine more cases out of the 36 studied benchmarks and achieving an average of 740× speedup.
{"title":"Language Equation Solving via Boolean Automata Manipulation","authors":"Wan-Hsuan Lin, Chia-Hsuan Su, J. H. Jiang","doi":"10.1145/3508352.3549428","DOIUrl":"https://doi.org/10.1145/3508352.3549428","url":null,"abstract":"Language equations are a powerful tool for compositional synthesis, modeled as the unknown component problem. Given a (sequential) system specification S and a fixed component F, we are asked to synthesize an unknown component X such that whose composition with F fulfills S. The synthesis of X can be formulated with language equation solving. Although prior work exploits partitioned representation for effective finite automata manipulation, it remains challenging to solve language equations involving a large number of states. In this work, we propose variants of Boolean automata as the underlying succinct representation for regular languages. They admit logic circuit manipulation and extend the scalability for solving language equations. Experimental results demonstrate the superiority of our method to the state-of-the-art in solving nine more cases out of the 36 studied benchmarks and achieving an average of 740× speedup.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133487612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is vital to select microarchitectures to achieve good trade-offs between performance, power, and area in the chip development cycle. Combining high-level hardware description languages and optimization of electronic design automation tools empowers microarchitecture exploration at the circuit level. Due to the extremely large design space and high runtime cost to evaluate a microarchitecture, ICCAD 2022 CAD Contest Problem C calls for an effective design space exploration algorithm to solve the problem. We formulate the research topic as a contest problem and provide benchmark suites, contest benchmark platforms, etc., for all contestants to innovate and estimate their algorithms.
{"title":"2022 ICCAD CAD Contest Problem C: Microarchitecture Design Space Exploration","authors":"Sicheng Li, Chen Bai, Xuechao Wei, Bizhao Shi, Yen-Kuang Chen, Yuan Xie","doi":"10.1145/3508352.3561109","DOIUrl":"https://doi.org/10.1145/3508352.3561109","url":null,"abstract":"It is vital to select microarchitectures to achieve good trade-offs between performance, power, and area in the chip development cycle. Combining high-level hardware description languages and optimization of electronic design automation tools empowers microarchitecture exploration at the circuit level. Due to the extremely large design space and high runtime cost to evaluate a microarchitecture, ICCAD 2022 CAD Contest Problem C calls for an effective design space exploration algorithm to solve the problem. We formulate the research topic as a contest problem and provide benchmark suites, contest benchmark platforms, etc., for all contestants to innovate and estimate their algorithms.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"14 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132119600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ubiquitous data acquisition and extensive data exchange of sensors pose severe security and privacy concerns for the end-users and the public. To enable real-time protection of raw data, it is demanding to facilitate privacy-preserving algorithms at data generation, or in-sensory privacy. However, due to the severe sensor resource constraints and intensive computation/security cost, it remains an open question of how to enable data protection algorithms with efficient c ircuit techniques. To answer this question, this paper discusses the potential of a stochastic mixed-signal (SMS) circuit for ultra-low-power, small-foot-print data security. In particular, this paper discusses digitally-controlled-oscillators (DCO) and their advantages in (1) seamless analog interface, (2) stochastic computation efficiency, and (3) unified entropy generation over conventional digital circuit baselines. With DCO as an illustrative case, we target (1) SMS privacy-preserving architecture definition and systematic SMS analysis on its performance gains across various hardware/software configurations, and (2) revisit analog/mixed-signal voltage/transistor scaling in the context of entropy-based data protection.
