Pub Date : 2020-10-20DOI: 10.23919/SMAGRIMET48809.2020.9263995
G. Dimitrov, Olexii Bychkov, P. Petrova, K. Merkulova, Y. Zhabska, E. Zaitseva, L. Adaryukova, Pavel Petrov
This article is dedicated to the creation of a biometric system of the identification by facial image. The conceptual model and the mathematical model based on image processing methods (Gabor and Daubechies wavelet transform) were developed, also steps of image processing in the program and the forming of the feature vector by calculating the image statistical characteristics were described during the analysis. Considering that the primary efficiency outcome of the system is the identification accuracy, which is performed by the system, it became necessary to carry out the experiments to determine these parameters, specifically the methods that are appropriate to use in the system. The results of the experimentation indicated that the system performs the most accurate identification outcome with the use of Daubechies wavelet transform for the image processing, the standard deviation and the variance for the feature vector forming, and Euclidean distance, the squared Euclidean distance or the Canberra distance as a metric of the image classification. Using these parameters, the created system performed the 92,5% accuracy of identification.
{"title":"Creation of Biometric System of Identification by Facial Image","authors":"G. Dimitrov, Olexii Bychkov, P. Petrova, K. Merkulova, Y. Zhabska, E. Zaitseva, L. Adaryukova, Pavel Petrov","doi":"10.23919/SMAGRIMET48809.2020.9263995","DOIUrl":"https://doi.org/10.23919/SMAGRIMET48809.2020.9263995","url":null,"abstract":"This article is dedicated to the creation of a biometric system of the identification by facial image. The conceptual model and the mathematical model based on image processing methods (Gabor and Daubechies wavelet transform) were developed, also steps of image processing in the program and the forming of the feature vector by calculating the image statistical characteristics were described during the analysis. Considering that the primary efficiency outcome of the system is the identification accuracy, which is performed by the system, it became necessary to carry out the experiments to determine these parameters, specifically the methods that are appropriate to use in the system. The results of the experimentation indicated that the system performs the most accurate identification outcome with the use of Daubechies wavelet transform for the image processing, the standard deviation and the variance for the feature vector forming, and Euclidean distance, the squared Euclidean distance or the Canberra distance as a metric of the image classification. Using these parameters, the created system performed the 92,5% accuracy of identification.","PeriodicalId":272673,"journal":{"name":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124059890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-20DOI: 10.23919/SMAGRIMET48809.2020.9264002
D. Novosel
. Resilient, reliable and efficient electrical grid operation is critical to society. The electrical power and energy industry is changing rapidly to meet the demands of the society and address decarbonization needs. New technologies offer significant opportunities for realizing a resilient and sustainable energy future. Identifying the best strategies to ensure reliable, resilient, and cost -effective delivery of electrical power energy is needed to set a path to decarbonization to address climate change. Those strategies include integration of renewable energy resources and electrical storage and together with electrification of transportation and innovative approaches to building climate control are critical ingredients of any energy future. It is critical to ensure that inverter-based resources like solar PV and battery energy storage systems have the capability to provide essential reliability services to the electric power system. We have to than taking more aggressive to adapt, including equipment we now is a renewed understanding value just but that enables and recognize the contributions of renewable energy resources, energy storage, and electrification in achieving reliability, and safety targets. We in making business and technical decisions that will allow us to optimally and cost-effectively manage the grid. This presentation will discuss success factors for sustainable electrical energy delivery in the context of industry trends and transformation drivers and opportunities for grid modernization with technologies for the changing nature of electricity delivery and decarbonization. Abstract. In this age of climate crisis, stakeholders are recognizing the need to integrate larger quantities of advanced energy technologies, from renewable generation to electrified transportation. Electric utilities the world over are challenged to integrate new technologies while limiting impacts to grid reliability. Further, the expectation of more frequent and intense weather events will drive the need for smart grid investments that provide greater energy resilience. Commonwealth Edison (ComEd) is developing and deploying technologies that enable increased penetration of low- carbon technologies, mitigate the effects of climate change, and enable higher levels of resilience, helping the communities in the utility’s service territory adapt to a changing environment. Many of these technologies are being demonstrated in Chicago where ComEd is installing the Bronzeville Community Microgrid (BCM). Within the BCM ComEd is deploying the first utility- operated microgrid cluster, serving 7 MW of load, that is being used as a living laboratory to demonstrate advanced technologies that support the integration of distributed energy resources (DERs). Together, these technologies ensure that ComEd can provide clean power, supporting communities to meet their goals. partnership and a controller that enables to operate as a resource. This technology is being demon
