首页 > 最新文献

Chemistry and Physics of Lipids最新文献

英文 中文
In silico and in vitro investigation of bile salts as coformers for edaravone coamorphous dispersion- Part I 胆盐作为依达拉奉共晶分散体的硅和体外研究。第1部分
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-07-01 DOI: 10.1016/j.chemphyslip.2023.105302
Dhrumi Patel, Sarika Wairkar

In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1–7 pH range. In silico studies to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and in vitro release study. Hydrogen bond formation between the pyrazolone ring of EDR and the -OH group of the phenanthrene ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and XRPD data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1 N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002 ± 0.942 %; Accelerated condition: 97.016 ± 1.110 %). Although coamorphous form and hydrogen bonding between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on oral absorption of EDR which will be studied in animals in the second part of this work.

在本研究中,我们旨在设计一种神经保护剂依达拉奉(EDR)与胆盐喷雾干燥的共晶分散体(COAM),以提高口服生物利用度。经过不同胆盐的初步筛选,edr -牛磺胆酸钠(NaTC) COAM在1-7 pH范围内的溶解度是纯药物的4倍。在计算机上对COAM共流器的选择研究表明,EDR和NaTC之间的能隙窄,电荷转移容易,化学反应性高。优化后的EDR-NaTC COAM以1:1的摩尔比进行了固态表征和体外释放研究。在COAM的ATR-FTIR光谱中观察到EDR的吡唑酮环与NaTC的菲环-OH基团之间形成了氢键。DSC和XRPD数据表明形成了一个无定形的晕,而SEM照片显示了多孔的球形COAM颗粒。在0.1 N HCl、pH 4.5和6.8缓冲液中,COAM的体外释药速度与pH无关,比EDR高3倍。COAM在加速状态下稳定6个月,未出现药物含量变化或脱氮(初始值:98.002±0.942%;加速条件:97.016±1.110%)。虽然EDR-NaTC之间的共晶态和氢键分散是改善溶解的主要原因,但NaTC作为一种特殊的表面活性剂,也起到了促进作用。此外,其独特的结构特性可以防止药物在GIT过饱和条件下的再结晶,也可以最大限度地减少食物对EDR口服吸收的影响,这将在本工作的第二部分进行动物研究。
{"title":"In silico and in vitro investigation of bile salts as coformers for edaravone coamorphous dispersion- Part I","authors":"Dhrumi Patel,&nbsp;Sarika Wairkar","doi":"10.1016/j.chemphyslip.2023.105302","DOIUrl":"10.1016/j.chemphyslip.2023.105302","url":null,"abstract":"<div><p><span><span>In the present study, we aimed to design the spray-dried coamorphous dispersion (COAM) of a neuroprotective agent-edaravone (EDR) with bile salts<span> to improve oral bioavailability. After the initial screening of different bile salts, EDR-sodium taurocholate (NaTC) COAM showed 4-fold solubility than a pure drug in 1–7 pH range. </span></span>In silico studies<span> to select coformer for COAM revealed a narrow energy gap, easy charge transfer and high chemical reactivity between EDR and NaTC. The optimized EDR-NaTC COAM in a 1:1 molar ratio was characterized for solid state characterizations and </span></span>in vitro release<span><span><span><span> study. Hydrogen bond formation between the </span>pyrazolone<span> ring of EDR and the -OH group of the phenanthrene<span> ring of NaTC was observed in the ATR-FTIR spectra of COAM. The DSC and </span></span></span>XRPD<span> data indicated the formation of an amorphous halo, whereas SEM photographs demonstrated porous, spherical particles of COAM. The pH-independent in vitro drug release of COAM was observed in 0.1 N HCl, pH 4.5 and 6.8 buffers which was 3-fold higher than EDR. The COAM was stable for 6 months at accelerated condition without showing a change in drug content or devitrification (Initial: 98.002 ± 0.942 %; Accelerated condition: 97.016 ± 1.110 %). Although coamorphous form and </span></span>hydrogen bonding<span><span> between EDR-NaTC dispersion were primarily responsible for improved dissolution, NaTC, an exceptional surfactant, has also contributed to it. Moreover, its exclusive structural characteristics could prevent the recrystallization of the drug in supersaturated conditions of the GIT and also minimize the effect of food on </span>oral absorption of EDR which will be studied in animals in the second part of this work.</span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"253 ","pages":"Article 105302"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9576290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymeric nanoparticles containing babassu oil: A proposed drug delivery system for controlled release of hydrophilic compounds 含有巴巴苏油的聚合纳米颗粒:一种用于控制亲水化合物释放的药物递送系统
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-07-01 DOI: 10.1016/j.chemphyslip.2023.105304
João Vitor Raupp de Oliveira , Pedro Leardin Silveira , Gabriela Spingolon , Gabriel Antonio Lopes Alves , Flávia Pires Peña , Tanira Alessandra Silveira Aguirre

Different drug delivery systems are prepared on the nanoscale to improve performance in drug formulations, such as nanoparticles or nanoemulsions. Polymeric nanoparticles have been used to encapsulate drugs for several applications because of some characteristics of these carriers to control drug delivery, transport molecules to a specific tissue, protect the drugs, and increase drug bioavailability. When using nanocapsules, an essential parameter for encapsulating different hydrophilic or lipophilic molecules is the characteristics of the core. Babassu oil (BBS) is a natural product from Brazil, composed majoritary of short-chain saturated fatty acids. BBS has an elevated hydrophilic-lipophilic balance (HLB), which may promote interaction of the oil with hydrophilic drugs. In this study, we developed and characterized particles containing babassu oil, solely or combined with sorbitan monostearate (Span® 60) or medium chain triglycerides (MCT) in the core to test different HLB and evaluated the encapsulation of a model hydrophilic molecule. Different techniques were used to characterize all formulations in terms of size and distribution, and in vitro drug release by dialysis technique was performed. The BBS was also characterized and presented 46,05 ± 1,11% and 15,38 ± 0,06% of lauric and myristic acid, respectively; saponification index of 248.87 ± 0.64 mg of KOH per gram of BBS, and no oxidation of the oil was indicated by means of peroxide index. Evaporation of solvent carried in the room or reduced pressure influenced the particles' size; nevertheless, all had a z-average smaller than 220 nm. Nanoparticles with a ratio among aqueous phase and organic phase of 2.8 were considered adequate to encapsulate diclofenac sodium. The particles size/zeta potential were 189.83 ± 7.86 nm / − 10.39 ± 2.52 mV, 156.80 ± 4.77 nm / − 9.27 ± 4.61 mV, and 168.87 ± 5.22 nm / − 12.98 ± 4.66 mV to nanoparticles prepared with BBS + MCT, BBS, and BBS + Span® 60, respectively. All formulations exhibited an amount of drug content close to the theoretical amount (1.0 mg mL−1), and no difference was observed in the release profile among the three nanoparticles. Formulation containing only babassu oil in the core displayed 66.78 ± 15.62% of encapsulation efficiency to diclofenac sodium, the highest value among all formulations tested. Results demonstrate that the innovative nanoparticles containing BBS promote the encapsulation of a model hydrophilic molecule, and other components can be evaluated to change the core’s hydrophilicity and encapsulation of molecules.

