首页 > 最新文献

Chemistry and Physics of Lipids最新文献

英文 中文
Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae 阐明人ABHD16B脂肪酶在调节酿酒酵母三酰甘油动员和膜脂合成中的功能作用。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-11-07 DOI: 10.1016/j.chemphyslip.2023.105353
Raja Narayanasamy , Dandamudi Usharani , Ram Rajasekharan

Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/β-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in Saccharomyces cerevisiae to determine its physiological relevance in lipid metabolism. Through in vivo [14C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC–MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using 3tglsΔ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.

脂质是重要的生物大分子,在各种生理过程和细胞稳态中发挥着关键作用。ABHD16B是α/β-水解酶结构域(ABHD)超家族蛋白的一员,已成为脂质代谢的潜在关键调节因子。然而,人类ABHD16B在脂质代谢中的确切作用尚不清楚。在本研究中,我们报道了酿酒酵母中ABHD16B的过表达,以确定其在脂质代谢中的生理相关性。通过体内[14C]乙酸盐标记实验,我们观察到ABHD16B的过表达导致野生型细胞中细胞三酰甘油(TAG)水平降低,同时磷脂合成增加。质谱(LC-MS/MS)分析进一步证实了这些发现,显示在ABHD16B过表达后,碳链长度为48的TAG显著减少,主要磷脂种类增加,特别是34:2。共聚焦显微镜分析显示,在过表达ABHD16B的菌株中,脂滴数量减少,与观察到的中性脂质减少一致。此外,qRT-PCR分析表明,ABHD16B具有高磷脂合成活性,野生型酵母中TAG水平可能降低,这可能是由于内源性TAG水解酶的上调,如使用3tglsΔ突变株所证实的。此外,GC-MS分析显示ABHD16B过表达后脂肪酸组成发生了显著变化。总之,我们的研究结果强调了ABHD16B过表达对TAG水平、磷脂合成、脂滴动力学和脂肪酸组成的影响。这些发现揭示了TAG水解和磷脂合成之间的复杂相互作用,突出了ABHD16B在脂质稳态中的关键作用,并为其在细胞脂质代谢中的调节功能提供了进一步的见解。
{"title":"Elucidating the functional role of human ABHD16B lipase in regulating triacylglycerol mobilization and membrane lipid synthesis in Saccharomyces cerevisiae","authors":"Raja Narayanasamy ,&nbsp;Dandamudi Usharani ,&nbsp;Ram Rajasekharan","doi":"10.1016/j.chemphyslip.2023.105353","DOIUrl":"10.1016/j.chemphyslip.2023.105353","url":null,"abstract":"<div><p>Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/β-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in <em>Saccharomyces cerevisiae</em> to determine its physiological relevance in lipid metabolism. Through <em>in vivo</em> [<sup>14</sup>C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC–MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using <em>3tgls</em>Δ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"258 ","pages":"Article 105353"},"PeriodicalIF":3.4,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000750/pdfft?md5=88c09caa313909654509f6e549ded1c5&pid=1-s2.0-S0009308423000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72012831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tribute to our friend and colleague Professor Richard M. Epand 谨向我们的朋友兼同事理查德·m·埃普兰教授致敬
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-11-01 DOI: 10.1016/j.chemphyslip.2023.105352
Jose C. Bozelli Jr., Raquel F. Epand, John Katsaras, Jesús Pérez-Gil
{"title":"A tribute to our friend and colleague Professor Richard M. Epand","authors":"Jose C. Bozelli Jr.,&nbsp;Raquel F. Epand,&nbsp;John Katsaras,&nbsp;Jesús Pérez-Gil","doi":"10.1016/j.chemphyslip.2023.105352","DOIUrl":"https://doi.org/10.1016/j.chemphyslip.2023.105352","url":null,"abstract":"","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105352"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91962724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipidomic analysis identified potential predictive biomarkers of statin response in subjects with Familial hypercholesterolemia 脂质组学分析确定了家族性高胆固醇血症受试者他汀类药物反应的潜在预测生物标志物。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-11-01 DOI: 10.1016/j.chemphyslip.2023.105348
Alvaro Cerda , Raul Hernandes Bortolin , Marcos Yukio Yoshinaga , Renata Caroline Costa de Freitas , Carolina Dagli-Hernandez , Jessica Bassani Borges , Victor Fernandes de Oliveira , Rodrigo Marques Gonçalves , Andre Arpad Faludi , Gisele Medeiros Bastos , Rosario Dominguez Crespo Hirata , Mario Hiroyuki Hirata

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40–70 % reduction, n = 9) or poor (3–33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.

