Pub Date : 2022-10-10DOI: 10.48550/arXiv.2210.04887
Haozhi Qi, Ashish Kumar, R. Calandra, Yinsong Ma, J. Malik
Generalized in-hand manipulation has long been an unsolved challenge of robotics. As a small step towards this grand goal, we demonstrate how to design and learn a simple adaptive controller to achieve in-hand object rotation using only fingertips. The controller is trained entirely in simulation on only cylindrical objects, which then - without any fine-tuning - can be directly deployed to a real robot hand to rotate dozens of objects with diverse sizes, shapes, and weights over the z-axis. This is achieved via rapid online adaptation of the controller to the object properties using only proprioception history. Furthermore, natural and stable finger gaits automatically emerge from training the control policy via reinforcement learning. Code and more videos are available at https://haozhi.io/hora
{"title":"In-Hand Object Rotation via Rapid Motor Adaptation","authors":"Haozhi Qi, Ashish Kumar, R. Calandra, Yinsong Ma, J. Malik","doi":"10.48550/arXiv.2210.04887","DOIUrl":"https://doi.org/10.48550/arXiv.2210.04887","url":null,"abstract":"Generalized in-hand manipulation has long been an unsolved challenge of robotics. As a small step towards this grand goal, we demonstrate how to design and learn a simple adaptive controller to achieve in-hand object rotation using only fingertips. The controller is trained entirely in simulation on only cylindrical objects, which then - without any fine-tuning - can be directly deployed to a real robot hand to rotate dozens of objects with diverse sizes, shapes, and weights over the z-axis. This is achieved via rapid online adaptation of the controller to the object properties using only proprioception history. Furthermore, natural and stable finger gaits automatically emerge from training the control policy via reinforcement learning. Code and more videos are available at https://haozhi.io/hora","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125704922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-07DOI: 10.48550/arXiv.2210.03836
Mark Van der Merwe, D. Berenson, Nima Fazeli
Many manipulation tasks require the robot to control the contact between a grasped compliant tool and the environment, e.g. scraping a frying pan with a spatula. However, modeling tool-environment interaction is difficult, especially when the tool is compliant, and the robot cannot be expected to have the full geometry and physical properties (e.g., mass, stiffness, and friction) of all the tools it must use. We propose a framework that learns to predict the effects of a robot's actions on the contact between the tool and the environment given visuo-tactile perception. Key to our framework is a novel contact feature representation that consists of a binary contact value, the line of contact, and an end-effector wrench. We propose a method to learn the dynamics of these contact features from real world data that does not require predicting the geometry of the compliant tool. We then propose a controller that uses this dynamics model for visuo-tactile contact servoing and show that it is effective at performing scraping tasks with a spatula, even in scenarios where precise contact needs to be made to avoid obstacles.
{"title":"Learning the Dynamics of Compliant Tool-Environment Interaction for Visuo-Tactile Contact Servoing","authors":"Mark Van der Merwe, D. Berenson, Nima Fazeli","doi":"10.48550/arXiv.2210.03836","DOIUrl":"https://doi.org/10.48550/arXiv.2210.03836","url":null,"abstract":"Many manipulation tasks require the robot to control the contact between a grasped compliant tool and the environment, e.g. scraping a frying pan with a spatula. However, modeling tool-environment interaction is difficult, especially when the tool is compliant, and the robot cannot be expected to have the full geometry and physical properties (e.g., mass, stiffness, and friction) of all the tools it must use. We propose a framework that learns to predict the effects of a robot's actions on the contact between the tool and the environment given visuo-tactile perception. Key to our framework is a novel contact feature representation that consists of a binary contact value, the line of contact, and an end-effector wrench. We propose a method to learn the dynamics of these contact features from real world data that does not require predicting the geometry of the compliant tool. We then propose a controller that uses this dynamics model for visuo-tactile contact servoing and show that it is effective at performing scraping tasks with a spatula, even in scenarios where precise contact needs to be made to avoid obstacles.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133505114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-07DOI: 10.48550/arXiv.2210.03701
Youngsun Wi, Andy Zeng, Peter R. Florence, Nima Fazeli
Deformable objects manipulation can benefit from representations that seamlessly integrate vision and touch while handling occlusions. In this work, we present a novel approach for, and real-world demonstration of, multimodal visuo-tactile state-estimation and dynamics prediction for deformable objects. Our approach, VIRDO++, builds on recent progress in multimodal neural implicit representations for deformable object state-estimation [1] via a new formulation for deformation dynamics and a complementary state-estimation algorithm that (i) maintains a belief over deformations, and (ii) enables practical real-world application by removing the need for privileged contact information. In the context of two real-world robotic tasks, we show:(i) high-fidelity cross-modal state-estimation and prediction of deformable objects from partial visuo-tactile feedback, and (ii) generalization to unseen objects and contact formations.