{"title":"Success Factors for Sustainable Electrical Energy Delivery and Decarbonization","authors":"D. Novosel","doi":"10.23919/SMAGRIMET48809.2020.9264002","DOIUrl":"https://doi.org/10.23919/SMAGRIMET48809.2020.9264002","url":null,"abstract":". Resilient, reliable and efficient electrical grid operation is critical to society. The electrical power and energy industry is changing rapidly to meet the demands of the society and address decarbonization needs. New technologies offer significant opportunities for realizing a resilient and sustainable energy future. Identifying the best strategies to ensure reliable, resilient, and cost -effective delivery of electrical power energy is needed to set a path to decarbonization to address climate change. Those strategies include integration of renewable energy resources and electrical storage and together with electrification of transportation and innovative approaches to building climate control are critical ingredients of any energy future. It is critical to ensure that inverter-based resources like solar PV and battery energy storage systems have the capability to provide essential reliability services to the electric power system. We have to than taking more aggressive to adapt, including equipment we now is a renewed understanding value just but that enables and recognize the contributions of renewable energy resources, energy storage, and electrification in achieving reliability, and safety targets. We in making business and technical decisions that will allow us to optimally and cost-effectively manage the grid. This presentation will discuss success factors for sustainable electrical energy delivery in the context of industry trends and transformation drivers and opportunities for grid modernization with technologies for the changing nature of electricity delivery and decarbonization. Abstract. In this age of climate crisis, stakeholders are recognizing the need to integrate larger quantities of advanced energy technologies, from renewable generation to electrified transportation. Electric utilities the world over are challenged to integrate new technologies while limiting impacts to grid reliability. Further, the expectation of more frequent and intense weather events will drive the need for smart grid investments that provide greater energy resilience. Commonwealth Edison (ComEd) is developing and deploying technologies that enable increased penetration of low- carbon technologies, mitigate the effects of climate change, and enable higher levels of resilience, helping the communities in the utility’s service territory adapt to a changing environment. Many of these technologies are being demonstrated in Chicago where ComEd is installing the Bronzeville Community Microgrid (BCM). Within the BCM ComEd is deploying the first utility- operated microgrid cluster, serving 7 MW of load, that is being used as a living laboratory to demonstrate advanced technologies that support the integration of distributed energy resources (DERs). Together, these technologies ensure that ComEd can provide clean power, supporting communities to meet their goals. partnership and a controller that enables to operate as a resource. This technology is being demon","PeriodicalId":272673,"journal":{"name":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131279552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-20DOI: 10.23919/SMAGRIMET48809.2020.9264019
A. Serov, Ekaterina A. Dolgacheva, A. Shatokhin, A. Novitskiy, S. Schlegel, D. Westermann
Currently, frequency measurement is one of the most popular tasks in power engineering. The voltage and current of real power networks are different from sinusoidal ones: there are harmonics, supraharmonics, noise and flicker. For this reason, the application of measurement methods designed to measure the frequency of a sinusoidal voltage results in larger measurement errors. This paper discusses two most popular frequency measurement methods applied in power engineering: zero crossing technique and a method based on the amplitude spectrum analysis. The paper provides a description of each method, indicates the main advantages and disadvantages, considers the features for the practical implementation. Analytical relations are obtained which allows to estimate the methodological error of all the methods under consideration. In the paper main modification directions for the considered methods are shown, aimed mainly at simplifying the implementation and reducing the methodological error. The influence of the parameters of the input signals, namely the sample time and the measurement time, on the frequency measurement error is considered. A comparative analysis of the methodological error of the considered methods for the cases of sinusoidal signal, polyharmonic signal and combined signals (sinusoidal signal and sinusoidal flicker) was made by simulation modeling in Matlab and Simulink software. The influence of supraharmonics on the measurement error for the case of considered methods is researched. The reliability of the obtained analytical relations is confirmed by comparison of the results of analytical and simulation modeling at check points.