家族性高胆固醇血症(FH)是一种脂质代谢紊乱,可导致低密度脂蛋白胆固醇(LDL-c)升高和过早动脉粥样硬化风险增加。他汀类药物抑制内源性胆固醇生物合成,从而降低LDL-c血浆水平并预防心血管事件。本研究旨在探讨他汀类药物治疗对FH患者血清脂质组学的影响,并确定FH患者反应的生物标志物。17名成年FH患者接受了为期6周的冲洗,随后接受了为期4周的阿托伐他汀(80mg/天)或瑞舒伐他汀(40mg/天)治疗。LDL-c反应被认为是好的(减少40-70%,n=9)或差的(减少3-33%,n=8)。通过超高效液相色谱法结合电喷雾电离串联飞行时间质谱法分析血清脂质组学图谱,并使用MetaboAnalyst v5.0分析数据。脂质组学分析鉴定出353种脂质,分为16类。他汀类药物治疗显著降低了13种脂质类别中的8种,产生了磷脂酰肌醇(PI)16:0/18:2、18:0/18:1和18:0/18:2的显著贡献的特征性脂质组学特征;和三酰甘油(TAG)18:2×2/18:3,18:1/18:2/18:3、16:1/18:2×2、16:1/18:12/18:3和16:1/18:2/花生四烯酸(p调节
{"title":"Lipidomic analysis identified potential predictive biomarkers of statin response in subjects with Familial hypercholesterolemia","authors":"Alvaro Cerda ,&nbsp;Raul Hernandes Bortolin ,&nbsp;Marcos Yukio Yoshinaga ,&nbsp;Renata Caroline Costa de Freitas ,&nbsp;Carolina Dagli-Hernandez ,&nbsp;Jessica Bassani Borges ,&nbsp;Victor Fernandes de Oliveira ,&nbsp;Rodrigo Marques Gonçalves ,&nbsp;Andre Arpad Faludi ,&nbsp;Gisele Medeiros Bastos ,&nbsp;Rosario Dominguez Crespo Hirata ,&nbsp;Mario Hiroyuki Hirata","doi":"10.1016/j.chemphyslip.2023.105348","DOIUrl":"10.1016/j.chemphyslip.2023.105348","url":null,"abstract":"<div><p><span><span>Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. </span>Statins<span><span><span> inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum </span>lipidomic<span> profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or </span></span>rosuvastatin<span><span><span> (40 mg/day). LDL-c response was considered good (40–70 % reduction, n = 9) or poor (3–33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 </span>lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of </span>phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and </span></span></span>triacylglycerols<span> (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted &lt;0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve<span> of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid<span> composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.</span></span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105348"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41186896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The small-molecule kinase inhibitor ceritinib, unlike imatinib, causes a significant disturbance of lipid membrane integrity: A combined experimental and MD study 与伊马替尼不同,小分子激酶抑制剂西替尼会对脂质膜完整性造成显著干扰:一项实验和MD联合研究。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-11-01 DOI: 10.1016/j.chemphyslip.2023.105351
Markus Fischer , Meike Luck , Max Werle , Alexander Vogel , Mohammad Bashawat , Kai Ludwig , Holger A. Scheidt , Peter Müller

Ceritinib and imatinib are small-molecule protein kinase inhibitors which are applied as therapeutic agents against various diseases. The fundamentals of their clinical use, i.e. their pharmacokinetics as well as the mechanisms of the inhibition of the respective kinases, are relatively well studied. However, the interaction of the drugs with membranes, which can be a possible cause of side effects, has hardly been investigated so far. Therefore, we have characterized the interaction of both drugs with lipid membranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the absence and in the presence of cholesterol. For determining the membrane impact of both drugs on a molecular level, different experimental (NMR, ESR, fluorescence) and theoretical (MD simulations) approaches were applied. The data show that ceritinib, in contrast to imatinib, interacts more effectively with membranes significantly affecting various physico-chemical membrane parameters like membrane order and transmembrane permeation of polar solutes. The pronounced membrane impact of ceritinib can be explained by a strong affinity of the drug towards POPC which competes with the POPC-cholesterol interaction by that attenuating the ordering effect of cholesterol. The data are relevant for understanding putative toxic and cytotoxic side effects of these drugs such as the triggering of cell lysis or apoptosis.