在纳米尺度上制备不同的药物递送系统以改善药物配方的性能,例如纳米颗粒或纳米乳剂。聚合物纳米颗粒被用于包封药物,因为这些载体具有控制药物递送、将分子运输到特定组织、保护药物和提高药物生物利用度的一些特性。当使用纳米胶囊时,包被不同的亲水或亲脂分子的一个基本参数是核心的特性。巴巴苏油(BBS)是巴西的一种天然产品,主要由短链饱和脂肪酸组成。BBS具有较高的亲水-亲脂平衡(HLB),这可能促进了油与亲水药物的相互作用。在这项研究中,我们开发并表征了含有巴巴苏油的颗粒,在核心中单独或与山梨糖单硬脂酸酯(Span®60)或中链甘油三酯(MCT)结合,以测试不同的HLB并评估模型亲水性分子的包封性。使用不同的技术来表征所有制剂的大小和分布,并通过透析技术进行体外药物释放。BBS的月桂酸和肉豆蔻酸含量分别为46.05±1.11%和15.38±0.06%;皂化指数为248.87±0.64 mg KOH / g,过氧化指数表明油无氧化。室内携带溶剂的蒸发或压力的降低影响颗粒的大小;然而,所有的z-平均值都小于220 nm。水相与有机相之比为2.8的纳米颗粒被认为足以包封双氯芬酸钠。BBS + MCT、BBS和BBS + Span®60制备的纳米粒子的粒径/zeta电位分别为189.83±7.86 nm /−10.39±2.52 mV、156.80±4.77 nm /−9.27±4.61 mV和168.87±5.22 nm /−12.98±4.66 mV。所有制剂的药物含量均接近理论量(1.0 mg mL−1),三种纳米颗粒的释放谱无差异。仅含巴巴苏油的配方对双氯芬酸钠的包封率为66.78±15.62%,在所有试验配方中最高。结果表明,含有BBS的新型纳米颗粒促进了模型亲水分子的包封性,而其他成分可以改变分子的亲水性和包封性。
{"title":"Polymeric nanoparticles containing babassu oil: A proposed drug delivery system for controlled release of hydrophilic compounds","authors":"João Vitor Raupp de Oliveira ,&nbsp;Pedro Leardin Silveira ,&nbsp;Gabriela Spingolon ,&nbsp;Gabriel Antonio Lopes Alves ,&nbsp;Flávia Pires Peña ,&nbsp;Tanira Alessandra Silveira Aguirre","doi":"10.1016/j.chemphyslip.2023.105304","DOIUrl":"10.1016/j.chemphyslip.2023.105304","url":null,"abstract":"<div><p><span><span><span>Different drug delivery systems are prepared on the nanoscale to improve performance in drug formulations, such as nanoparticles<span> or nanoemulsions<span>. Polymeric nanoparticles have been used to encapsulate drugs for several applications because of some characteristics of these carriers to control drug delivery, transport molecules to a specific tissue, protect the drugs, and increase drug bioavailability. When using nanocapsules, an essential parameter for encapsulating different hydrophilic or lipophilic molecules is the characteristics of the core. Babassu oil (BBS) is a </span></span></span>natural product<span><span> from Brazil, composed majoritary of short-chain saturated fatty acids. BBS has an elevated hydrophilic-lipophilic balance (HLB), which may promote interaction of the oil with hydrophilic drugs. In this study, we developed and characterized particles containing babassu oil, solely or combined with sorbitan monostearate (Span® 60) or medium chain </span>triglycerides<span> (MCT) in the core to test different HLB and evaluated the encapsulation of a model hydrophilic molecule. Different techniques were used to characterize all formulations in terms of size and distribution, and in vitro drug release by dialysis technique was performed. The BBS was also characterized and presented 46,05 ± 1,11% and 15,38 ± 0,06% of lauric and myristic acid, respectively; saponification<span> index of 248.87 ± 0.64 mg of KOH per gram of BBS, and no oxidation of the oil was indicated by means of peroxide index. Evaporation of solvent carried in the room or reduced pressure influenced the particles' size; nevertheless, all had a z-average smaller than 220 nm. Nanoparticles with a ratio among aqueous phase and organic phase of 2.8 were considered adequate to encapsulate diclofenac </span></span></span></span>sodium. The particles size/zeta potential were 189.83 ± 7.86 nm / − 10.39 ± 2.52 mV, 156.80 ± 4.77 nm / − 9.27 ± 4.61 mV, and 168.87 ± 5.22 nm / − 12.98 ± 4.66 mV to nanoparticles prepared with BBS + MCT, BBS, and BBS + Span® 60, respectively. All formulations exhibited an amount of drug content close to the theoretical amount (1.0 mg mL</span><sup>−1</sup><span>), and no difference was observed in the release profile among the three nanoparticles. Formulation containing only babassu oil in the core displayed 66.78 ± 15.62% of encapsulation efficiency to diclofenac sodium, the highest value among all formulations tested. Results demonstrate that the innovative nanoparticles containing BBS promote the encapsulation of a model hydrophilic molecule, and other components can be evaluated to change the core’s hydrophilicity and encapsulation of molecules.</span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"253 ","pages":"Article 105304"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9580131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A lipid activatable fluorescence probe for atherosclerosis imaging 一种用于动脉粥样硬化成像的脂质激活荧光探针
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-07-01 DOI: 10.1016/j.chemphyslip.2022.105272
Bing Han , Ming Bai , Jin Zhang , Xiaoxue Meng , Zheng Zhang

Lipid has been considered as a promising target for atherosclerosis diagnosis. However, there is still no available lipid imaging technology in clinic. Herein, we have prepared a fluorescence probe TPN for lipid-specific imaging in atherosclerosis. TPN exhibited extremely weak emission in water, while its emission was significantly enhanced in lipid environment at 666 nm. Meanwhile, TPN has showed low cytotoxicity and great intracellular lipid-specific fluorescence imaging ability with high signal-to-noise ratio. Importantly, TPN could specifically stain the lipid in atherosclerotic plaque, which would be a potential candidate for the diagnosis of atherosclerosis.