{"title":"Stochastic Mixed-Signal Circuit Design for In-sensor Privacy : (Invited Paper)","authors":"N. Cao, Jianbo Liu, Boyang Cheng, Muya Chang","doi":"10.1145/3508352.3561099","DOIUrl":"https://doi.org/10.1145/3508352.3561099","url":null,"abstract":"The ubiquitous data acquisition and extensive data exchange of sensors pose severe security and privacy concerns for the end-users and the public. To enable real-time protection of raw data, it is demanding to facilitate privacy-preserving algorithms at data generation, or in-sensory privacy. However, due to the severe sensor resource constraints and intensive computation/security cost, it remains an open question of how to enable data protection algorithms with efficient c ircuit techniques. To answer this question, this paper discusses the potential of a stochastic mixed-signal (SMS) circuit for ultra-low-power, small-foot-print data security. In particular, this paper discusses digitally-controlled-oscillators (DCO) and their advantages in (1) seamless analog interface, (2) stochastic computation efficiency, and (3) unified entropy generation over conventional digital circuit baselines. With DCO as an illustrative case, we target (1) SMS privacy-preserving architecture definition and systematic SMS analysis on its performance gains across various hardware/software configurations, and (2) revisit analog/mixed-signal voltage/transistor scaling in the context of entropy-based data protection.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128135193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent years have witnessed increasing use of domain-specific accelerators in computing platforms to provide power-performance efficiency for emerging applications. To increase their applicability within the domain, these accelerators tend to support a large set of functions, e.g. Nvidia’s open-source Deep Learning Accelerator, NVDLA, supports five distinct groups of functions [17]. However, an individual use case of an accelerator may utilize only a subset of these functions. The unused functions lead to unnecessary overhead of silicon area, power, and hardware verification/hardware-software co-verification complexity. This motivates our research question: Given an RTL design for an accelerator and a subset of functions of interest, can we automatically extract a subset of the RTL that is sufficient for these functions and sequentially equivalent to the original RTL? We call this the Usage-based RTL Subsetting problem, referred to as the RTL subsetting problem in short. We first formally define this problem and show that it can be formulated as a program synthesis problem, which can be solved by performing expensive hyperproperty checks. To overcome the high cost, we propose multiple levels of sound over-approximations to construct an effective algorithm based on relatively less expensive temporal property checking and taint analysis for information flow checking. We demonstrate the acceptable computation cost and the quality of the results of our algorithm through several case studies of accelerators from different domains. The applicability of our proposed algorithm can be seen in its ability to subset the large NVDLA accelerator (with over 50,000 registers and 1,600,000 gates) for the group of convolution functions, where the subset reduces the total number of registers by 18.6% and the total number of gates by 37.1%.
{"title":"Usage-Based RTL Subsetting for Hardware Accelerators","authors":"Qinhan Tan, Aarti Gupta, S. Malik","doi":"10.1145/3508352.3549391","DOIUrl":"https://doi.org/10.1145/3508352.3549391","url":null,"abstract":"Recent years have witnessed increasing use of domain-specific accelerators in computing platforms to provide power-performance efficiency for emerging applications. To increase their applicability within the domain, these accelerators tend to support a large set of functions, e.g. Nvidia’s open-source Deep Learning Accelerator, NVDLA, supports five distinct groups of functions [17]. However, an individual use case of an accelerator may utilize only a subset of these functions. The unused functions lead to unnecessary overhead of silicon area, power, and hardware verification/hardware-software co-verification complexity. This motivates our research question: Given an RTL design for an accelerator and a subset of functions of interest, can we automatically extract a subset of the RTL that is sufficient for these functions and sequentially equivalent to the original RTL? We call this the Usage-based RTL Subsetting problem, referred to as the RTL subsetting problem in short. We first formally define this problem and show that it can be formulated as a program synthesis problem, which can be solved by performing expensive hyperproperty checks. To overcome the high cost, we propose multiple levels of sound over-approximations to construct an effective algorithm based on relatively less expensive temporal property checking and taint analysis for information flow checking. We demonstrate the acceptable computation cost and the quality of the results of our algorithm through several case studies of accelerators from different domains. The applicability of our proposed algorithm can be seen in its ability to subset the large NVDLA accelerator (with over 50,000 registers and 1,600,000 gates) for the group of convolution functions, where the subset reduces the total number of registers by 18.6% and the total number of gates by 37.1%.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121842975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Bhunia, Amitabh Das, Saverio Fazzari, V. Kammler, David Kehlet, J. Rajendran, Ankur Srivastava
With growing use of hardware intellectual property (IP) based integrated circuits (IC) design and increasing reliance on a globalized supply chain, the threats to confidentiality of hardware IPs have emerged as major security concerns to the IP producers and owners. These threats are diverse, including reverse engineering (RE), piracy, cloning, and extraction of design secrets, and span different phases of electronics life cycle. The academic research community and the semiconductor industry have made significant efforts over the past decade on developing effective methodologies and CAD tools targeted to protect hardware IPs against these threats. These solutions include watermarking, logic locking, obfuscation, camouflaging, split manufacturing, and hardware redaction. This paper focuses on key topics on confidentiality of hardware IPs encompassing the major threats, protection approaches, security analysis, and metrics. It discusses the strengths and limitations of the major solutions in protecting hardware IPs against the confidentiality attacks, and future directions to address the limitations in the modern supply chain ecosystem.