赛替尼和伊马替尼是小分子蛋白激酶抑制剂,用作治疗各种疾病的药物。它们临床应用的基本原理,即它们的药代动力学以及各自激酶的抑制机制,都得到了相对良好的研究。然而,到目前为止,药物与膜的相互作用几乎没有得到研究,这可能是副作用的一个原因。因此,我们已经表征了两种药物在不存在和存在胆固醇的情况下与由1-棕榈酰-2-油酰基-sn-甘油-3-磷酸胆碱组成的脂质膜的相互作用。为了在分子水平上确定两种药物的膜影响,应用了不同的实验(NMR、ESR、荧光)和理论(MD模拟)方法。数据显示,与伊马替尼相比,西替尼与膜的相互作用更有效,显著影响各种物理化学膜参数,如膜序和极性溶质的跨膜渗透。西替尼对膜的显著影响可以通过药物对POPC的强亲和力来解释,该亲和力通过减弱胆固醇的有序效应来与POPC-胆固醇的相互作用竞争。这些数据有助于理解这些药物的假定毒性和细胞毒性副作用,如触发细胞裂解或凋亡。
{"title":"The small-molecule kinase inhibitor ceritinib, unlike imatinib, causes a significant disturbance of lipid membrane integrity: A combined experimental and MD study","authors":"Markus Fischer ,&nbsp;Meike Luck ,&nbsp;Max Werle ,&nbsp;Alexander Vogel ,&nbsp;Mohammad Bashawat ,&nbsp;Kai Ludwig ,&nbsp;Holger A. Scheidt ,&nbsp;Peter Müller","doi":"10.1016/j.chemphyslip.2023.105351","DOIUrl":"10.1016/j.chemphyslip.2023.105351","url":null,"abstract":"<div><p><span>Ceritinib<span><span><span> and imatinib are small-molecule </span>protein kinase inhibitors<span> which are applied as therapeutic agents against various diseases. The fundamentals of their clinical use, i.e. their pharmacokinetics as well as the mechanisms of the inhibition of the respective kinases, are relatively well studied. However, the interaction of the drugs with membranes, which can be a possible cause of side effects, has hardly been investigated so far. Therefore, we have characterized the interaction of both drugs with </span></span>lipid membranes consisting of 1-palmitoyl-2-oleoyl-</span></span><em>sn</em><span><span>-glycero-3-phosphocholine (POPC) in the absence and in the presence of cholesterol. For determining the membrane impact of both drugs on a molecular level, different experimental (NMR, ESR, fluorescence) and theoretical (MD simulations) approaches were applied. The data show that ceritinib, in contrast to imatinib, interacts more effectively with membranes significantly affecting various physico-chemical membrane parameters like membrane order and transmembrane permeation of polar solutes. The pronounced membrane impact of ceritinib can be explained by a strong affinity of the drug towards POPC which competes with the POPC-cholesterol interaction by that attenuating the ordering effect of cholesterol. The data are relevant for understanding putative toxic and cytotoxic side effects of these drugs such as the triggering of </span>cell lysis or apoptosis.</span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105351"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49672249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saturation of fatty acids in phosphatidic acid uniquely alters transthyretin stability changing morphology and toxicity of amyloid fibrils 磷脂酸中脂肪酸的饱和独特地改变了转甲状腺素的稳定性,改变了淀粉样原纤维的形态和毒性。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-11-01 DOI: 10.1016/j.chemphyslip.2023.105350
Abid Ali , Kiryl Zhaliazka , Tianyi Dou , Aidan P. Holman , Dmitry Kurouski

Transthyretin (TTR) is a small, β-sheet-rich tetrameric protein that transports thyroid hormone thyroxine and retinol. Phospholipids, including phosphatidic acid (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear. In this study, we investigated the effect of saturation of fatty acids (FAs) in PA on the rate of TTR aggregation. We also reveal the extent to which PAs with different length and saturation of FAs altered the morphology and secondary structure of TTR aggregates. Our results showed that TTR aggregation in the equimolar presence of PAs with different length and saturation of FAs yielded structurally and morphologically different fibrils compared to those formed in the lipid-free environment. We also found that PAs drastically lowered the toxicity of TTR aggregates formed in the presence of this phospholipid. These results shed light on the role of PA in the stability of TTR and transthyretin amyloidosis.