脂质被认为是动脉粥样硬化诊断的一个有希望的目标。然而,目前临床上还没有可用的脂质成像技术。在此,我们制备了一种荧光探针TPN用于动脉粥样硬化的脂质特异性成像。TPN在水中的发射极弱,而在脂质环境下的发射在666 nm处显著增强。同时,TPN具有较低的细胞毒性和高信噪比的细胞内脂质特异性荧光成像能力。重要的是,TPN可以特异性染色动脉粥样硬化斑块中的脂质,这将是动脉粥样硬化诊断的潜在候选者。
{"title":"A lipid activatable fluorescence probe for atherosclerosis imaging","authors":"Bing Han ,&nbsp;Ming Bai ,&nbsp;Jin Zhang ,&nbsp;Xiaoxue Meng ,&nbsp;Zheng Zhang","doi":"10.1016/j.chemphyslip.2022.105272","DOIUrl":"10.1016/j.chemphyslip.2022.105272","url":null,"abstract":"<div><p>Lipid has been considered as a promising target for atherosclerosis diagnosis. However, there is still no available lipid imaging technology in clinic. Herein, we have prepared a fluorescence probe TPN for lipid-specific imaging in atherosclerosis. TPN exhibited extremely weak emission in water, while its emission was significantly enhanced in lipid environment at 666 nm. Meanwhile, TPN has showed low cytotoxicity and great intracellular lipid-specific fluorescence imaging ability with high signal-to-noise ratio. Importantly, TPN could specifically stain the lipid in atherosclerotic plaque, which would be a potential candidate for the diagnosis of atherosclerosis.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"253 ","pages":"Article 105272"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9947270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ionizable lipids penetrate phospholipid bilayers with high phase transition temperatures: perspectives from free energy calculations 可电离脂类穿透具有高相变温度的磷脂双层:从自由能计算的角度
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-07-01 DOI: 10.1016/j.chemphyslip.2023.105294
Inna Ermilova, Jan Swenson

The efficacies of modern gene-therapies strongly depend on their contents. At the same time the most potent formulations might not contain the best compounds. In this work we investigated the effect of phospholipids and their saturation on the binding ability of (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl 4-(dimethylamino) butanoate (DLin-MC3-DMA) to model membranes at the neutral pH. We discovered that DLin-MC3-DMA has affinity to the most saturated monocomponent lipid bilayer 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and an aversion to the unsaturated one 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The preference to a certain membrane was also well-correlated to the phase transition temperatures of phospholipid bilayers, and to their structural and dynamical properties. Additionally, in the case of the presence of DLin-MC3-DMA in the membrane with DOPC the ionizable lipid penetrated it, which indicates possible synergistic effects. Comparisons with other ionizable lipids were performed using a model lipid bilayer of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). Particularly, the lipids heptadecan-9-yl 8-[2-hydroxyethyl-(6-oxo-6-undecoxyhexyl)amino]octanoate (SM-102) and [(4-hydroxybutyl) azanediyl] di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) from modern mRNA-vaccines against COVID-19 were investigated and force fields parameters were derived for those new lipids. It was discovered that ALC-0315 binds strongest to the membrane, while DLin-MC3-DMA is not able to reside in the bilayer center. The ability to penetrate the membrane POPC by SM-102 and ALC-0315 can be related to their saturation, comparing to DLin-MC3-DMA.

现代基因疗法的疗效很大程度上取决于其内容。同时,最有效的配方可能并不包含最好的化合物。在这项工作中,我们研究了磷脂及其饱和度对(6Z,9Z,28Z,31Z)-庚-6,9,28,31-四烯-19-基4-(二甲氨基)丁酸酯(DLin-MC3-DMA)在中性ph下与模型膜结合能力的影响。我们发现,DLin-MC3-DMA与最饱和的单组分脂质双分子层1,2-二myristoyl- cn -glycero-3-phosphocholine (DMPC)有亲和力,并对不饱和的1,2-dioleoyl- cn -glycero-3-phosphocholine (DOPC)有排斥。对某种膜的偏好也与磷脂双分子层的相变温度、结构和动力学性质密切相关。此外,当DLin-MC3-DMA存在于DOPC膜中时,可电离脂质穿透其,这表明可能存在协同作用。使用1-棕榈酰-2-油酰-甘油-3-磷脂胆碱(POPC)模型脂质双分子层与其他可电离脂质进行比较。特别研究了新型新冠肺炎mrna疫苗的脂质[(4-羟基丁基)氮杂二基]二(己烷-6,1-二基)双(2-己基癸酸酯)(ALC-0315)和[(4-羟基丁基)七烷-9-基8-[2-羟乙基-(6-氧-6-十一氧己基)氨基]辛酸酯(sp -102),并获得了这些新脂质的力场参数。发现ALC-0315与膜结合最强,而DLin-MC3-DMA不能驻留在双分子层中心。与DLin-MC3-DMA相比,SM-102和ALC-0315穿透膜POPC的能力可能与其饱和度有关。
{"title":"Ionizable lipids penetrate phospholipid bilayers with high phase transition temperatures: perspectives from free energy calculations","authors":"Inna Ermilova,&nbsp;Jan Swenson","doi":"10.1016/j.chemphyslip.2023.105294","DOIUrl":"10.1016/j.chemphyslip.2023.105294","url":null,"abstract":"<div><p>The efficacies of modern gene-therapies strongly depend on their contents. At the same time the most potent formulations might not contain the best compounds. In this work we investigated the effect of phospholipids and their saturation on the binding ability of (6<em>Z</em>,9<em>Z</em>,28<em>Z</em>,31<em>Z</em>)-heptatriacont-6,9,28,31-tetraene-19-yl 4-(dimethylamino) butanoate (DLin-MC3-DMA) to model membranes at the neutral pH. We discovered that DLin-MC3-DMA has affinity to the most saturated monocomponent lipid bilayer 1,2-dimyristoyl-<em>sn</em>-glycero-3-phosphocholine (DMPC) and an aversion to the unsaturated one 1,2-dioleoyl-<em>sn</em>-glycero-3-phosphocholine (DOPC). The preference to a certain membrane was also well-correlated to the phase transition temperatures of phospholipid bilayers, and to their structural and dynamical properties. Additionally, in the case of the presence of DLin-MC3-DMA in the membrane with DOPC the ionizable lipid penetrated it, which indicates possible synergistic effects. Comparisons with other ionizable lipids were performed using a model lipid bilayer of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC). Particularly, the lipids heptadecan-9-yl 8-[2-hydroxyethyl-(6-oxo-6-undecoxyhexyl)amino]octanoate (SM-102) and [(4-hydroxybutyl) azanediyl] di(hexane-6,1-diyl) bis(2-hexyldecanoate) (ALC-0315) from modern mRNA-vaccines against COVID-19 were investigated and force fields parameters were derived for those new lipids. It was discovered that ALC-0315 binds strongest to the membrane, while DLin-MC3-DMA is not able to reside in the bilayer center. The ability to penetrate the membrane POPC by SM-102 and ALC-0315 can be related to their saturation, comparing to DLin-MC3-DMA.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"253 ","pages":"Article 105294"},"PeriodicalIF":3.4,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000166/pdfft?md5=15a1d1a3c809e93e8b2b6f59454ae110&pid=1-s2.0-S0009308423000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9579644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic force microscopy study of the complexation of sterols and the glycoalkaloid α-tomatine in Langmuir-Blodgett monolayers Langmuir-Blodgett单分子膜中甾醇与α-番茄碱络合的原子力显微镜研究
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-05-01 DOI: 10.1016/j.chemphyslip.2023.105293
Bishal Nepal, Keith J. Stine