{"title":"Hardware IP Protection against Confidentiality Attacks and Evolving Role of CAD Tool (Invited Paper)","authors":"S. Bhunia, Amitabh Das, Saverio Fazzari, V. Kammler, David Kehlet, J. Rajendran, Ankur Srivastava","doi":"10.1145/3508352.3561103","DOIUrl":"https://doi.org/10.1145/3508352.3561103","url":null,"abstract":"With growing use of hardware intellectual property (IP) based integrated circuits (IC) design and increasing reliance on a globalized supply chain, the threats to confidentiality of hardware IPs have emerged as major security concerns to the IP producers and owners. These threats are diverse, including reverse engineering (RE), piracy, cloning, and extraction of design secrets, and span different phases of electronics life cycle. The academic research community and the semiconductor industry have made significant efforts over the past decade on developing effective methodologies and CAD tools targeted to protect hardware IPs against these threats. These solutions include watermarking, logic locking, obfuscation, camouflaging, split manufacturing, and hardware redaction. This paper focuses on key topics on confidentiality of hardware IPs encompassing the major threats, protection approaches, security analysis, and metrics. It discusses the strengths and limitations of the major solutions in protecting hardware IPs against the confidentiality attacks, and future directions to address the limitations in the modern supply chain ecosystem.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123199217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduces an innovative post-implementation Dynamic Frequency Boosting (DFB) technique to release "hidden" performance margins of digital circuit designs currently suppressed by typical critical path constraint design flows, thus defining higher limits of operation speed. The proposed technique goes beyond state-of-the-art and exploits the data-driven path delay variability incorporating an innovative hardware clocking mechanism that detects in real-time the paths’ activation. In contrast to timing speculation, the operating speed is adjusted on the nominal path delay activation, succeeding an error-free acceleration. The proposed technique has been evaluated on three FPGA-based use cases carefully selected to exhibit differing domain characteristics, i.e i) a third party DNN inference accelerator IP for CIFAR-10 images achieving an average speedup of 18%, ii) a highly designer-optimized Optical Digital Equalizer design, in which DBF delivered a speedup of 50% and iii) a set of 5 synthetic designs examining high frequency (beyond 400 MHz) applications in FPGAs, achieving accelerations of 20-60% depending on the underlying path variability.
{"title":"Dynamic Frequency Boosting beyond Critical Path Delay","authors":"N. Zompakis, S. Xydis","doi":"10.1145/3508352.3549433","DOIUrl":"https://doi.org/10.1145/3508352.3549433","url":null,"abstract":"This paper introduces an innovative post-implementation Dynamic Frequency Boosting (DFB) technique to release \"hidden\" performance margins of digital circuit designs currently suppressed by typical critical path constraint design flows, thus defining higher limits of operation speed. The proposed technique goes beyond state-of-the-art and exploits the data-driven path delay variability incorporating an innovative hardware clocking mechanism that detects in real-time the paths’ activation. In contrast to timing speculation, the operating speed is adjusted on the nominal path delay activation, succeeding an error-free acceleration. The proposed technique has been evaluated on three FPGA-based use cases carefully selected to exhibit differing domain characteristics, i.e i) a third party DNN inference accelerator IP for CIFAR-10 images achieving an average speedup of 18%, ii) a highly designer-optimized Optical Digital Equalizer design, in which DBF delivered a speedup of 50% and iii) a set of 5 synthetic designs examining high frequency (beyond 400 MHz) applications in FPGAs, achieving accelerations of 20-60% depending on the underlying path variability.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131346586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rectilinear Steiner minimum tree (RSMT) generation is a fundamental component in the VLSI design automation flow. Due to its extensive usage in circuit design iterations at early design stages like synthesis, placement, and routing, the performance of RSMT generation is critical for a reasonable design turnaround time. State-of-the-art RSMT generation algorithms, like fast look-up table estimation (FLUTE), are constrained by CPU-based parallelism with limited runtime improvements. The acceleration of RSMT on GPUs is an important yet difficult task, due to the complex and non-trivial divide-and-conquer computation patterns with recursions. In this paper, we present the first GPU-accelerated RSMT generation algorithm based on FLUTE. By designing GPU-efficient data structures and levelized decomposition, table look-up, and merging operations, we incorporate large-scale data parallelism into the generation of Steiner trees. An up to 10.47× runtime speed-up has been achieved compared with FLUTE running on 40 CPU cores, filling in a critical missing component in today’s GPU-accelerated design automation framework.