{"title":"VIRDO++: Real-World, Visuo-tactile Dynamics and Perception of Deformable Objects","authors":"Youngsun Wi, Andy Zeng, Peter R. Florence, Nima Fazeli","doi":"10.48550/arXiv.2210.03701","DOIUrl":"https://doi.org/10.48550/arXiv.2210.03701","url":null,"abstract":"Deformable objects manipulation can benefit from representations that seamlessly integrate vision and touch while handling occlusions. In this work, we present a novel approach for, and real-world demonstration of, multimodal visuo-tactile state-estimation and dynamics prediction for deformable objects. Our approach, VIRDO++, builds on recent progress in multimodal neural implicit representations for deformable object state-estimation [1] via a new formulation for deformation dynamics and a complementary state-estimation algorithm that (i) maintains a belief over deformations, and (ii) enables practical real-world application by removing the need for privileged contact information. In the context of two real-world robotic tasks, we show:(i) high-fidelity cross-modal state-estimation and prediction of deformable objects from partial visuo-tactile feedback, and (ii) generalization to unseen objects and contact formations.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115079565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-06DOI: 10.48550/arXiv.2210.03109
Ilija Radosavovic, Tete Xiao, Stephen James, P. Abbeel, J. Malik, Trevor Darrell
In this work, we explore self-supervised visual pre-training on images from diverse, in-the-wild videos for real-world robotic tasks. Like prior work, our visual representations are pre-trained via a masked autoencoder (MAE), frozen, and then passed into a learnable control module. Unlike prior work, we show that the pre-trained representations are effective across a range of real-world robotic tasks and embodiments. We find that our encoder consistently outperforms CLIP (up to 75%), supervised ImageNet pre-training (up to 81%), and training from scratch (up to 81%). Finally, we train a 307M parameter vision transformer on a massive collection of 4.5M images from the Internet and egocentric videos, and demonstrate clearly the benefits of scaling visual pre-training for robot learning.
{"title":"Real-World Robot Learning with Masked Visual Pre-training","authors":"Ilija Radosavovic, Tete Xiao, Stephen James, P. Abbeel, J. Malik, Trevor Darrell","doi":"10.48550/arXiv.2210.03109","DOIUrl":"https://doi.org/10.48550/arXiv.2210.03109","url":null,"abstract":"In this work, we explore self-supervised visual pre-training on images from diverse, in-the-wild videos for real-world robotic tasks. Like prior work, our visual representations are pre-trained via a masked autoencoder (MAE), frozen, and then passed into a learnable control module. Unlike prior work, we show that the pre-trained representations are effective across a range of real-world robotic tasks and embodiments. We find that our encoder consistently outperforms CLIP (up to 75%), supervised ImageNet pre-training (up to 81%), and training from scratch (up to 81%). Finally, we train a 307M parameter vision transformer on a massive collection of 4.5M images from the Internet and egocentric videos, and demonstrate clearly the benefits of scaling visual pre-training for robot learning.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129120343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-04DOI: 10.48550/arXiv.2210.01368
Haruki Nishimura, Jean-Pierre Mercat, Blake Wulfe, R. McAllister, Adrien Gaidon
Robust planning in interactive scenarios requires predicting the uncertain future to make risk-aware decisions. Unfortunately, due to long-tail safety-critical events, the risk is often under-estimated by finite-sampling approximations of probabilistic motion forecasts. This can lead to overconfident and unsafe robot behavior, even with robust planners. Instead of assuming full prediction coverage that robust planners require, we propose to make prediction itself risk-aware. We introduce a new prediction objective to learn a risk-biased distribution over trajectories, so that risk evaluation simplifies to an expected cost estimation under this biased distribution. This reduces the sample complexity of the risk estimation during online planning, which is needed for safe real-time performance. Evaluation results in a didactic simulation environment and on a real-world dataset demonstrate the effectiveness of our approach. The code and a demo are available.