Glycoalkaloids are secondary metabolites produced by plants that aid in their protection from pathogens and pests. They are known to form 1:1 complexes with 3β-hydroxysterols such as cholesterol causing membrane disruption. So far, the visual evidence showcasing the complexes formed between glycoalkaloids and sterols in monolayers has been mainly restricted to some earlier studies using Brewster angle microscopy which were of low resolution showing the formation of floating aggregates of these complexes. This study is aimed at using atomic force microscopy (AFM) for topographic and morphological analysis of the aggregates of these sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of mixed monolayers of the glycoalkaloid α-tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method allowed visualization of the aggregation of sterol-glycoalkaloid complexes at nanometer resolution. While aggregation was observed in mixed monolayers of α-tomatine with cholesterol and in mixed monolayers with coprostanol, no sign of complexation was observed for the mixed monolayers of epicholesterol and α-tomatine, confirming their lack of interaction found in prior monolayer studies. Aggregates were observed in transferred monolayers of ternary mixtures of α-tomatine with cholesterol and the phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or egg sphingomyelin (egg SM). The formation of aggregates was found to be less prevalent for mixed monolayers of DMPC and cholesterol containing α-tomatine than it was for mixed monolayers containing egg SM and cholesterol with α-tomatine. The observed aggregates were generally elongated structures, of a width ranging from about 40–70 nm.

糖生物碱是植物产生的次生代谢物,有助于保护植物免受病原体和害虫的侵害。已知它们与3β-羟基甾醇(如胆固醇)形成1:1的复合物,导致膜破坏。到目前为止,显示糖生物碱和甾醇在单层中形成复合物的视觉证据主要局限于一些早期的研究,这些研究使用的是低分辨率的Brewster角度显微镜,显示了这些复合物的漂浮聚集体的形成。本研究旨在利用原子力显微镜(AFM)对这些甾醇-糖生物碱复合物的聚集体进行地形和形态分析。采用Langmuir-Blodgett (LB)法将不同摩尔比的糖生物碱α-番茄碱、甾醇和脂质混合单层转移到云母上,并进行AFM检测。AFM方法允许在纳米分辨率下可视化甾醇-糖生物碱复合物的聚集。虽然在α-番茄素与胆固醇的混合单分子层和与coprostanol的混合单分子层中观察到聚集,但在胆固醇和α-番茄素的混合单分子层中没有观察到络合的迹象,证实了它们在先前的单分子层研究中发现的缺乏相互作用。在α-番茄素与胆固醇、磷脂1,2-二肉豆醇-sn-甘油-3-磷脂(DMPC)或蛋鞘磷脂(SM)的三元混合物的转移单层中观察到聚集体。发现含有α-番茄素的DMPC和胆固醇混合单层比含有鸡蛋SM和胆固醇的α-番茄素混合单层更不容易形成聚集体。观察到的聚集体一般为细长结构,宽度约为40-70 nm。
{"title":"Atomic force microscopy study of the complexation of sterols and the glycoalkaloid α-tomatine in Langmuir-Blodgett monolayers","authors":"Bishal Nepal,&nbsp;Keith J. Stine","doi":"10.1016/j.chemphyslip.2023.105293","DOIUrl":"10.1016/j.chemphyslip.2023.105293","url":null,"abstract":"<div><p><span>Glycoalkaloids<span> are secondary metabolites produced by plants that aid in their protection from pathogens and pests. They are known to form 1:1 complexes with 3β-hydroxysterols such as cholesterol causing membrane disruption. So far, the visual evidence showcasing the complexes formed between glycoalkaloids and sterols in monolayers has been mainly restricted to some earlier studies using Brewster angle </span></span>microscopy<span> which were of low resolution showing the formation of floating aggregates of these complexes. This study is aimed at using atomic force microscopy<span><span><span><span> (AFM) for topographic and morphological analysis of the aggregates of these sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of mixed monolayers of the glycoalkaloid α-tomatine, sterols, and </span>lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method allowed visualization of the aggregation of sterol-glycoalkaloid complexes at nanometer resolution. While aggregation was observed in mixed monolayers of α-tomatine with cholesterol and in mixed monolayers with </span>coprostanol<span><span>, no sign of complexation was observed for the mixed monolayers of epicholesterol and α-tomatine, confirming their lack of interaction found in prior monolayer studies. Aggregates were observed in transferred monolayers of ternary mixtures of α-tomatine with cholesterol and the </span>phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or egg </span></span>sphingomyelin (egg SM). The formation of aggregates was found to be less prevalent for mixed monolayers of DMPC and cholesterol containing α-tomatine than it was for mixed monolayers containing egg SM and cholesterol with α-tomatine. The observed aggregates were generally elongated structures, of a width ranging from about 40–70 nm.</span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"252 ","pages":"Article 105293"},"PeriodicalIF":3.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9504063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cholesterol stabilization of phospholipid vesicles against bile-induced solubilization 胆固醇稳定磷脂囊抗胆汁诱导的溶解作用
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-05-01 DOI: 10.1016/j.chemphyslip.2023.105289
Patrick Tai , Andrew J. Clulow , Ben J. Boyd , Matt Golding , Harjinder Singh , David W. Everett