转甲状腺素(TTR)是一种小的、富含β片的四聚体蛋白,可转运甲状腺激素甲状腺素和视黄醇。磷脂,包括磷脂酸(PA),可以独特地改变淀粉样蛋白的稳定性。然而,PA在TTR聚集中的作用尚不清楚。在本研究中,我们研究了PA中脂肪酸饱和度(FA)对TTR聚集速率的影响。我们还揭示了具有不同长度和FA饱和度的PA在多大程度上改变了TTR聚集体的形态和二级结构。我们的结果表明,与在无脂环境中形成的原纤维相比,在等摩尔存在具有不同长度和FA饱和度的PA的情况下,TTR聚集产生了结构和形态不同的原纤维。我们还发现,PA显著降低了在这种磷脂存在下形成的TTR聚集体的毒性。这些结果阐明了PA在TTR和转甲状腺素淀粉样变性稳定性中的作用。
{"title":"Saturation of fatty acids in phosphatidic acid uniquely alters transthyretin stability changing morphology and toxicity of amyloid fibrils","authors":"Abid Ali ,&nbsp;Kiryl Zhaliazka ,&nbsp;Tianyi Dou ,&nbsp;Aidan P. Holman ,&nbsp;Dmitry Kurouski","doi":"10.1016/j.chemphyslip.2023.105350","DOIUrl":"10.1016/j.chemphyslip.2023.105350","url":null,"abstract":"<div><p><span>Transthyretin (TTR) is a small, β-sheet-rich </span>tetrameric protein<span><span> that transports thyroid hormone thyroxine<span> and retinol. </span></span>Phospholipids<span>, including phosphatidic acid<span><span> (PA), can uniquely alter the stability of amyloidogenic proteins. However, the role of PA in TTR aggregation remains unclear. In this study, we investigated the effect of saturation of fatty acids (FAs) in PA on the rate of TTR aggregation. We also reveal the extent to which PAs with different length and saturation of FAs altered the morphology and secondary structure of TTR aggregates. Our results showed that TTR aggregation in the equimolar presence of PAs with different length and saturation of FAs yielded structurally and morphologically different fibrils compared to those formed in the lipid-free environment. We also found that PAs drastically lowered the toxicity of TTR aggregates formed in the presence of this phospholipid. These results shed light on the role of PA in the stability of TTR and transthyretin </span>amyloidosis.</span></span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105350"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49672250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic synthesis of 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine and its effect on the induction of apoptosis in normal human lung fibroblasts 1,2-二棕榈酰-rac-甘油-3-磷脂酰乙醇胺的有机合成及其对正常人肺成纤维细胞凋亡诱导作用。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-11-01 DOI: 10.1016/j.chemphyslip.2023.105349
Beatriz Tlatelpa-Romero , David Atahualpa Contreras-Cruz , Gabriel Guerrero-Luna , María Guadalupe Hernández-Linares , Sinuhé Ruiz-Salgado , Criselda Mendoza-Milla , Yair Romero , René de-la-Rosa Paredes , Luis F. Oyarzábal , Diego Alejandro Mendoza-Sámano , Jiovani Alfredo Galván-León , Luis G. Vázquez-de-Lara

Background /objective

The phospholipid 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF).

Methodology

The first step of the organic synthesis route began with protected glycerol that was benzylated at sn-3; later, it was deprotected to react with palmitic acid at sn-1, sn-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in sn-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h.

Results

The PE obtained by organic synthesis presented a melting point of 190–192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%− 25.54%, while late apoptosis was only significant P < 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69–32.16%, 12.59–18.84%, and 10.91–12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03–16–42%, 11.04–15.94%, and 49.23–51.28%. Statistical analysis showed a significance P < 0.05 compared to the control.

Conclusion

The organic synthesis route of PE allows obtaining rac-1,2-O-Dipalmitoyl-glycero-3-phosphoethanolamine (1), which showed an apoptotic effect on NHLF.