{"title":"RAP: Risk-Aware Prediction for Robust Planning","authors":"Haruki Nishimura, Jean-Pierre Mercat, Blake Wulfe, R. McAllister, Adrien Gaidon","doi":"10.48550/arXiv.2210.01368","DOIUrl":"https://doi.org/10.48550/arXiv.2210.01368","url":null,"abstract":"Robust planning in interactive scenarios requires predicting the uncertain future to make risk-aware decisions. Unfortunately, due to long-tail safety-critical events, the risk is often under-estimated by finite-sampling approximations of probabilistic motion forecasts. This can lead to overconfident and unsafe robot behavior, even with robust planners. Instead of assuming full prediction coverage that robust planners require, we propose to make prediction itself risk-aware. We introduce a new prediction objective to learn a risk-biased distribution over trajectories, so that risk evaluation simplifies to an expected cost estimation under this biased distribution. This reduces the sample complexity of the risk estimation during online planning, which is needed for safe real-time performance. Evaluation results in a didactic simulation environment and on a real-world dataset demonstrate the effectiveness of our approach. The code and a demo are available.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124219556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A vast literature shows that the learning-based visual perception model is sensitive to adversarial noises, but few works consider the robustness of robotic perception models under widely-existing camera motion perturbations. To this end, we study the robustness of the visual perception model under camera motion perturbations to investigate the influence of camera motion on robotic perception. Specifically, we propose a motion smoothing technique for arbitrary image classification models, whose robustness under camera motion perturbations could be certified. The proposed robustness certification framework based on camera motion smoothing provides tight and scalable robustness guarantees for visual perception modules so that they are applicable to wide robotic applications. As far as we are aware, this is the first work to provide robustness certification for the deep perception module against camera motions, which improves the trustworthiness of robotic perception. A realistic indoor robotic dataset with a dense point cloud map for the entire room, MetaRoom, is introduced for the challenging certifiable robust perception task. We conduct extensive experiments to validate the certification approach via motion smoothing against camera motion perturbations. Our framework guarantees the certified accuracy of 81.7% against camera translation perturbation along depth direction within -0.1m ~ 0.1m. We also validate the effectiveness of our method on the real-world robot by conducting hardware experiments on the robotic arm with an eye-in-hand camera. The code is available at https://github.com/HanjiangHu/camera-motion-smoothing.
{"title":"Robustness Certification of Visual Perception Models via Camera Motion Smoothing","authors":"Hanjiang Hu, Zuxin Liu, Linyi Li, Jiacheng Zhu, Ding Zhao","doi":"10.48550/arXiv.2210.04625","DOIUrl":"https://doi.org/10.48550/arXiv.2210.04625","url":null,"abstract":"A vast literature shows that the learning-based visual perception model is sensitive to adversarial noises, but few works consider the robustness of robotic perception models under widely-existing camera motion perturbations. To this end, we study the robustness of the visual perception model under camera motion perturbations to investigate the influence of camera motion on robotic perception. Specifically, we propose a motion smoothing technique for arbitrary image classification models, whose robustness under camera motion perturbations could be certified. The proposed robustness certification framework based on camera motion smoothing provides tight and scalable robustness guarantees for visual perception modules so that they are applicable to wide robotic applications. As far as we are aware, this is the first work to provide robustness certification for the deep perception module against camera motions, which improves the trustworthiness of robotic perception. A realistic indoor robotic dataset with a dense point cloud map for the entire room, MetaRoom, is introduced for the challenging certifiable robust perception task. We conduct extensive experiments to validate the certification approach via motion smoothing against camera motion perturbations. Our framework guarantees the certified accuracy of 81.7% against camera translation perturbation along depth direction within -0.1m ~ 0.1m. We also validate the effectiveness of our method on the real-world robot by conducting hardware experiments on the robotic arm with an eye-in-hand camera. The code is available at https://github.com/HanjiangHu/camera-motion-smoothing.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123777300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.48550/arXiv.2210.00121
Yizhou Chen, A. Sipos, Mark Van der Merwe, Nima Fazeli
Learning representations in the joint domain of vision and touch can improve manipulation dexterity, robustness, and sample-complexity by exploiting mutual information and complementary cues. Here, we present Visuo-Tactile Transformers (VTTs), a novel multimodal representation learning approach suited for model-based reinforcement learning and planning. Our approach extends the Visual Transformer cite{dosovitskiy2021image} to handle visuo-tactile feedback. Specifically, VTT uses tactile feedback together with self and cross-modal attention to build latent heatmap representations that focus attention on important task features in the visual domain. We demonstrate the efficacy of VTT for representation learning with a comparative evaluation against baselines on four simulated robot tasks and one real world block pushing task. We conduct an ablation study over the components of VTT to highlight the importance of cross-modality in representation learning.