Sphingomyelin (SM) and cholesterol complex to form functional liquid-ordered (Lo) domains. It has been suggested that the detergent resistance of these domains plays a key role during gastrointestinal digestion of the milk fat globule membrane (MFGM), which is rich in both SM and cholesterol. Small-angle X-ray scattering was employed to determine the structural alterations that occur when milk sphingomyelin (MSM)/cholesterol, egg sphingomyelin (ESM)/cholesterol, soy phosphatidylcholine (SPC)/cholesterol, and milk fat globule membrane (MFGM) phospholipid/cholesterol model bilayer systems were incubated with bovine bile under physiological conditions. The persistence of diffraction peaks was indicative of multilamellar vesicles of MSM with cholesterol concentrations > 20 % mol, and also for ESM with or without cholesterol. The complexation of ESM with cholesterol is therefore capable of inhibiting the resulting vesicles from disruption by bile at lower cholesterol concentrations than MSM/cholesterol. After subtraction of background scattering by large aggregates in the bile, a Guinier fitting was used to determine changes in the radii of gyration (Rgs) over time for the biliary mixed micelles after mixing the vesicle dispersions with bile. Swelling of the micelles by phospholipid solubilization from vesicles was a function of cholesterol concentration, with less swelling of the micelles occurring as the cholesterol concentration was increased. With 40% mol cholesterol, the Rgs of the bile micelles mixed with MSM/cholesterol, ESM/cholesterol, and MFGM phospholipid/cholesterol were equal to the control (PIPES buffer + bovine bile), indicating negligible swelling of the biliary mixed micelles.

鞘磷脂(SM)和胆固醇复合物形成功能性液体有序(Lo)结构域。研究表明,这些结构域的洗涤剂抗性在富含SM和胆固醇的乳脂球膜(MFGM)的胃肠消化过程中起着关键作用。采用小角度x射线散射法测定了牛胆在生理条件下孵育乳鞘磷脂(MSM)/胆固醇、蛋鞘磷脂(ESM)/胆固醇、大豆磷脂酰胆碱(SPC)/胆固醇和乳脂球膜(MFGM)磷脂/胆固醇模型双层系统时的结构变化。衍射峰的持续存在表明具有胆固醇浓度的MSM为多层囊泡;20% mol,也适用于含或不含胆固醇的ESM。因此,在胆固醇浓度低于MSM/胆固醇的情况下,ESM与胆固醇的络合能够抑制胆汁对囊泡的破坏。在减去胆汁中大聚集物的背景散射后,使用Guinier拟合来确定在将囊泡分散体与胆汁混合后,胆汁混合胶束的旋转半径(Rgs)随时间的变化。囊泡磷脂增溶作用下胶束的膨胀是胆固醇浓度的函数,随着胆固醇浓度的增加胶束的膨胀减少。当胆固醇为40% mol时,与MSM/胆固醇、ESM/胆固醇和MFGM磷脂/胆固醇混合的胆胶束的Rgs与对照组(PIPES缓冲液+牛胆汁)相等,表明胆混合胶束的肿胀可以忽略不计。
{"title":"Cholesterol stabilization of phospholipid vesicles against bile-induced solubilization","authors":"Patrick Tai ,&nbsp;Andrew J. Clulow ,&nbsp;Ben J. Boyd ,&nbsp;Matt Golding ,&nbsp;Harjinder Singh ,&nbsp;David W. Everett","doi":"10.1016/j.chemphyslip.2023.105289","DOIUrl":"10.1016/j.chemphyslip.2023.105289","url":null,"abstract":"<div><p><span>Sphingomyelin (SM) and cholesterol complex to form functional liquid-ordered (L</span><sub>o</sub><span><span><span>) domains. It has been suggested that the detergent resistance of these domains plays a key role during gastrointestinal digestion of the milk fat globule membrane (MFGM), which is rich in both SM and cholesterol. Small-angle X-ray scattering was employed to determine the structural alterations that occur when milk sphingomyelin (MSM)/cholesterol, egg sphingomyelin (ESM)/cholesterol, </span>soy<span> phosphatidylcholine<span> (SPC)/cholesterol, and milk fat globule membrane (MFGM) phospholipid/cholesterol model bilayer systems were incubated with bovine bile under physiological conditions. The persistence of diffraction peaks was indicative of multilamellar vesicles of MSM with cholesterol concentrations &gt; 20 % mol, and also for ESM with or without cholesterol. The complexation of ESM with cholesterol is therefore capable of inhibiting the resulting vesicles from disruption by bile at lower cholesterol concentrations than MSM/cholesterol. After subtraction of background scattering by large aggregates in the bile, a </span></span></span>Guinier<span> fitting was used to determine changes in the radii of gyration (R</span></span><sub>g</sub><span>s) over time for the biliary mixed micelles<span> after mixing the vesicle dispersions with bile. Swelling of the micelles by phospholipid<span> solubilization from vesicles was a function of cholesterol concentration, with less swelling of the micelles occurring as the cholesterol concentration was increased. With 40% mol cholesterol, the R</span></span></span><sub>g</sub>s of the bile micelles mixed with MSM/cholesterol, ESM/cholesterol, and MFGM phospholipid/cholesterol were equal to the control (PIPES buffer + bovine bile), indicating negligible swelling of the biliary mixed micelles.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"252 ","pages":"Article 105289"},"PeriodicalIF":3.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9802127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Construction of redox-sensitive liposomes modified by glycyrrhetinic acid and evaluation of anti-hepatocellular carcinoma activity 甘草次酸修饰氧化还原敏感脂质体的构建及抗肝癌活性评价
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-05-01 DOI: 10.1016/j.chemphyslip.2023.105292
Jie Hu , Yongsheng Zheng , Zhijie Wen , Hudie Fu , Xuedan Yang , Xuexin Ye , Shengpeng Zhu , Li Kang , Xiaojun Li , Xinzhou Yang , Yan Hu