背景/目的:磷脂1,2-二棕榈酰-rac-甘油-3-磷脂酰乙醇胺(PE)由甘油、磷酸盐和乙醇胺两条脂肪酸链组成。PE参与细胞凋亡和自噬等关键细胞过程,这使其成为设计肺纤维化等疾病新治疗方案的靶点。因此,本研究旨在通过六步有机合成途径获得PE,并确定其对正常人肺成纤维细胞(NHLF)凋亡诱导的生物学作用;随后,它被脱保护以在sn-1、sn-2处与棕榈酸反应。为了除去苄基,用碳载钯(Pd/C)进行氢化;随后,该分子在sn-3中用三氯氧磷和三乙胺磷酸化,中间体在酸性介质中水解得到最终的化合物。PE合成后,进行细胞凋亡评估:使用膜联蛋白V-FITC/碘化丙啶ECD(PI)诱导细胞凋亡,并使用流式细胞术定量。实验在三种不同浓度PE 10、100和1000µg/mL的NHLF细胞系中进行,持续24小时和48小时。结果:通过有机合成获得的PE熔点为190-192°C,纯度为95%,总收率为8%。流式细胞术对细胞凋亡的评估显示,在24小时内,暴露于PE 10、100和1000µg/mL可诱导19.42%-25.54%的早期细胞凋亡,而晚期细胞凋亡仅为显著P。结论:PE的有机合成途径可获得rac-1,2-O-二棕榈酰甘油-3-磷酸乙醇胺(1),其对NHLF表现出凋亡作用。
{"title":"Organic synthesis of 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine and its effect on the induction of apoptosis in normal human lung fibroblasts","authors":"Beatriz Tlatelpa-Romero ,&nbsp;David Atahualpa Contreras-Cruz ,&nbsp;Gabriel Guerrero-Luna ,&nbsp;María Guadalupe Hernández-Linares ,&nbsp;Sinuhé Ruiz-Salgado ,&nbsp;Criselda Mendoza-Milla ,&nbsp;Yair Romero ,&nbsp;René de-la-Rosa Paredes ,&nbsp;Luis F. Oyarzábal ,&nbsp;Diego Alejandro Mendoza-Sámano ,&nbsp;Jiovani Alfredo Galván-León ,&nbsp;Luis G. Vázquez-de-Lara","doi":"10.1016/j.chemphyslip.2023.105349","DOIUrl":"10.1016/j.chemphyslip.2023.105349","url":null,"abstract":"<div><h3>Background /objective</h3><p>The phospholipid 1,2-dipalmitoyl-<em>rac</em>-glycero-3-phosphatidylethanolamine (PE) comprises two fatty acid chains: glycerol, phosphate, and ethanolamine. PE participates in critical cellular processes such as apoptosis and autophagy, which places it as a target for designing new therapeutic alternatives in diseases such as pulmonary fibrosis. Therefore, this study aimed obtain PE through a six-step organic synthesis pathway and determine its biological effect on apoptosis induction in normal human lung fibroblasts (NHLF).</p></div><div><h3>Methodology</h3><p>The first step of the organic synthesis route began with protected glycerol that was benzylated at <em>sn</em>-3; later, it was deprotected to react with palmitic acid at <em>sn</em>-1, <em>sn</em>-2. To remove the benzyl group, hydrogenation was performed with palladium on carbon (Pd/C); subsequently, the molecule was phosphorylated in <em>sn</em>-3 with phosphorus oxychloride and triethylamine, and the intermediate was hydrolyzed in an acid medium to obtain the final compound. After PE synthesis, apoptosis assessment was performed: apoptosis was induced using exposure to annexin V-FITC/propidium iodide-ECD (PI) and quantified using flow cytometry. The experiments were performed in three NHLF cell lines with different concentrations of PE 10, 100 and 1000 µg/mL for 24 and 48 h.</p></div><div><h3>Results</h3><p>The PE obtained by organic synthesis presented a melting point of 190–192 °C, a purity of 95%, and a global yield of 8%. The evaluation of apoptosis with flow cytometry showed that at 24 h, exposure to PE 10, 100, and 1000 µg/mL induces early apoptosis in 19.42%− 25.54%, while late apoptosis was only significant <em>P &lt;</em> 0.05 in cells challenged with 100 µg/mL PE. At 48 h, NHLF exposed to PE 10, 100, and 1000 µg/mL showed decreasing early apoptosis: 28.69–32.16%, 12.59–18.84%, and 10.91–12.61%, respectively. The rest of the NHLF exposed to PE showed late apoptosis: 12.03–16–42%, 11.04–15.94%, and 49.23–51.28%. Statistical analysis showed a significance <em>P &lt;</em> 0.05 compared to the control.</p></div><div><h3>Conclusion</h3><p>The organic synthesis route of PE allows obtaining <em>rac</em>-1,2-<em>O</em>-Dipalmitoyl-glycero-3-phosphoethanolamine (<strong>1</strong>), which showed an apoptotic effect on NHLF.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105349"},"PeriodicalIF":3.4,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000713/pdfft?md5=6fc80b27b1609f8fc8647a5bd1aa75f7&pid=1-s2.0-S0009308423000713-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41186897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of Leucidal – eco-preservative from radish – on model lipid membranes and selected pathogenic bacteria 萝卜杀菌生态防腐剂对模型脂质膜及病原菌的影响。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-10-01 DOI: 10.1016/j.chemphyslip.2023.105338
Beata Wyżga , Magdalena Skóra , Katarzyna Hąc-Wydro