{"title":"Visuo-Tactile Transformers for Manipulation","authors":"Yizhou Chen, A. Sipos, Mark Van der Merwe, Nima Fazeli","doi":"10.48550/arXiv.2210.00121","DOIUrl":"https://doi.org/10.48550/arXiv.2210.00121","url":null,"abstract":"Learning representations in the joint domain of vision and touch can improve manipulation dexterity, robustness, and sample-complexity by exploiting mutual information and complementary cues. Here, we present Visuo-Tactile Transformers (VTTs), a novel multimodal representation learning approach suited for model-based reinforcement learning and planning. Our approach extends the Visual Transformer cite{dosovitskiy2021image} to handle visuo-tactile feedback. Specifically, VTT uses tactile feedback together with self and cross-modal attention to build latent heatmap representations that focus attention on important task features in the visual domain. We demonstrate the efficacy of VTT for representation learning with a comparative evaluation against baselines on four simulated robot tasks and one real world block pushing task. We conduct an ablation study over the components of VTT to highlight the importance of cross-modality in representation learning.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129232770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-27DOI: 10.48550/arXiv.2209.13432
M. Oller, M. Planas, D. Berenson, Nima Fazeli
Collocated tactile sensing is a fundamental enabling technology for dexterous manipulation. However, deformable sensors introduce complex dynamics between the robot, grasped object, and environment that must be considered for fine manipulation. Here, we propose a method to learn soft tactile sensor membrane dynamics that accounts for sensor deformations caused by the physical interaction between the grasped object and environment. Our method combines the perceived 3D geometry of the membrane with proprioceptive reaction wrenches to predict future deformations conditioned on robot action. Grasped object poses are recovered from membrane geometry and reaction wrenches, decoupling interaction dynamics from the tactile observation model. We benchmark our approach on two real-world contact-rich tasks: drawing with a grasped marker and in-hand pivoting. Our results suggest that explicitly modeling membrane dynamics achieves better task performance and generalization to unseen objects than baselines.
{"title":"Manipulation via Membranes: High-Resolution and Highly Deformable Tactile Sensing and Control","authors":"M. Oller, M. Planas, D. Berenson, Nima Fazeli","doi":"10.48550/arXiv.2209.13432","DOIUrl":"https://doi.org/10.48550/arXiv.2209.13432","url":null,"abstract":"Collocated tactile sensing is a fundamental enabling technology for dexterous manipulation. However, deformable sensors introduce complex dynamics between the robot, grasped object, and environment that must be considered for fine manipulation. Here, we propose a method to learn soft tactile sensor membrane dynamics that accounts for sensor deformations caused by the physical interaction between the grasped object and environment. Our method combines the perceived 3D geometry of the membrane with proprioceptive reaction wrenches to predict future deformations conditioned on robot action. Grasped object poses are recovered from membrane geometry and reaction wrenches, decoupling interaction dynamics from the tactile observation model. We benchmark our approach on two real-world contact-rich tasks: drawing with a grasped marker and in-hand pivoting. Our results suggest that explicitly modeling membrane dynamics achieves better task performance and generalization to unseen objects than baselines.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127558611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-24DOI: 10.48550/arXiv.2209.11908
Letian Chen, Sravan Jayanthi, Rohan R. Paleja, Daniel Martin, Viacheslav Zakharov, M. Gombolay
Learning from Demonstration (LfD) approaches empower end-users to teach robots novel tasks via demonstrations of the desired behaviors, democratizing access to robotics. However, current LfD frameworks are not capable of fast adaptation to heterogeneous human demonstrations nor the large-scale deployment in ubiquitous robotics applications. In this paper, we propose a novel LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR). Our approach (1) leverages learned strategies to construct policy mixtures for fast adaptation to new demonstrations, allowing for quick end-user personalization, (2) distills common knowledge across demonstrations, achieving accurate task inference; and (3) expands its model only when needed in lifelong deployments, maintaining a concise set of prototypical strategies that can approximate all behaviors via policy mixtures. We empirically validate that FLAIR achieves adaptability (i.e., the robot adapts to heterogeneous, user-specific task preferences), efficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e., the model grows sublinearly with the number of demonstrations while maintaining high performance). FLAIR surpasses benchmarks across three control tasks with an average 57% improvement in policy returns and an average 78% fewer episodes required for demonstration modeling using policy mixtures. Finally, we demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR as having higher task (p<.05) and personalization (p<.05) performance.