The aim of this study was to construct a bifunctional liposome with hepatic-targeting capacity by modifying with a targeting ligand and an intracellular tumor reduction response functional group to deliver drugs precisely to focal liver tissues and release them in large quantities in hepatocellular carcinoma cells. This could improve drug efficacy and reduce toxic side effects at the same time. First, the bifunctional ligand for liposome was successfully obtained by chemically synthesizing it from the hepatic-targeting glycyrrhetinic acid (GA) molecule, cystamine, and the membrane component cholesterol. Then the ligand was used to modify the liposomes. The particle size, PDI and zeta potential of the liposomes were determined with a nanoparticle sizer, and the morphology was observed by transmission electron microscopy. The encapsulation efficiency and drug release behavior were also determined. Further, the stability in vitro of the liposomes and the changes in the simulated reducing environment were determined. Finally, the antitumor activity in vitro and cellular uptake efficiency of the drug-loaded liposomes were investigated by performing cellular assays. The results showed that the prepared liposomes had a uniform particle size of 143.6 ± 2.86 nm with good stability and an encapsulation rate of 84.3 ± 2.1 %. Moreover, the particle size of the liposomes significantly increased and the structure was destroyed in a DTT reducing environment. Cellular experiments showed that the modified liposoes had better cytotoxic effects on hepatocarcinoma cells than both normal liposomes and free drugs. This study has great potential for tumor therapy and provides novel ideas for the clinical use of oncology drugs in dosage forms.

本研究的目的是通过靶向配体和细胞内肿瘤减少反应功能基团修饰,构建具有肝脏靶向能力的双功能脂质体,将药物精确递送到局灶肝组织,并在肝癌细胞中大量释放。这样可以在提高药物疗效的同时减少毒副作用。首先,以肝靶向甘草酸(GA)分子、胱胺和膜组分胆固醇为原料,化学合成脂质体双功能配体。然后用配体修饰脂质体。用纳米粒度仪测定脂质体的粒径、PDI和zeta电位,并用透射电镜观察其形貌。并对其包封率和释药行为进行了测定。进一步测定了脂质体的体外稳定性和模拟还原环境的变化。最后,通过细胞实验研究了载药脂质体的体外抗肿瘤活性和细胞摄取效率。结果表明,制备的脂质体粒径均匀,为143.6±2.86 nm,稳定性好,包封率为84.3±2.1%。在DTT还原环境下,脂质体的粒径明显增大,结构被破坏。细胞实验表明,改性脂质体对肝癌细胞的细胞毒作用优于普通脂质体和游离药物。本研究具有很大的肿瘤治疗潜力,为肿瘤药物的剂型临床应用提供了新的思路。
{"title":"Construction of redox-sensitive liposomes modified by glycyrrhetinic acid and evaluation of anti-hepatocellular carcinoma activity","authors":"Jie Hu ,&nbsp;Yongsheng Zheng ,&nbsp;Zhijie Wen ,&nbsp;Hudie Fu ,&nbsp;Xuedan Yang ,&nbsp;Xuexin Ye ,&nbsp;Shengpeng Zhu ,&nbsp;Li Kang ,&nbsp;Xiaojun Li ,&nbsp;Xinzhou Yang ,&nbsp;Yan Hu","doi":"10.1016/j.chemphyslip.2023.105292","DOIUrl":"10.1016/j.chemphyslip.2023.105292","url":null,"abstract":"<div><p><span><span>The aim of this study was to construct a bifunctional liposome with hepatic-targeting capacity by modifying with a targeting ligand and an intracellular tumor reduction response functional group to deliver drugs precisely to focal liver tissues and release them in large quantities in hepatocellular carcinoma cells. This could improve drug efficacy and reduce toxic side effects at the same time. First, the bifunctional ligand for liposome was successfully obtained by chemically synthesizing it from the hepatic-targeting </span>glycyrrhetinic acid<span> (GA) molecule, cystamine<span><span><span>, and the membrane component cholesterol. Then the ligand was used to modify the liposomes. The particle size, PDI and </span>zeta potential of the liposomes were determined with a </span>nanoparticle sizer, and the morphology was observed by </span></span></span>transmission electron microscopy<span>. The encapsulation efficiency and drug release behavior were also determined. Further, the stability in vitro of the liposomes and the changes in the simulated reducing environment were determined. Finally, the antitumor activity in vitro and cellular uptake efficiency of the drug-loaded liposomes were investigated by performing cellular assays. The results showed that the prepared liposomes had a uniform particle size of 143.6 ± 2.86 nm with good stability and an encapsulation rate of 84.3 ± 2.1 %. Moreover, the particle size of the liposomes significantly increased and the structure was destroyed in a DTT reducing environment. Cellular experiments showed that the modified liposoes had better cytotoxic effects on hepatocarcinoma cells than both normal liposomes and free drugs. This study has great potential for tumor therapy and provides novel ideas for the clinical use of oncology drugs in dosage forms.</span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"252 ","pages":"Article 105292"},"PeriodicalIF":3.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9504062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the deformability of additivated phosphatidylcholine liposomes: Molecular dynamic regimes and membrane elasticity 添加磷脂酰胆碱脂质体的可变形性:分子动力学机制和膜弹性
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-05-01 DOI: 10.1016/j.chemphyslip.2023.105290
M.B. Marzola Coronel, C.C. Fraenza , E. Anoardo

Liposomes with enhanced elasticity have been proven to increase the efficiency of drug transport across the skin. The understanding of the background physicochemical processes driving the liposome viscoelastic properties is an essential feature for the design of effective formulations involving different lipids and additive molecules. In this work we use field-cycled nuclear magnetic resonance relaxometry to analyze both the mechanical properties of liposome membranes, and their relationship with the involved molecular dynamics. Different liposomal formulations were considered. We show a correlation between the molecular dynamical regime and mesoscopic physical parameters that define the expected deformability of the vesicles. Results strongly suggest that the purity of the used lipids may influence the elastic properties of the membranes in an appreciable way. Common features in the behaviour of the involved dynamic variables were identified by comparing formulations with surfactants of similar molecular weight.