{"title":"Comparative Analysis of Digital Frequency Measurement Methods for Power Networks","authors":"A. Serov, Ekaterina A. Dolgacheva, A. Shatokhin, A. Novitskiy, S. Schlegel, D. Westermann","doi":"10.23919/SMAGRIMET48809.2020.9264019","DOIUrl":"https://doi.org/10.23919/SMAGRIMET48809.2020.9264019","url":null,"abstract":"Currently, frequency measurement is one of the most popular tasks in power engineering. The voltage and current of real power networks are different from sinusoidal ones: there are harmonics, supraharmonics, noise and flicker. For this reason, the application of measurement methods designed to measure the frequency of a sinusoidal voltage results in larger measurement errors. This paper discusses two most popular frequency measurement methods applied in power engineering: zero crossing technique and a method based on the amplitude spectrum analysis. The paper provides a description of each method, indicates the main advantages and disadvantages, considers the features for the practical implementation. Analytical relations are obtained which allows to estimate the methodological error of all the methods under consideration. In the paper main modification directions for the considered methods are shown, aimed mainly at simplifying the implementation and reducing the methodological error. The influence of the parameters of the input signals, namely the sample time and the measurement time, on the frequency measurement error is considered. A comparative analysis of the methodological error of the considered methods for the cases of sinusoidal signal, polyharmonic signal and combined signals (sinusoidal signal and sinusoidal flicker) was made by simulation modeling in Matlab and Simulink software. The influence of supraharmonics on the measurement error for the case of considered methods is researched. The reliability of the obtained analytical relations is confirmed by comparison of the results of analytical and simulation modeling at check points.","PeriodicalId":272673,"journal":{"name":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133576270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-20DOI: 10.23919/smagrimet48809.2020.9264005
{"title":"Message from the Smagrimet 2020 Chairs","authors":"","doi":"10.23919/smagrimet48809.2020.9264005","DOIUrl":"https://doi.org/10.23919/smagrimet48809.2020.9264005","url":null,"abstract":"","PeriodicalId":272673,"journal":{"name":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121318099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-20DOI: 10.23919/SMAGRIMET48809.2020.9263996
P. Subbotin, Y. P. Gusev, D. Dvorkin
Modern tendencies in power grid development are focused on integrating renewable wind and solar energy sources in medium voltage grids. The prospects and validity of this tendency are in little doubt. However, this integration should be conducted, taking into account many factors, such as the grid's transfer capacity and its components, mode parameters, and limitations put on them, load and power flow changes over time, etc. The developed countries' experience shows that the significant increase of renewable sources requires either new approaches in power grid management and control or energy storage systems to be installed. It is highly necessary in order to keep the system state in the area of allowable values simultaneously with maximum power production from renewable sources. In the maximum demand mode, these storage systems near the consumers allow to supply them, avoiding additional capital investments in grid renovation to increase its transfer capacity. On the contrary, in the off-peak condition, these storage systems are charging up by the power produced at renewable source power plants, regulating thus voltage and accumulating energy to be used in further. Unfortunately, the bleeding-edge technologies of energy storage systems keep being quite expensive, which makes it essential to integrate them with the highest effectiveness. This contribution outlines an approach for optimal energy storage systems sizing and allocation based on the regression analysis and takes into account the aforementioned problems.
{"title":"Optimal BESS Sizing & Allocation for Transfer Capacity Increase in Distribution Grids","authors":"P. Subbotin, Y. P. Gusev, D. Dvorkin","doi":"10.23919/SMAGRIMET48809.2020.9263996","DOIUrl":"https://doi.org/10.23919/SMAGRIMET48809.2020.9263996","url":null,"abstract":"Modern tendencies in power grid development are focused on integrating renewable wind and solar energy sources in medium voltage grids. The prospects and validity of this tendency are in little doubt. However, this integration should be conducted, taking into account many factors, such as the grid's transfer capacity and its components, mode parameters, and limitations put on them, load and power flow changes over time, etc. The developed countries' experience shows that the significant increase of renewable sources requires either new approaches in power grid management and control or energy storage systems to be installed. It is highly necessary in order to keep the system state in the area of allowable values simultaneously with maximum power production from renewable sources. In the maximum demand mode, these storage systems near the consumers allow to supply them, avoiding additional capital investments in grid renovation to increase its transfer capacity. On the contrary, in the off-peak condition, these storage systems are charging up by the power produced at renewable source power plants, regulating thus voltage and accumulating energy to be used in further. Unfortunately, the bleeding-edge technologies of energy storage systems keep being quite expensive, which makes it essential to integrate them with the highest effectiveness. This contribution outlines an approach for optimal energy storage systems sizing and allocation based on the regression analysis and takes into account the aforementioned problems.","PeriodicalId":272673,"journal":{"name":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132994140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}