{"title":"Fast Lifelong Adaptive Inverse Reinforcement Learning from Demonstrations","authors":"Letian Chen, Sravan Jayanthi, Rohan R. Paleja, Daniel Martin, Viacheslav Zakharov, M. Gombolay","doi":"10.48550/arXiv.2209.11908","DOIUrl":"https://doi.org/10.48550/arXiv.2209.11908","url":null,"abstract":"Learning from Demonstration (LfD) approaches empower end-users to teach robots novel tasks via demonstrations of the desired behaviors, democratizing access to robotics. However, current LfD frameworks are not capable of fast adaptation to heterogeneous human demonstrations nor the large-scale deployment in ubiquitous robotics applications. In this paper, we propose a novel LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR). Our approach (1) leverages learned strategies to construct policy mixtures for fast adaptation to new demonstrations, allowing for quick end-user personalization, (2) distills common knowledge across demonstrations, achieving accurate task inference; and (3) expands its model only when needed in lifelong deployments, maintaining a concise set of prototypical strategies that can approximate all behaviors via policy mixtures. We empirically validate that FLAIR achieves adaptability (i.e., the robot adapts to heterogeneous, user-specific task preferences), efficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e., the model grows sublinearly with the number of demonstrations while maintaining high performance). FLAIR surpasses benchmarks across three control tasks with an average 57% improvement in policy returns and an average 78% fewer episodes required for demonstration modeling using policy mixtures. Finally, we demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR as having higher task (p<.05) and personalization (p<.05) performance.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121991637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-23DOI: 10.48550/arXiv.2209.11748
Jiaheng Hu, Julian Whiman, H. Choset
Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optimization difficult and sample inefficient. In this work, we present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space. This transformation allows optimization to be conducted in a continuous latent space, where sample efficiency can be significantly boosted by applying algorithms such as Bayesian Optimization. GLSO guides training of the VAE using graph grammar rules and robot world space features, such that the learned latent space focus on valid robots and is easier for the optimization algorithm to explore. Importantly, the trained VAE can be reused to search for designs specialized to multiple different tasks without retraining. We evaluate GLSO by designing robots for a set of locomotion tasks in simulation, and demonstrate that our method outperforms related state-of-the-art robot design automation methods.
{"title":"GLSO: Grammar-guided Latent Space Optimization for Sample-efficient Robot Design Automation","authors":"Jiaheng Hu, Julian Whiman, H. Choset","doi":"10.48550/arXiv.2209.11748","DOIUrl":"https://doi.org/10.48550/arXiv.2209.11748","url":null,"abstract":"Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optimization difficult and sample inefficient. In this work, we present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space. This transformation allows optimization to be conducted in a continuous latent space, where sample efficiency can be significantly boosted by applying algorithms such as Bayesian Optimization. GLSO guides training of the VAE using graph grammar rules and robot world space features, such that the learned latent space focus on valid robots and is easier for the optimization algorithm to explore. Importantly, the trained VAE can be reused to search for designs specialized to multiple different tasks without retraining. We evaluate GLSO by designing robots for a set of locomotion tasks in simulation, and demonstrate that our method outperforms related state-of-the-art robot design automation methods.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116891296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}