具有增强弹性的脂质体已被证明可以提高药物在皮肤上的运输效率。了解驱动脂质体粘弹性特性的背景物理化学过程是设计涉及不同脂质和添加剂分子的有效配方的基本特征。在这项工作中,我们使用场循环核磁共振弛豫仪来分析脂质体膜的力学性质,以及它们与所涉及的分子动力学的关系。考虑了不同的脂质体配方。我们展示了分子动力学机制和介观物理参数之间的相关性,这些参数定义了囊泡的预期可变形性。结果强烈表明,所用脂质的纯度可能会对膜的弹性性能产生可观的影响。通过比较具有相似分子量的表面活性剂的配方,确定了所涉及的动态变量行为的共同特征。
{"title":"On the deformability of additivated phosphatidylcholine liposomes: Molecular dynamic regimes and membrane elasticity","authors":"M.B. Marzola Coronel,&nbsp;C.C. Fraenza ,&nbsp;E. Anoardo","doi":"10.1016/j.chemphyslip.2023.105290","DOIUrl":"10.1016/j.chemphyslip.2023.105290","url":null,"abstract":"<div><p><span>Liposomes with enhanced elasticity have been proven to increase the efficiency of drug transport across the skin. The understanding of the background physicochemical processes driving the liposome viscoelastic properties is an essential feature for the design of effective formulations involving different lipids and additive molecules. In this work we use field-cycled nuclear magnetic resonance relaxometry to analyze both the mechanical properties of </span>liposome membranes<span>, and their relationship with the involved molecular dynamics<span>. Different liposomal formulations were considered. We show a correlation between the molecular dynamical regime and mesoscopic physical parameters that define the expected deformability of the vesicles. Results strongly suggest that the purity of the used lipids may influence the elastic properties of the membranes in an appreciable way. Common features in the behaviour of the involved dynamic variables were identified by comparing formulations with surfactants of similar molecular weight.</span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"252 ","pages":"Article 105290"},"PeriodicalIF":3.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9441943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In situ monitoring of galactolipid digestion by infrared spectroscopy in both model micelles and spinach chloroplasts 用红外光谱原位监测模式胶束和菠菜叶绿体中半乳糖脂的消化
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-05-01 DOI: 10.1016/j.chemphyslip.2023.105291
Moulay Sahaka , Eduardo Mateos-Diaz , Sawsan Amara , Jutarat Wattanakul , David Gray , Dominique Lafont , Brigitte Gontero , Hélène Launay , Frédéric Carrière

Galactolipids are the main lipids from plant photosynthetic membranes and they can be digested by pancreatic lipase related protein 2 (PLRP2), an enzyme found in the pancreatic secretion in many animal species. Here, we used transmission Fourier-transform infrared spectroscopy (FTIR) to monitor continuously the hydrolysis of galactolipids by PLRP2, in situ and in real time. The method was first developed with a model substrate, a synthetic monogalactosyl diacylglycerol with 8-carbon acyl chains (C8-MGDG), in the form of mixed micelles with a bile salt, sodium taurodeoxycholate (NaTDC). The concentrations of the residual substrate and reaction products (monogalactosylmonoglyceride, MGMG; monogalactosylglycerol, MGG; octanoic acid) were estimated from the carbonyl and carboxylate vibration bands after calibration with reference standards. The results were confirmed by thin layer chromatography analysis (TLC) and specific staining of galactosylated compounds with thymol and sulfuric acid. The method was then applied to the lipolysis of more complex substrates, a natural extract of MGDG with long acyl chains, micellized with NaTDC, and intact chloroplasts isolated from spinach leaves. After a calibration performed with α-linolenic acid, the main fatty acid (FA) found in plant galactolipids, FTIR allowed quantitative measurement of chloroplast lipolysis by PLRP2. A full release of FA from membrane galactolipids was observed, that was not dependent on the presence of bile salts. Nevertheless, the evolution of amide vibration band in FTIR spectra suggested the interaction of membrane proteins with NaTDC and lipolysis products.

半乳糖脂是植物光合膜的主要脂质,可以被胰腺脂肪酶相关蛋白2 (PLRP2)消化,这种酶存在于许多动物的胰腺分泌中。本研究利用透射傅里叶变换红外光谱(FTIR)对PLRP2水解半乳糖脂的过程进行了实时和原位连续监测。该方法首先建立了一个模型底物,一个合成的具有8碳酰基链的单半乳糖二酰基甘油(C8-MGDG),以混合胶束的形式与胆盐,牛磺脱氧胆酸钠(NaTDC)。残余底物和反应产物(单半乳糖单甘油酯,MGMG;monogalactosylglycerol,“万人迷”女友;用参考标准校正后,从羰基和羧酸盐振动带估计辛酸)。通过薄层色谱分析(TLC)和百里酚和硫酸对半乳糖基化化合物的特异性染色证实了结果。然后将该方法应用于更复杂的底物,具有长酰基链的MGDG天然提取物,与NaTDC胶束,以及从菠菜叶中分离的完整叶绿体的脂解。在用α-亚麻酸(植物半乳脂中的主要脂肪酸)进行校准后,FTIR允许PLRP2定量测量叶绿体脂解。从膜半乳糖脂中观察到FA的完全释放,这并不依赖于胆盐的存在。然而,在FTIR光谱中,酰胺振动带的演变表明膜蛋白与NaTDC和脂解产物相互作用。
{"title":"In situ monitoring of galactolipid digestion by infrared spectroscopy in both model micelles and spinach chloroplasts","authors":"Moulay Sahaka ,&nbsp;Eduardo Mateos-Diaz ,&nbsp;Sawsan Amara ,&nbsp;Jutarat Wattanakul ,&nbsp;David Gray ,&nbsp;Dominique Lafont ,&nbsp;Brigitte Gontero ,&nbsp;Hélène Launay ,&nbsp;Frédéric Carrière","doi":"10.1016/j.chemphyslip.2023.105291","DOIUrl":"10.1016/j.chemphyslip.2023.105291","url":null,"abstract":"<div><p><span>Galactolipids<span> are the main lipids from plant photosynthetic membranes and they can be digested by </span></span>pancreatic lipase<span><span><span><span><span> related protein 2 (PLRP2), an enzyme found in the </span>pancreatic secretion in many animal species. Here, we used transmission Fourier-transform infrared spectroscopy (FTIR) to monitor continuously the </span>hydrolysis of galactolipids by PLRP2, in situ and in real time. The method was first developed with a model substrate, a synthetic monogalactosyl </span>diacylglycerol<span> with 8-carbon acyl chains (C8-MGDG), in the form of mixed micelles with a </span></span>bile salt<span><span>, sodium<span><span><span> taurodeoxycholate (NaTDC). The concentrations of the residual substrate and reaction products (monogalactosylmonoglyceride, MGMG; monogalactosylglycerol, MGG; octanoic acid) were estimated from the carbonyl and carboxylate vibration bands after calibration with reference standards. The results were confirmed by </span>thin layer chromatography analysis (TLC) and specific staining of galactosylated compounds with </span>thymol and </span></span>sulfuric acid<span><span>. The method was then applied to the lipolysis of more complex substrates, a natural extract of MGDG with long acyl chains, micellized with NaTDC, and intact chloroplasts isolated from spinach leaves. After a calibration performed with α-linolenic acid, the main fatty acid (FA) found in plant galactolipids, FTIR allowed </span>quantitative measurement of chloroplast lipolysis by PLRP2. A full release of FA from membrane galactolipids was observed, that was not dependent on the presence of bile salts. Nevertheless, the evolution of amide vibration band in FTIR spectra suggested the interaction of membrane proteins with NaTDC and lipolysis products.</span></span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"252 ","pages":"Article 105291"},"PeriodicalIF":3.4,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9449247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interaction of psychedelic tryptamine derivatives with a lipid bilayer 致幻剂色胺衍生物与脂质双分子层的相互作用
IF 3.4 3区 生物学 Q1 Chemistry Pub Date : 2023-03-01 DOI: 10.1016/j.chemphyslip.2023.105279
Fateme Zohairi , Himanshu Khandelia , Ali Asghar Hakami Zanjani