In this work the effect of Leucidal - a natural preservative from radish dedicated to be used in cosmetics - on bacteria cells and model bacteria membranes was investigated. To get insight into the mechanism of action of this formulation the lipid Langmuir monolayers imitating Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) membranes were prepared. Then, the influence of Leucidal on model systems was investigated by means of the surface pressure/area measurements, penetration studies and Brewster Angle Microscopy (BAM) visualization. Similar experiments were done also for one component monolayers formed from the model membrane lipids. The in vitro tests were done on five different bacteria species (E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa). Leucidal was found to decrease packing of the monolayers, however, it was excluded from the films at higher concentrations. Model membrane experiments evidenced also a stronger affinity of the components of this eco-preservative to E. coli vs S. aureus membrane. Among one component films, those formed from phosphatidylglycerols and cardiolipins were more sensitive to the presence of Leucidal. However, in vitro tests evidenced that Leucidal exerts stronger inhibitory effect against S. aureus bacteria as compared to E. coli strain. These findings were discussed from the point of view of the role of Leucidal components and the lipid membrane properties in the membrane - based mechanism of action of this preservative. The results allow one to suggest that the membrane may not be the main site of action of Leucidal on bacteria. Moreover, since high concentration of the tested preparation exerted antibacterial activity in relation to all tested bacteria, a low selectivity of Leucidal can be postulated, which may be problematic from the point of view of its effect on the skin microbiome.

在这项工作中,研究了杀菌剂——一种专门用于化妆品的萝卜天然防腐剂——对细菌细胞和模型细菌膜的影响。为了深入了解该制剂的作用机制,制备了模拟大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的脂质Langmuir单层膜。然后,通过表面压力/面积测量、渗透研究和布鲁斯特角显微镜(BAM)可视化研究了杀白剂对模型系统的影响。对于由模型膜脂质形成的单组分单层也进行了类似的实验。对五种不同的细菌(大肠杆菌、粪肠球菌、金黄色葡萄球菌、肠炎沙门氏菌和铜绿假单胞菌)进行了体外试验。发现杀白剂可以减少单层的堆积,然而,在较高浓度下,它被排除在薄膜之外。模型膜实验还证明,与金黄色葡萄球菌膜相比,这种生态防腐剂的成分对大肠杆菌的亲和力更强。在单组分膜中,由磷脂酰甘油和心磷脂形成的膜对杀白剂的存在更敏感。然而,体外试验证明,与大肠杆菌菌株相比,Leuclicid对金黄色葡萄球菌具有更强的抑制作用。从杀白成分和脂质膜性质在该防腐剂基于膜的作用机制中的作用的角度讨论了这些发现。结果表明,该膜可能不是杀白剂对细菌的主要作用位点。此外,由于高浓度的测试制剂对所有测试细菌都具有抗菌活性,因此可以假设杀白剂的选择性较低,从其对皮肤微生物组的影响来看,这可能是有问题的。
{"title":"The influence of Leucidal – eco-preservative from radish – on model lipid membranes and selected pathogenic bacteria","authors":"Beata Wyżga ,&nbsp;Magdalena Skóra ,&nbsp;Katarzyna Hąc-Wydro","doi":"10.1016/j.chemphyslip.2023.105338","DOIUrl":"10.1016/j.chemphyslip.2023.105338","url":null,"abstract":"<div><p>In this work the effect of Leucidal - a natural preservative from radish dedicated to be used in cosmetics - on bacteria cells and model bacteria membranes was investigated. To get insight into the mechanism of action of this formulation the lipid Langmuir monolayers imitating <em>Escherichia coli</em> (<em>E. coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) membranes were prepared. Then, the influence of Leucidal on model systems was investigated by means of the surface pressure/area measurements, penetration studies and Brewster Angle Microscopy (BAM) visualization. Similar experiments were done also for one component monolayers formed from the model membrane lipids. The in vitro tests were done on five different bacteria species (<em>E. coli, Enterococcus faecalis, S. aureus, Salmonella enterica, Pseudomonas aeruginosa</em>). Leucidal was found to decrease packing of the monolayers, however, it was excluded from the films at higher concentrations. Model membrane experiments evidenced also a stronger affinity of the components of this eco-preservative to <em>E. coli</em> vs <em>S. aureus</em> membrane. Among one component films, those formed from phosphatidylglycerols and cardiolipins were more sensitive to the presence of Leucidal. However, in vitro tests evidenced that Leucidal exerts stronger inhibitory effect against <em>S. aureus</em> bacteria as compared to <em>E. coli</em> strain. These findings were discussed from the point of view of the role of Leucidal components and the lipid membrane properties in the membrane - based mechanism of action of this preservative. The results allow one to suggest that the membrane may not be the main site of action of Leucidal on bacteria. Moreover, since high concentration of the tested preparation exerted antibacterial activity in relation to all tested bacteria, a low selectivity of Leucidal can be postulated, which may be problematic from the point of view of its effect on the skin microbiome.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"256 ","pages":"Article 105338"},"PeriodicalIF":3.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000609/pdfft?md5=baed64a17ac71d98e0ded7f957fbc620&pid=1-s2.0-S0009308423000609-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10272437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of ionic liquids on biomembranes: A review on recent biophysical studies 离子液体对生物膜的影响:近期生物物理研究综述。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-10-01 DOI: 10.1016/j.chemphyslip.2023.105336
Saheli Mitra , Veerendra K. Sharma , Sajal K. Ghosh

Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.