{"title":"GPU-Accelerated Rectilinear Steiner Tree Generation","authors":"Zizheng Guo, Feng Gu, Yibo Lin","doi":"10.1145/3508352.3549434","DOIUrl":"https://doi.org/10.1145/3508352.3549434","url":null,"abstract":"Rectilinear Steiner minimum tree (RSMT) generation is a fundamental component in the VLSI design automation flow. Due to its extensive usage in circuit design iterations at early design stages like synthesis, placement, and routing, the performance of RSMT generation is critical for a reasonable design turnaround time. State-of-the-art RSMT generation algorithms, like fast look-up table estimation (FLUTE), are constrained by CPU-based parallelism with limited runtime improvements. The acceleration of RSMT on GPUs is an important yet difficult task, due to the complex and non-trivial divide-and-conquer computation patterns with recursions. In this paper, we present the first GPU-accelerated RSMT generation algorithm based on FLUTE. By designing GPU-efficient data structures and levelized decomposition, table look-up, and merging operations, we incorporate large-scale data parallelism into the generation of Steiner trees. An up to 10.47× runtime speed-up has been achieved compared with FLUTE running on 40 CPU cores, filling in a critical missing component in today’s GPU-accelerated design automation framework.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120952125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the 3D integrated circuit (IC) placement problem has been studied for many years, few publications devoted to the macro legalization. Due to large sizes of macros, the macro placement problem is harder than cell placement , especially when preplaced macros exist in a multi-tier structure. In order to have a more global view, this paper proposes the partitioning-last macro-first flow to handle 3D placement for mixed-size designs, which performs tier partitioning after placement prototyping and then legalizes macros before cell placement. A novel two-step approach is proposed to handle 3D macro placement. The first step determines locations of macros in a projection plane based on a new representation, named K-tier Partially Occupied Corner Stitching. It not only can keep the prototyping result but also guarantees a legal placement after tier assignment of macros. Next, macros are assigned to respective tiers by Integer Linear Programming (ILP) algorithm. Experimental results show that our design flow can obtain better solutions than other flows especially in the cases with more preplaced macros.
{"title":"A Novel Blockage-avoiding Macro Placement Approach for 3D ICs based on POCS","authors":"Jai-Ming Lin, Po-Chen Lu, Heng-Yu Lin, Jia-Ting Tsai","doi":"10.1145/3508352.3549352","DOIUrl":"https://doi.org/10.1145/3508352.3549352","url":null,"abstract":"Although the 3D integrated circuit (IC) placement problem has been studied for many years, few publications devoted to the macro legalization. Due to large sizes of macros, the macro placement problem is harder than cell placement , especially when preplaced macros exist in a multi-tier structure. In order to have a more global view, this paper proposes the partitioning-last macro-first flow to handle 3D placement for mixed-size designs, which performs tier partitioning after placement prototyping and then legalizes macros before cell placement. A novel two-step approach is proposed to handle 3D macro placement. The first step determines locations of macros in a projection plane based on a new representation, named K-tier Partially Occupied Corner Stitching. It not only can keep the prototyping result but also guarantees a legal placement after tier assignment of macros. Next, macros are assigned to respective tiers by Integer Linear Programming (ILP) algorithm. Experimental results show that our design flow can obtain better solutions than other flows especially in the cases with more preplaced macros.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116468741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}