Naturally occurring psychedelics have been used for a long time as remedies or in religious ceremonies and recreational activities. Recent studies have proven the therapeutic potential of some psychedelic compounds to safely treat a wide range of diseases such as anxiety, depression, migraine, and addiction. It is hypothesized that psychedelic compounds like tryptamines can exert their effects by two possible mechanisms: binding to the transmembrane serotonin receptor and/or modifying the properties of the neuronal membrane that can alter the conformational equilibrium and desensitize receptors. The impact of three different tryptamine class compounds with a tertiary amine (dimethyltryptamine, bufotenine, and 5-MeO-DMT) in both neutral and charged forms on a model bilayer lipid membrane are studied using all-atom MD simulations. All compounds partition into the bilayer, and change membrane properties, but to different extents. We determine the tendency of compounds to partition into the membrane by free energy calculations. Neutral tryptamines partition into the bilayer almost completely. Dimethyltryptamine and 5-MeO-DMT cross the membrane spontaneously during the simulation time, but bufotenine does not, although it has the maximum effect on the structural properties of the membrane. However, protonated compounds partition partially into the bilayer and cannot pass through the middle of the membrane during the simulation time. In this way, subtle alteration of chemical structure can play a significant role in the improvement or deterioration of partitioning of these compounds into the bilayer and their passage across the membrane.

自然产生的致幻剂长期以来一直被用作治疗药物或用于宗教仪式和娱乐活动。最近的研究已经证明了一些迷幻化合物的治疗潜力,可以安全地治疗一系列疾病,如焦虑、抑郁、偏头痛和成瘾。据推测,像色胺这样的致幻剂可以通过两种可能的机制发挥作用:与跨膜5 -羟色胺受体结合和/或改变神经元膜的特性,从而改变构象平衡并使受体脱敏。使用全原子MD模拟研究了三种不同的具有叔胺的色胺类化合物(二甲基色胺、丁福tenine和5-MeO-DMT)在中性和带电形式下对模型双层脂质膜的影响。所有化合物都进入双层,并改变膜的性质,但程度不同。我们通过自由能计算来确定化合物在膜上的分解趋势。中性色胺几乎完全进入双分子层。在模拟过程中,二甲基色胺和5-MeO-DMT自发地穿过膜,而丁福tenine则没有,尽管它对膜的结构性能影响最大。然而,在模拟过程中,质子化化合物部分进入双层,不能穿过膜的中间。通过这种方式,化学结构的细微改变可以在改善或恶化这些化合物进入双分子层并通过膜的过程中发挥重要作用。
{"title":"Interaction of psychedelic tryptamine derivatives with a lipid bilayer","authors":"Fateme Zohairi ,&nbsp;Himanshu Khandelia ,&nbsp;Ali Asghar Hakami Zanjani","doi":"10.1016/j.chemphyslip.2023.105279","DOIUrl":"10.1016/j.chemphyslip.2023.105279","url":null,"abstract":"<div><p>Naturally occurring psychedelics have been used for a long time as remedies or in religious ceremonies and recreational activities. Recent studies have proven the therapeutic potential of some psychedelic compounds to safely treat a wide range of diseases such as anxiety, depression, migraine, and addiction. It is hypothesized that psychedelic compounds like tryptamines can exert their effects by two possible mechanisms: binding to the transmembrane serotonin receptor and/or modifying the properties of the neuronal membrane that can alter the conformational equilibrium and desensitize receptors. The impact of three different tryptamine class compounds with a tertiary amine (dimethyltryptamine, bufotenine, and 5-MeO-DMT) in both neutral and charged forms on a model bilayer lipid membrane are studied using all-atom MD simulations. All compounds partition into the bilayer, and change membrane properties, but to different extents. We determine the tendency of compounds to partition into the membrane by free energy calculations. Neutral tryptamines partition into the bilayer almost completely. Dimethyltryptamine and 5-MeO-DMT cross the membrane spontaneously during the simulation time, but bufotenine does not, although it has the maximum effect on the structural properties of the membrane. However, protonated compounds partition partially into the bilayer and cannot pass through the middle of the membrane during the simulation time. In this way, subtle alteration of chemical structure can play a significant role in the improvement or deterioration of partitioning of these compounds into the bilayer and their passage across the membrane.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"251 ","pages":"Article 105279"},"PeriodicalIF":3.4,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009308423000014/pdfft?md5=0879cdcbf1baff8ad1c6730e6a9a6017&pid=1-s2.0-S0009308423000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9130542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Chemistry and Physics of Lipids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1