离子液体(ILs)已经成为一类通用的化合物,可以很容易地调节以实现各种应用所需的性能。离子液体与生物膜相互作用的能力引起了人们的极大兴趣,因为它们已被证明可以以可能对各种生物过程产生影响的方式调节膜性质。这篇综述概述了最近研究离子液体和生物膜之间相互作用的研究。我们讨论了离子液体对生物膜物理和化学性质的影响,包括膜流动性、渗透性和稳定性的变化。我们还探索了离子液体与生物膜相互作用的机制,如静电相互作用、氢键和范德华力。此外,我们还讨论了该领域的未来前景。
{"title":"Effects of ionic liquids on biomembranes: A review on recent biophysical studies","authors":"Saheli Mitra ,&nbsp;Veerendra K. Sharma ,&nbsp;Sajal K. Ghosh","doi":"10.1016/j.chemphyslip.2023.105336","DOIUrl":"10.1016/j.chemphyslip.2023.105336","url":null,"abstract":"<div><p>Ionic liquids<span><span><span> (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various </span>biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane </span>fluidity<span>, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions<span>, hydrogen bonding<span>, and van der Waals forces. Additionally, we discuss the future prospects of this field.</span></span></span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"256 ","pages":"Article 105336"},"PeriodicalIF":3.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10100354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-plane and out-of-plane gigahertz sound velocities of saturated and unsaturated phospholipid bilayers from cryogenic to room temperatures 饱和和不饱和磷脂双层从低温到室温的平面内和平面外千兆赫声速。
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-10-01 DOI: 10.1016/j.chemphyslip.2023.105335
E.A. Dobrynina, V.A. Zykova, N.V. Surovtsev

Here, we examined the gigahertz sound velocities of hydrated multibilayers of saturated (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) and unsaturated (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) phospholipids by Brillouin spectroscopy. Out-of-plane and in-plane (lateral) phonons were studied independently of each other. Similar strong temperature dependences of the sound velocities were found for phonons of both types. The sound velocities in the low-temperature limit were two-fold higher than that at physiological temperatures; a significant part of the changes in sound velocity occurs in the solid-like gel phase. The factors that may be involved in the peculiar behavior of sound velocity include changes in the chain conformational state, relaxation susceptibility, changes in the elastic modulus at infinite frequencies, and lateral packing of molecules.

在这里,我们通过布里渊光谱检测了饱和(1,2-二巯基-sn-甘油-3-磷酸胆碱,DMPC)和不饱和(1,2-dioeoyl-sn-甘油-3-磷胆碱,DOPC)磷脂的水合多双层的千兆赫声速。平面外和平面内(横向)声子相互独立地进行了研究。对于这两种类型的声子,都发现了类似的强烈的声速温度依赖性。低温极限下的声速比生理温度下的声速高出两倍;声速变化的很大一部分发生在类固体凝胶相中。声速的特殊行为可能涉及的因素包括链构象状态的变化、弛豫易感性、无限频率下弹性模量的变化以及分子的横向堆积。
{"title":"In-plane and out-of-plane gigahertz sound velocities of saturated and unsaturated phospholipid bilayers from cryogenic to room temperatures","authors":"E.A. Dobrynina,&nbsp;V.A. Zykova,&nbsp;N.V. Surovtsev","doi":"10.1016/j.chemphyslip.2023.105335","DOIUrl":"10.1016/j.chemphyslip.2023.105335","url":null,"abstract":"<div><p><span><span>Here, we examined the gigahertz sound velocities of hydrated multibilayers of saturated (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) and unsaturated (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) </span>phospholipids<span> by Brillouin spectroscopy. Out-of-plane and in-plane (lateral) phonons were studied independently of each other. Similar strong temperature dependences of the sound velocities were found for phonons of both types. The sound velocities in the low-temperature limit were two-fold higher than that at physiological temperatures; a significant part of the changes in sound velocity occurs in the solid-like gel phase. The factors that may be involved in the peculiar behavior of sound velocity include changes in the chain conformational state, relaxation susceptibility, changes in the </span></span>elastic modulus at infinite frequencies, and lateral packing of molecules.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"256 ","pages":"Article 105335"},"PeriodicalIF":3.4,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming 人类正常支气管和癌症肺细胞的拉曼成像和化学计量方法:脂质重编程的拉曼生物标志物
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-09-23 DOI: 10.1016/j.chemphyslip.2023.105339
Monika Kopec, Karolina Beton-Mysur, Halina Abramczyk

This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm−1, 2845 cm−1, 2936 cm−1, 1444 cm−1, 750 cm−1, 1126 cm−1, 1584 cm−1, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm−1, 2845 cm−1, 1444 cm−1, and 1126 cm−1 in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides de novo synthesis, reduced levels of cholesterol and cytochrome c in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.

本文提出了一种利用拉曼光谱和拉曼成像结合化学计量方法研究人正常支气管细胞(BEpiC)和人癌症肺细胞(A549)的生化变化的方法。基于拉曼光谱和拉曼成像以及化学计量方法,我们已经证明,在845 cm−1、2845 cm−1和2936 cm−1处、1444 cm−1或750 cm−1至1126 cm−2或1584 cm−2处的峰可以作为拉曼生物标志物来探测正常和癌症细胞中的磷酸化、脂质重编程、氧化磷酸化以及胆固醇和细胞色素的变化。人类癌症肺细胞和人类正常支气管细胞中845 cm−1、2845 cm−1,1444 cm−1和1126 cm−1处谱带的拉曼分析表明,癌症细胞中磷酸化和甘油三酯从头合成增强,胆固醇和细胞色素c水平降低。对A549细胞株的敏感性分别为100%(细胞核)、87.5%(线粒体)、100%(内质网)、87.5%(脂滴)、875%(细胞质)、87.5%(细胞膜),对BEpiC的敏感性分别是83.3%(细胞核),100%(线粒体),83.3%。交叉验证的特异性值为:A549细胞系的93.4%(细胞核)、85.5%(线粒体)、89.5%(内质网)、90.8%(脂滴)、61.8%(细胞质)、94.7%(细胞膜),BEpiC的88.5%(细胞核),85.9%(线粒体),85.9%(网面)、97.4%(油滴)、75.6%(细胞质)和92.3%(细胞膜。我们已经证实,拉曼光谱方法与PLS-DA相结合是监测人类癌症肺细胞和人类正常支气管细胞变化的有用工具。
{"title":"Raman imaging and chemometric methods in human normal bronchial and cancer lung cells: Raman biomarkers of lipid reprogramming","authors":"Monika Kopec,&nbsp;Karolina Beton-Mysur,&nbsp;Halina Abramczyk","doi":"10.1016/j.chemphyslip.2023.105339","DOIUrl":"https://doi.org/10.1016/j.chemphyslip.2023.105339","url":null,"abstract":"<div><p>This paper presents an approach to study biochemical changes in human normal bronchial cells (BEpiC) and human cancer lung cells (A549) by Raman spectroscopy and Raman imaging combined with chemometric methods. Based on Raman spectra and Raman imaging combined with chemometric methods we have proved that peaks at 845 cm<sup>−1</sup>, 2845 cm<sup>−1</sup>, 2936 cm<sup>−1</sup>, 1444 cm<sup>−1</sup>, 750 cm<sup>−1</sup>, 1126 cm<sup>−1</sup>, 1584 cm<sup>−1</sup>, can be treated as Raman biomarkers probing phosphorylation, lipid reprogramming, oxidative phosphorylation and changes in cholesterol and cytochrome in normal and cancer cells. Raman analysis of the bands at 845 cm<sup>−1</sup>, 2845 cm<sup>−1</sup>, 1444 cm<sup>−1</sup>, and 1126 cm<sup>−1</sup> in human cancer lung cells and human normal bronchial cells demonstrate enhanced phosphorylation and triglycerides <em>de novo</em> synthesis, reduced levels of cholesterol and cytochrome <em>c</em> in cancer cells. The sensitivity is equal to 100% (nucleus), 87.5% (mitochondria), 100% (endoplasmic reticulum), 87.5% (lipid droplets), 87.5% (cytoplasm), 87.5% (cell membrane) for A549 cell line and 83.3% (nucleus), 100% (mitochondria), 83.3% (endoplasmic reticulum), 100% (lipid droplets), 100% (cytoplasm), 83.3% (cell membrane) for BEpiC. The values of specificity for cross-validation equal 93.4% (nucleus), 85.5% (mitochondria), 89.5% (endoplasmic reticulum), 90.8% (lipid droplets), 61.8% (cytoplasm), 94.7% (cell membrane) for A549 cell line and 88.5% (nucleus), 85.9% (mitochondria), 85.9% (endoplasmic reticulum), 97.4% (lipid droplets), 75.6% (cytoplasm), 92.3% (cell membrane) for BEpiC. We have confirmed that Raman spectroscopy methods combined with PLS-DA are useful tools to monitor changes in human cancer lung cells and human normal bronchial cells.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"257 ","pages":"Article 105339"},"PeriodicalIF":3.4,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41080907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemistry and Physics of Lipids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1